Как получают синусоидальный переменный ток кратко

Обновлено: 06.07.2024

Практически все знают, что в бытовой сети повсеместно используется переменное напряжение, как результат, питание всех домашних устройств осуществляется переменным током. Однако, далеко не всем известны способы получение переменного тока, особенности формирования электрической величины и способы, которыми он генерируется на практике. Поэтому в рамках статьи мы рассмотрим как теоретический, так и практический аспект данного вопроса.

Теория

С одной стороны каждому известно, что первое знакомство человечества с электрической энергией произошло на примере постоянного тока. Только в 1831 году исследование явления магнитной индукции привели к генерации переменных токов. Первые эксперименты задействовали электрический проводник, помещаемый в магнитный поток.

Для примера вам следует рассмотреть обычный проводник, приведенный в состояние замкнутого контура, края проводника можно подключить к измерительному прибору для фиксации изменения электрических величин.

Далее вам необходимо:

  • взять хороший магнит, если под рукой имеется мощный неодимовый, то он подойдет лучше всего;
  • подключите проводник к гальванометру, всю электрическую цепь положите на стол или другую поверхность из изолирующего материала;
  • поднесите магнит к проводнику как можно ближе, желательно, чтобы расстояние было не больше 10 мм;
  • сделайте резкое движение в перпендикулярной плоскости по отношению к проводнику;
  • обратите внимание на прибор, стрелка гальванометра отклонится от равновесного положения в какую-либо сторону – в результате электромагнитных колебаний в проводнике наводится ЭДС индукции, которая и обуславливает возникновение переменного тока в замкнутом контуре.

Повторите манипуляцию с магнитом несколько раз, и вы увидите, как гальванометр равномерно отклоняется в сторону, по мере приближения полюса к проводнику и так же равномерно возвращается в исходную позицию по мере удаления магнита. Отклонение стрелки свидетельствует об изменении величины тока и потенциала, индуцируемых в металле. Амплитуда колебаний тока не постоянна во времени, из-за чего данная величина и называется переменной.

Заметьте, если перемещать возле провода один магнитный полюс, то стрелка будет отклоняться в одном направлении, если повернуть противоположным магнитным полюсом, то и направление отклонения стрелки соответственно изменится.

Один контур представляет собой лишь пример для понимания сути получения переменного электрического тока, так как ЭДС в нем будет слишком малой и мощности не хватит даже для питания светодиода. В промышленных масштабах вместо вращения витка используют целые обмотки с множеством витков. На практике не имеет значения, происходит движение магнита относительно проводника или это замкнутый контур движется по отношению к полюсу магнита.

Поэтому для изменения ЭДС в обмотках генератора может применяться как принцип вращения ротора из магнитного материала внутри обмоток статора, так и наоборот, обмоток ротора внутри магнитного статора.

Сама величина электродвижущей силы определяется из соотношения физических параметров по такой формуле:

где n – это количество витков обмоток

а соотношение dФB/dt – это скорость изменения электромагнитной индукции во времени.

Способы получения

Сегодня насчитывается довольно большое количество методов получения переменного тока. Поэтому в рамках статьи мы рассмотрим наиболее интересные с практической точки зрения.

Рамка с магнитами

Для этого вам понадобится рамка из любого металла, концы которой позволяют организовать вращение. С противоположных концов по отношению к рамке устанавливаются два магнита, направленные противоположными полюсами. Следует заметить, что величина переменного тока будет зависеть от сопротивления проводов, поэтому лучше брать изделие большого сечения и с высокой удельной проводимостью. При вращении контура в его электрической сети будет наводится ЭДС, которая и приведет к протеканию переменного тока.

Рамкой и магнитами

Рис. 1. Рамкой и магнитами

Как видите на рисунке выше, при равномерном максимальном удалении сторон металлического кольца от полюсов магнита величина электродвижущей силы равна нулю, магнитные линии не пересекают проводник. Синусоида напряжения и тока берут начало из нулевой отметки. Затем происходит движение рамки и ЭДС изменяется до тех пор, пока не достигнет своего максимума при оптимальном приближении сторон к магнитам. По мере дальнейшего вращения рамки ее стороны снова будут удаляться от магнитов и переменная ЭДС снова снизится до нуля.

При перемене положения меняется и направление протекания переменного тока, что на графике отображается в виде перехода кривой в отрицательную плоскость графика. Разумеется, для промышленных генераторов такая схема не подходит, поэтому в них используется усовершенствованный принцип.

Асинхронный и синхронный генератор

Асинхронная электрическая машина по своей конструкции схожа с устройством трансформатора. Ее используют для генерации и передачи электроэнергии переменного тока в трехфазных сетях. Как правило, электрическая машина может использоваться и как трехфазный двигатель, и как генератор, многие из них являются обратимыми.

По своему устройству она напоминает рамку, но в трехфазном исполнении – для каждой из фаз в статоре помещается своя катушка, заменяющая один виток кольца. Все обмотки фаз смещены друг относительно друга на 120° в геометрической плоскости.

Устройство асинхронного генератора

Рис. 2. Устройство асинхронного генератора

Благодаря физическому смещению обмоток, переменный ток наводится в них с тем запозданием, по отношению к предыдущей фазе, которое требует ротору для преодоления соответствующего расстояния. За счет чего напряжение и ток в каждой из фаз получаются смещенными друг относительно друга. Частота вращения определяет скорость пересечения синусоидой оси абсцисс за единицу времен. В отечественных сетях промышленная частота переменного тока составляет 50Гц.

Напряжение в трехфазной сети

Рис. 3. Напряжение в трехфазной сети

Однако, как генераторы переменного тока, асинхронные машины имеют ряд недостатков:

  • большие пусковые токи;
  • отставание электродвижущей силы от магнитного поля, которое ее индуцирует;
  • меньшая степень контроля за системой.

Поэтому сейчас довольно часто применяется схема генератора синхронного типа. Конструктивно он схож с предыдущей моделью, с тем отличием, что он имеет дополнительную катушку, подключаемую через скользящий контакт. Она в значительной мере снижает пусковые токи и облегчает работу.

схема синхронного генератора

Рис. 4. Схема синхронного генератора

Инвертор

За счет развития технологий, переменный ток в современном мире можно запросто получить не только от трехфазных генераторов. Немаловажную роль играют солнечные электростанции, которые производят постоянный ток, мало применяемый в быту и производстве напрямую. Для преобразования готового постоянного тока в переменный, используются специальные приборы – инверторы.

Схема инвертора

Рис. 5. Схема инвертора

На рисунке 5 выше приведен пример простейшего инвертора для получения переменного тока. Как видите, постоянное напряжение с батареи подается на пару транзисторов VT1 и VT2. За счет отличий в скорости открытия, один из транзисторов будет открываться раньше и весь ток пойдет через него до получения некоторого прообраза полупериода. Конечно, такая кривая переменного тока будет далека от идеальной синусоиды, но более чем достаточно для повышения величины напряжения на трансформаторе Tr до 220В.

Это наиболее простой вариант преобразования постоянного напряжения в переменное, он может не выдавать одинаковую частоту с индукционными генераторами и рассматривается нами только в качестве примера. Для домашнего и производственного использования выпускают более сложные модели.

ads

Переменный ток (англ. alternating current — AC) — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.

В быту для электроснабжения переменяется переменный, синусоидальный ток.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (Рисунок 1):

Формула переменного синусоидального тока

Максимальное значение функции называют амплитудой. Её обозначают с помощью заглавной (большой) буквы и строчной буквы m — максимальное значение. К примеру:

Период Т— это время, за которое совершается одно полное колебание.

Частота f равна числу колебаний в 1 секунду (единица частоты f — герц (Гц) или с -1 )

f = 1/T

Угловая частота ω (омега) (единица угловой частоты — рад/с или с -1 )

ω = 2πf = 2π/T

Аргумент синуса, т. е. (ωt + Ψ), называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой (ω) и начальной фазой Ψ (пси)

В странах СНГ и Западной Европе наибольшее распространение получили установки синусоидального тока частотой 50 Гц, принятой в энергетике за стандартную. В США стандартной является частота 60 Гц. Диапазон частот практически применяемых синусоидальных токов очень широк: от долей герца, например в геологоразведке, до миллиардов герц в радиотехнике.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью ламповых или полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j (или e(t) и j(t)).

Обратите внимание! При обозначении величин на схемах или в расчетах важен регистр букв, то есть заглавные буквы (E,I,U…) или строчные (e, i ,u…). Так как строчными буквами принято обозначать мгновенное значение, а заглавными могут обозначаться действующее значение величины (подробнее о действующем значении в следующей статье).

Преимущество переменного тока перед постоянным током состоит в:

    1. Его достаточно легко перемещать на большие расстояния с минимальными потерями.
    2. Величину напряжения можно изменять с помощью трансформатора.
    3. Электродвигатели переменного тока простые в эксплуатации, конструкции и имеют небольшой вес.

    Если рамку из медной проволоки поместить в электромагнитное поле и начать вращать, то на ее концах появится разность потенциалов. И если рамку замкнуть через нагрузку тогда потечёт электрический переменный синусоидальный ток. Величина и полярность переменного тока будет зависеть от положения рамки в электромагнитном поле, и при равномерном ее вращении получим переменный синусоидальный ток.

    В зависимости от частоты вращения рамки получим различную частоту переменного тока. Чтобы увеличить значение ЭДС добавляют число витков, и получается многовитковая катушка. Для генерации переменного тока применяют синхронные генераторы. Синхронный генератор переменного тока хорошо выдерживает большие токовые перегрузки, легко стабилизирует частоту переменного тока и э.д.с.

    Электростанции работают на трехфазных генераторах, вырабатывающих трёхфазное напряжение. Такое напряжение считается экономически выгодным, а с технической стороны хорошим решением для работы электрических генераторов. Для генераторов, ротор которого имеет частоту вращения 3000 об/ мин с частотой 50 Гц необходимо всего два полюса, а при 1500 об/ мин генератор имеет четыре полюса.

    Синхронный генератор содержит статор с обмотками, ротор с катушкой возбуждения и щётки. Щётки скользят по кольцам и, поэтому электромагнитное поле не меняет знак и направление. Есть возможность менять величину тока возбуждения и автоматически поддерживать режим работы синхронного генератора. Новые проститутки омска индивидуалки, девушки по вызову.

    Генератора

    Устройство генератора

    В промышленных объемах электроэнергию вырабатывают трехфазными синхронными генераторами. В частном случае используют однофазные и трехфазные генераторы. Для электроинструмента с большими пусковыми токами используют синхронные генераторы, которые хорошо выдерживают большие кратковременные токовые перегрузки. Для частных домов, где нет больших перегрузок, применяют асинхронные генераторы.

    Катушки трехфазного генератора могут иметь два вида соединений, как и для трехфазной нагрузки-это соединения “звезда” и “треугольник”. В генераторах электрический ток получают в трех обмотках соединенных по схеме ”звезда”. Такой вид соединения более экономный, так как не имеет четвертого провода.

    Из общей точки соединения обмоток, при одинаковых напряжениях и нагрузках на 3 фазах, провод не выводится. Так в симметричных сетях при одинаковых нагрузках общий провод не обязателен. В электрических низковольтных сетях, для однофазных нагрузок равномерная нагрузка невозможна, поэтому здесь используют четырех проводные сети с глухозаземленной нейтралью.

    Напряжение между фазами называют линейным напряжением, а между фазой и центральным проводом — фазным напряжением. В электростанциях и подстанциях применяют схему соединения “звезда”. Для низковольтных сетей до 1000 В линейное напряжения (между фазами) составляет 380 В, а напряжение между фазой и нейтралью (фазное) 220 В.

    Сети до 1000 В с использованием различных нагрузок в разных фазах могут иметь перекос фаз. По правилам ПУЭ сети до 1000 В должны быть четырех проводными с глухозаземленной нейтралью. Таким образом, на понижающей подстанции нулевой провод с вторичной обмотки трансформатора, соединяется с заземляющим устройством и четвертым проводом идет к потребителям.

    Четырех проводная вторичная обмотка подстанции

    Не всегда рационально использовать синхронные генераторы. Иногда возникает необходимость получить переменное напряжение из постоянного 12-220 В или 24-220 В. В этом случае используют электронные преобразователи. В дешёвых вариантах электронных преобразователей синусоида переменного тока нечистая. Поэтому они подходят для активной нагрузки (лампы накаливания, тэны, различные обогреватели). Для индуктивной нагрузки (электродвигатели) нужна чистая синусоида переменного напряжения. Такие электронные преобразователи значительно дороже.

    Получение переменного электрического тока

    Переменным током, в традиционном понимании, называется ток, получаемый благодаря переменному, гармонически изменяющемуся (синусоидальному) напряжению. Переменное напряжение генерируется на электростанции, и постоянно присутствует в любой настенной розетке.

    Для передачи электроэнергии на большие расстояния также используется именно переменный ток, поскольку переменное напряжение легко повышается при помощи трансформатора, и таким образом электрическую энергию можно передать на расстояние с минимальными потерями, а затем обратно понизить с помощью трансформатора до приемлемого для бытовой сети значения.

    Получение переменного электрического тока

    Генерация переменного напряжения (и соответственно тока) осуществляется на электростанции, где промышленные генер аторы переменного тока приводятся во вращение от турбин, движимых паром высокого давления. Пар получается из воды, которая сильно разогревается теплом, выделяемым в процессе ядерной реакции или при сжигании ископаемого топлива, в зависимости от типа конкретной электростанции. В любом случае, вращение генератора переменного тока — это и есть причина образования переменного напряжения и тока.

    Для ответа на вопрос, как в генераторе образуется переменный ток, достаточно рассмотреть элементарную модель, состоящую из куска провода, и магнита, попутно вспомнив силу Лоренца и закон электромагнитной индукции. Допустим, провод длиной 10 см лежит на столе, а у нас в руке сильный неодимовый магнит, размер которого немного меньше провода. Присоединим к концам провода чувствительный гальванометр или стрелочный вольтметр.

    Модель

    Поднесем магнит одним из полюсов близко к проводу, на расстояние менее 1 см, и быстро проведем магнитом над проводом поперек него слева направо — пересечем магнитным полем магнита проводник. Стрелка гальванометра резко отклонится в определенную сторону, затем вернется в исходное положение.

    Перевернем магнит другим полюсом к проводу. И снова, движением руки слева на право, быстро пересечем магнитным полем экспериментальный проводник. Стрелка гальванометра резко отклонилась в другую сторону, затем вернулась в исходное положение. Вместо того чтобы переворачивать магнит, можно сначала совершить движение слева направо, а потом — справа налево, эффект смены направления генерируемого тока получится аналогичным.

    Эксперимент показал, что для получения переменного напряжения нам необходимо либо двигать магнит поперек провода вправо-влево, либо пересекать проводник чередующимися магнитными полюсами. В генераторе на электростанции (и во всех традиционных генераторах переменного тока) применен второй вариант.

    Получение переменной электродвижущей силы

    Принцип действия генератора - получение переменной электродвижущей силы (напряжения)

    Получение синусоидального напряжения

    Переменное синусоидальное напряжение

    Генератор переменного тока на электростанции состоит из ротора и статора. Механическая энергия вращающейся турбины передается ротору. Магнитное поле ротора сконцентрировано на его полюсных наконечниках, и создается либо закрепленными на нем постоянными магнитами, либо током постоянного напряжения, протекающего в медной обмотке ротора.

    Обычно обмотка статора состоит из трех отдельных обмоток, смещенных относительно друг друга в пространстве, что приводит к возникновению переменного напряжения и тока в каждой из трех обмоток. Таким образом, каждая из трех обмоток статора является источником переменного напряжения, причем мгновенные значения напряжений смещены по фазе относительно друг друга на 120 градусов. Это и называется трехфазный переменный ток.

    Получение трехфазного переменного напряжения и тока

    Получение трехфазного переменного напряжения и тока

    Ротор генератора с двумя магнитными полюсами, вращающийся с частотой 3000 оборотов в минуту, дает 50 пересечений каждой фазы обмотки статора за секунду. А поскольку между магнитными полюсами имеется нулевая точка, то есть место, где индукция магнитного поля равна нулю, то во время каждого полного оборота ротора наведенное в обмотке напряжение переходит через ноль, затем изменяет полярность. В результате напряжение на выходе имеет форму синусоиды и частоту 50 Гц.

    Когда источник переменного напряжения соединен с нагрузкой, в цепи получается переменный ток. Напряжение и максимально допустимый ток статора тем больше, чем сильнее магнитное поле ротора, т.е. чем больше ток протекающий в обмотках ротора. У синхронных генераторов с внешним возбуждением напряжение и ток в обмотках ротора создает тиристорная система возбуждения или возбудитель - небольшой генератор на валу основного генератора.

    Наиболее распространенным в промышленности способом получения синусоидальной ЭДС является применение генераторов переменного тока электрических машин, преобразующие механическую энергию в электрическую. Преобразование энергии в этих машинах происходит в соответствии с законом электромагнитной индукции, устанавливающим количественную связь индуцированной ЭДС со скоростью изменения магнитного поток.

    Получение синусоидальной ЭДС

    Согласно закону электромагнитной индукции, в контуре при изменении магнитного потока, проходящего сквозь ограниченную этим контуром поверхность, индуцируется ЭДС, величина которой равна взятой с отрицательным знаком скорости изменения магнитного потока:

    Получение синусоидальной ЭДС

    Если контур состоит из последовательно соединенных витков и магнитный поток для всех витков один и тот же, то индуцированная в контуре ЭДС

    Получение синусоидальной ЭДС

    В проводнике длиной , движущемся со скоростью v в магнитном поле перпендикулярно вектору магнитной индукции , индуцируется ЭДС

    Получение синусоидальной ЭДС

    ЭДС будет постоянной, если индукция магнитного поля постоянна, или переменной, если она изменяется в пространстве или времени.

    Направление индуцируемой в проводнике ЭДС определяют по правилу правой руки. Если ладонь правой руки расположить в магнитном поле так, чтобы силовые линии ноля были направлены в ладонь, а большой палец, отогнутый в плоскости ладони на 90°, показывал направление движения проводника, то остальные пальцы, вытянутые в плоскости ладони, покажут направление индуктированной в проводе ЭДС (рис. 2.3).

    Получение синусоидальной ЭДС

    Принцип действия генератора переменного тока легко показать при рассмотрении модели генератора переменного тока, представленной плоской рамкой площадью равномерно вращающейся с частотой оборотов в секунду в однородном магнитном поле с индукцией /?, созданным двухполюсным магнитом (рис. 2.4).

    Получение синусоидальной ЭДС

    При вращении рамки величина магнитного потока , проходящего через ее плоскость изменяется. Поток максимален когда плоскость рамки перпендикулярна магнитным линиям поля. По мере поворота рамки из этого положения он уменьшается и станет равным нулю, когда плоскость рамки будет расположена вдоль линий магнитного поля. Затем направление потока меняет свой знак, и он начинает увеличиваться и т.д.

    Таким образом, магнитный поток, пронизывающий рамку, изменяется в зависимости от угла её поворота, т.е. . Здесь — угол между направлением линий магнитного поля и нормалью к плоскости рамки. Так как рамка вращается равномерно с угловой частотой , то и магнитный поток

    Получение синусоидальной ЭДС

    где — значение угла в момент времени , принятый за начало отсчета.

    По закону электромагнитной индукции (2.10), в рамке наводится ЭДС

    Получение синусоидальной ЭДС

    Следовательно, в равномерно вращающейся в однородном магнитном поле рамке индуцируется синусоидальная ЭДС, угловая частота которой равна угловой скорости вращения рамки, начальная фаза — начальному угловому положению рамки, а амплитуда — пропорциональна максимальному потоку и угловой скорости вращения рамки.

    Промышленные генераторы переменного тока состоят из неподвижной части, называемой статором, и подвижной (вращающейся) части, называемой ротором. Статор и ротор выполняются из ферромагнитного материала и образуют магнитопровод с необходимым воздушным зазором. На статоре и роторе размещены обмотки.

    Часть машины, которая предназначена для создания магнитного поля, принято называть индуктором, а часть, в которой индуцируется ЭДС — якорем.

    Индуктирование ЭДС в генераторах осуществляется в соответствии с законом электромагнитной индукции. Так как принципиально безразлично, будет ли движущийся проводник пересекать магнитное поле, или, наоборот подвижное магнитное поле будет пересекать неподвижный проводник, то конструктивно генераторы могут быть изготовлены двух типов.

    В первом из них (рис.2.5.) статор является индуктором, а ротор — якорем. Обмотка статора (индуктора), создающая основной магнитный поток, питается от источника постоянного напряжения небольшой мощности. Она называется обмоткой возбуждения.

    Получение синусоидальной ЭДС

    Первичный двигатель (на рис.2.5 не показан), жестко соединенный с осью ротора, приводит его в равномерное вращение. В равномерно вращающейся в созданном индуктором магнитном поле обмотке якоря в соответствии с выражением (2.14) индуцируется синусоидальная ЭДС.

    Получение синусоидальной ЭДС

    Выводы 1 и 2 обмотки якоря жестко соединены с вращающимися вместе с ней кольцами 3, по которым скользят неподвижные контакты (щетки). При подключении к ним нагрузки возникает синусоидальный рабочий ток. Обмотку якоря обычно называют рабочей обмоткой.

    Генераторы переменного тока с неподвижным индуктором и подвижным якорем имеют в промышленности ограниченное применении. Дело в том, что напряжение на обмотке якоря нередко бывает большим (до 25 кВ), то же относится к рабочим токам. Передача достаточно большой мощности при высоком напряжении с обмотки вращающегося якоря в нагрузку через подвижную контактную систему сопряжена с большими трудностями.

    Значительно чаще применяются генераторы синусоидального напряжения второго типа (рис.2.6). В таких генераторах якорем является неподвижный статор, в пазах которого размещают рабочую обмотку. Индуктором является ротор, конструктивно выполненный, например, явнополюс-ным (рис. 2.6). На роторе располагают обмотку возбуждения.

    Постоянный ток, необходимый для обмотки возбуждения, подастся от специального генератора-возбудителя постоянного тока, сидящего на одном валу с ротором, или от внешнего маломощного сравнительно низковольтного (125 В или 250 В) источника постоянного напряжения.

    Катушку возбуждения подключают к этому источнику с помощью контактных колец, расположенных на валу ротора, и неподвижных щеток. Передача малой мощности при низком напряжении на обмотку вращающегося индуктора через подвижную контактную систему не вызывает затруднений.

    Получение синусоидальной ЭДС

    При вращении ротора магнитный поток, создаваемый постоянным током обмотки возбуждения, пересекает проводники обмотки статора и наводит в ней переменную ЭДС

    Получение синусоидальной ЭДС

    Эта теория взята со страницы помощи с заданиями по электротехнике:

    Возможно эти страницы вам будут полезны:

    Помощь студентам в учёбе
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal
    lfirmal

    Образовательный сайт для студентов и школьников

    © Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

    Читайте также: