Как построены шкалы цельсия и кельвина кратко

Обновлено: 04.07.2024

ТЕМПЕРАТУ́РНЫЕ ШКА́ЛЫ, ус­та­нов­лен­ные шка­лы из­ме­ре­ний тем­пе­ра­ту­ры. Ха­рак­те­ри­зу­ют­ся на­чаль­ной точ­кой и еди­ни­цей из­ме­ре­ния (ве­ли­чи­ной 1°). В 18 в. бы­ло пред­ло­же­но неск. Т. ш.: в 1714 – Фа­рен­гей­та шка­ла (F), в ко­то­рой за ноль бы­ла при­ня­та темп-ра тая­ния сме­си сне­га, со­ли и хло­ри­да ам­мо­ния (на­ша­ты­ря), а за 1° F – 1 /32 часть тем­пе­ра­тур­но­го ин­тер­ва­ла ме­ж­ду ну­ле­вой точ­кой и темп-рой тая­ния льда; в 1730 – Рео­мю­ра шка­ла (0 °R – точ­ка тая­ния льда, 80 °R – точ­ка ки­пе­ния во­ды); в 1742 – Цель­сия шка­ла (0 °С – точ­ка тая­ния льда, 100 °С – точ­ка ки­пе­ния во­ды). В 1848 У. Том­сон (лорд Кель­вин) пред­ло­жил тер­мо­ди­на­мич. Т. ш., в ко­то­рой за ноль бы­ла при­ня­та темп-ра аб­со­лют­но­го ну­ля, а ин­тер­вал в 1° при­рав­нен к 1 °С.

Материал данной статьи дает представление о таком важном понятии как температура. Дадим определение, рассмотрим принцип изменения температуры и схему построения температурных шкал.

Что такое температура

Температура – это скалярная физическая величина, описывающая состояние термодинамического равновесия макроскопической системы тел.

Понятие температуры также применяют в качестве физической величины, определяющей степень нагретости тела, однако лишь такой трактовки для понимания смысла термина недостаточно. Все физические понятия находятся в связи с определенными фундаментальными законами и наделяются смыслом только в соответствии с этими законами. В данном случае термин температура связан с понятием теплового равновесия и с законом макроскопической необратимости.

Изменение температуры

Явление термодинамического равновесия тел, составляющих систему, говорит о наличии одинаковой температуры этих тел. Произвести замер температуры можно лишь косвенно, взяв за основу зависимость от температуры таких физических свойств тел, которые можно измерить непосредственно.

Вещества или тела, применяемые для получения значения температуры, называют термометрическими.

  1. t 1 > t 2 , когда происходит теплопередача от первого тела ко второму;
  2. t 1 ' = t 2 ' = t , t 1 > t > t 2 , при установлении теплового равновесия может приниматься за температуру.

Также отметим, что тепловое равновесие тел подчинено закону транзитивности.

Закон транзитивности: когда два тела находятся в равновесии с третьим, то и между собой они пребывают в тепловом равновесии.

Важной чертой указанного определения температуры является его неоднозначность. Выбрав по-разному величины, отвечающие установленным требованиям (что отразится на способах измерения температуры), возможно получить несовпадающие шкалы температур.

Температурная шкала – это способ деления на части интервала температуры.

Общеизвестным устройством для измерения температуры является термометр. Для рассмотрения возьмем термометры различного устройства. Первый представлен ртутным столбиком в капилляре термометра, и значение температуры здесь определяется длиной этого столбика, отвечающей условиям 1 и 2 , указанным выше.

И еще один способ измерить температуру: используя термопару – электрическую цепь с гальванометром и двумя спаями разнородных металлов (рисунок 1 ).

Изменение температуры

Один спай находится в среде с фиксированной температурой (в нашем примере это тающий лед), другой – в среде, температуру которой необходимо определить. Здесь признаком температуры является ЭДС термопары.

Указанные способы измерения температуры не дадут одинаковых результатов. И для перехода одной температуры к другой следует построить градуировочную кривую, которая установит зависимость ЭДС термопары от длины ртутного столбика. В этом случае равномерная шкала ртутного термометра преобразуется в неравномерную шкалу термопары (или наоборот). Равномерные шкалы измерения температур ртутного термометра и термопары создают две абсолютно различные температурные шкалы, на которых тело в одном и том же состоянии будет иметь различные температуры. Также возможно рассмотреть одинаковые по устройству термометры, но имеющие разные "термические тела" (к примеру, ртуть и спирт): мы не будем наблюдать совпадения температурных шкал и в этом случае. График зависимости длины ртутного столбика от длины спиртового столбика не будет линейным.

Температурные шкалы

Для того, чтобы построить температурную шкалу для измерения, двум числовым значениям температуры присваивают две фиксированные реперные точки. После этого разность числовых значений, присвоенных реперным точкам, делится на выбранное произвольным образом необходимое количество частей, получая в результате единицу измерения температуры.

За исходные значения, используемые в качестве начала отсчета и единицы измерения, принимают температуры перехода химически чистых веществ из одного агрегатного состояния в другое, к примеру, температуру плавления льда t 0 и кипения воды t k при нормальном атмосферном давлении ( П а ≈ 10 5 П а ) . Величины t 0 и t k имеют разные значения в различных видах шкал измерения температуры:

  • Согласно шкале Цельсия (стоградусная шкала): температура кипения воды t k = 100 ° C , температура плавления льда t 0 = 0 ° С . В шкале Цельсия температура тройной точки воды равна 0 , 01 ° С при давлении 0 , 06 а т м .

Тройная точка воды - такие температура и давление, при которых могут существовать в равновесии одновременно все три агрегатных состояния воды: жидкое, твердое (лед) и пар.

  • Согласно шкале Фаренгейта: температура кипения воды t k = 212 ° F ; температура плавления льда t 0 = 32 ° С .

Разница температур, выраженных в градусах по шкале Цельсия и шкале Фаренгейта, нивелируется согласно следующему выражению:

t ° C 100 = t ° F - 32 180 или t ° F = 1 , 8 ° C + 32 .

Ноль на этой шкале определен как температура замерзания смеси воды, нашатыря и соли, взятых в пропорции 1 : 1 : 1 .

  • Согласно шкале Кельвина: температура кипения воды t k = 373 К ; температура плавления льда t 0 = 273 К . Здесь температура отсчитывается от абсолютного нуля ( t = 273 , 15 ° С ) и ее называют термодинамической или абсолютной температурой. Т = 0 К – такому значению температуры соответствует абсолютное отсутствие тепловых колебаний.

Значения температур по шкале Цельсия и по шкале Кельвина связаны между собой согласно следующему выражению:

T ( K ) = t ° C + 273 , 15 ° C .

  • Согласно шкале Реомюра: температура кипения воды t k = 80 ° R ; температура плавления льда t 0 = 0 ° R . В термометре Реомюра использовался спирт; на данный момент шкала почти не используется.

Температуры, выраженные в градусах Цельсия и градусах по Реомюру, связаны так:

  • Согласно шкале Ранкина: температура кипения воды t k = 671 , 67 ° R a ; температура плавления льда t 0 = 491 , 67 ° R a . Начало шкалы соответствует абсолютному нулю. Количество градусов между реперными точками замерзания и кипения воды в шкале Ранкина идентично шкале Фаренгейта и равно 180 .

Температуры по Кельвину и Ранкину связаны выражением:

° R a = ° F + 459 , 67 .

Градусы по Фаренгейту возможно перевести в градусы по Ранкину согласно формуле:

° R a = ° F + 459 , 67 .

Наиболее применима в быту и технических устройствах шкала Цельсия (единица шкалы – градус Цельсия, обозначаемый как ° C ).

В физике же используют термодинамическую температуру, которая не просто удобна, но и несет глубокую физическую смысловую нагрузку, поскольку определена как средняя кинетическая энергия молекулы. Единица термодинамической температуры - градус Кельвина (до 1968 г.) или сейчас просто Кельвин ( К ) , являющийся одной из основных единиц в С И . Температура T = 0 К называется абсолютным нулем температуры, как уже упоминалось выше.

Вообще современная термометрия опирается на шкалу идеального газа: за термометрическую величину принимают давление. Шкала газового термометра абсолютна ( T = 0 , p = 0 ) . При решении практических задач чаще всего приходится применять именно эту шкалу температур.

Принято, что комфортная для человека температура в помещении находится в интервале от + 18 ° С до + 22 ° С . Необходимо рассчитать границы интервала температуры комфорта согласно термодинамической шкале.

Решение

Возьмем за основу соотношение T ( K ) = t ° C + 273 , 15 ° C .

Произведем расчет нижней и верхней границ температуры комфорта по термодинамической шкале:

T = 18 + 273 ≈ 291 ( K ) ; T = 22 + 273 ≈ 295 ( K ) .

Ответ: границы интервала температуры комфорта по термодинамической шкале находятся в интервале от 291 К до 295 К .

Необходимо определить, при какой температуре показания термометров по шкале Цельсия и по шкале Фаренгейта будут одинаковы.

Решение

Возьмем за основу соотношение t ° F = 1 , 8 t ° C + 32 .

По условию задачи температур равны, тогда возможно составить следующее выражение:

Определим из полученной записи переменную x :

x = - 32 0 , 8 = - 40 ° C .

Ответ: при температуре - 40 ° С (или - 40 ° F ) показания термометров по шкалам Цельсия и Фаренгейта будут одинаковы.

Из того, что температура - это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (т.е. в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах — градусах.

Шкала Кельвина

В термодинамике используется шкала Кельвина, в которой температура отсчитывается от абсолютного нуля (состояние, соответствующее минимальной теоретически возможной внутренней энергии тела), а один кельвин равен 1/273.16 расстояния от абсолютного нуля до тройной точки воды (состояния, при котором лёд, вода и водяной пар находятся в равновесии). Для пересчета кельвинов в энергетические единицы служит постоянная Больцмана. Используются также производные единицы: килокельвин, мегакельвин, милликельвин и т.д.

Шкала Цельсия

В быту используется шкала Цельсия, в которой за 0 принимают точку замерзания воды, а за 100° точку кипения воды при атмосферном давлении. Поскольку температура замерзания и кипения воды недостаточно хорошо определена, в настоящее время шкалу Цельсия определяют через шкалу Кельвина: градус Цельсия равен кельвину, абсолютный ноль принимается за −273,15 °C. Шкала Цельсия практически очень удобна, поскольку вода очень распространена на нашей планете и на ней основана наша жизнь. Ноль Цельсия — особая точка для метеорологии , поскольку замерзание атмосферной воды существенно всё меняет.

Шкала Фаренгейта

В Англии и, в особенности, в США используется шкала Фаренгейта. В этой шкале на 100 градусов раздёлен интервал от температуры самой холодной зимы в городе, где жил Фаренгейт, до температуры человеческого тела. Ноль градусов Цельсия — это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия.

В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F - 32), то есть изменение температуры на 1 °F соответствует изменению на 5/9 °С. Предложена Г. Фаренгейтом в 1724.

Шкала Реомюра

Предложенна в 1730 году Р. А. Реомюром, который описал изобретённый им спиртовой термометр.

Единица — градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками — температурой таяния льда (0 °R) и кипения воды (80 °R)

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции, на родине автора.

Опыт показывает, что макросистема, предоставленная самой себе, через некоторый промежуток времени приходит в состояние, в котором каждый ее параметр имеет одинаковое значение во всех точках системы. Такое состояние называется состоянием термодинамического равновесия.

Например, если соединить два сосуда с газами разного давления p1 и p2, то через некоторое время давление во всех точках соединенных сосудов будет одинаковое и равно p3.

Для того, чтобы определить находится система в термодинамическом равновесии или нет, необходимо было ввести параметр, который не встречается в механике. Таким параметром выбрали температуру.

Температура — скалярная физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы.

Другими словами, по температуре мы определяем состояние равновесия между телами системами: если у тел одинаковая температура и она не меняется в течении времени, то система в равновесии, если температура разная — равновесие нарушено и необходимо некоторое время для его установления.

Чтобы измерить температуру какого-либо тела, его необходимо привести в тепловой контакт с термометром.

Термометр — прибор для измерения температуры.

Основной частью термометра является термометрическое тело, приводимое в тепловой контакт с объектом, температуру которого надо измерить. В жидкостных термометрах термометрическим телом служит либо ртуть, либо подкрашенный спирт. В электрических термометрическим телом служит металлическая проволока, а температура определяется по ее электрическому сопротивлению.

  • Термометр не должен иметь большой массы, т.к. массивный термометр изменит температуру того тела, с которым он приведен в тепловой контакт.

Изобретателем термометра принято считать Галилея: в его собственных сочинениях нет описания этого прибора, но его ученики засвидетельствовали, что уже в 1597 г. он устроил нечто вроде термобароскопа (термоскоп).

По мере распространения термометров возникла необходимость в создании температурной шкалы, позволяющей приписывать температуре определенные числа. Обычно для построения шкалы выбирают две так называемые реперные точки, которым приписываются произвольные значения температуры, а шкала между ними делится на равные части. Этим устанавливается единица измерения температуры. Выбор реперных точек температурной шкалы и число частей совершенно произволен.

Шкала Фаренгейта


Предложена в 1724 г. Г. Фаренгейтом.

Градус Фаренгейта (1 °F) равен 1/180 части температурного интервала между температурой кипения воды (212 °F) и таяния льда (32 °F).

  • Сам Фаренгейт брал такой промежуток температур: за 0 °F — температуру смеси снега с нашатырём или поваренною солью, за 96 °F —температуру здорового человеческого тела, во рту или под мышкой.

Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением (рис. 1)

t °С = 5/9 (t °F – 32), t °F = 9/5 t °С + 32.

Используется шкала Фаренгейта в Англии и в США.

Шкала Реомюра

Предложена в 1730 году Р. А. Реомюром.

Градус Реомюра (1 °R) равен 1/80 части температурного интервала между температурой таяния льда (0 °R) и кипения воды (80 °R)

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции, на родине автора.

Шкала Цельсия

Предложена в 1742 г. А. Цельсием.

По шкале Цельсия температура обозначается буквой t, измеряется в градусах Цельсия (ºС).

Градус Цельсия (1 °С) равен 1/100 части температурного интервала между температурой тающего льда (0 °С) и кипящей воды (100 °С).

  • Первоначально А. Цельсий ставил 0° при точке кипения, а 100° при точке замерзания. Но такая шкала не пользовалась популярностью, и вскоре, по совету М. Штёрмера, была перевернута.

Эта шкала получила широкое распространение во всем мире.

Шкала Кельвина

В 1848 г. английскому физику Вильяму Томсону (лорд Кельвин) удалось построить так называемую абсолютную температурную шкалу (ее в настоящее время называют термодинамической шкалой температур или шкалой Кельвина), совершенно не зависящую ни от природы термометрического тела, ни от избранного термометрического параметра.

  • Можно провести следующий эксперимент. Взять сосуды с разными газами. Определить предварительно их объемы, массы и рассчитать число молекул по формуле \(~N = \dfrac \cdot N_A\), затем поместить сосуд в тающий лед. После наступления теплового равновесия определить давление p и рассчитать отношение \(~\dfrac\). Опыт показывает, что оно одинаково для всех газов Затем эти сосуды помещают в кипящую воду. Опять это отношение для всех газов определенное, но большее, т.е. оно ~ Т. Введя коэффициент пропорциональности k, можно записать\[~\dfrac= k \cdot T .\] Измерения показали, что давление газа в кипящей воде в 1,3661 раза больше, чем в тающем льде. Учитывая это можно по данной формуле определить, что температура таяния льда T0 = 273,15 К.

Предельная температура, при которой давление идеального газа обращается в нуль при фиксированном объеме или объем идеального газа стремится к нулю (т.е. газ как бы должен сжаться в "точку") при неизменном давлении, называется абсолютным нулем.

Это самая низкая температура в природе.

Абсолютная температурная шкала — шкала температур, в которой за начало отсчета принят абсолютный нуль. Температура здесь обозначается буквой T, измеряется в кельвинах (К). За единицу измерения в этой шкале принят один градус Цельсия, т.е. изменение на один кельвин (1 К) равно изменению на один градус Цельсия.

T = (t + 273) К или t = (T – 273) ºС,

где T — абсолютная термодинамическая температура (К); t — температура по шкале Цельсия (ºС).

  • Более точно T = (t + 273,15) К или t = (T – 273,15) ºС.

Термометры

Для измерения температуры можно воспользоваться зависимостью любой макроскопической величины (объема, давления, электрического сопротивления и др.) от температуры.

На практике чаще всего используют жидкостные термометры, в которых учитывают изменение объёма жидкости (обычно это спирт или ртуть) при изменении температуры окружающей среды (рис. 2).

Наиболее широко используется шкала Цельсия. В этой шкале за 0 ° C принята температура таяния льда, а 100 ° C определяет температура кипения воды. Интервал между этими точками разделён на 100 равных частей, величина каждой части равна одному градусу Цельсия ( ° C ).

В США и некоторых других странах используется шкала Фаренгейта, в которой температура таяния льда соответствует 32 ° F , а температура кипения воды — 212 ° F . Из этого можно сделать вывод, что один градус Цельсия больше одного градуса Фаренгейта.

В шкале Фаренгейта за нуль принята температура таяния смеси льда, нашатырного спирта и поваренной соли ( − 18 ° C ).

Шкалу Кельвина, главным образом, используют учёные. В этой шкале за нулевой уровень принята наименьшая возможная в природе температура − 273 , 15 ° C , которую называют абсолютным нулём. Один градус Кельвина (К) равен по величине одному градусу Цельсия, из этого можно сделать вывод, что шкала Кельвина такая же, как и шкала Цельсия, только лишь сдвинута на 273 , 15 градуса вверх.

В различных температурных шкалах значения температуры одного и того же процесса могут резко отличаться.

Так как в различных температурных шкалах значения температуры различны, то существуют формулы, которые связывают температурные шкалы друг с другом.

Читайте также: