Как открываются законы физики кратко

Обновлено: 10.05.2024

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Физический закон — основанная на научных фактах устойчивая связь между повторяющимися явлениями, процессами и состояниями материальных объектов в окружающем мире. Существуют и действуют вне зависимости от того, знаем мы о них или нет.

О физическом законе надо знать :

1. Между какими явлениями (процессами) или величинами закон выражает связь. Единицы измерения величин.

2. Словесную формулировку закона.

3. Математическое выражение закона.

4. Опыты, подтверждающие справедливость закона.

5. Примеры применения закона на практике.

6. Границы применения закона

общий закон природы : энергия любой замкнутой системы при всех процессах, происходящих в системе, остается постоянной (сохраняется). Энергия может только превращаться из одной формы в другую и перераспределяться между частями системы.


закон тяготения Ньютона : все тела притягиваются друг к другу с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними: FGM mR  2 .

механический принцип относительности, принцип классической механики : в любых инерциальных системах отсчета все механические явления протекают

одинаково при одних и тех же условиях

закон механики : импульс любой замкнутой системы при всех процессах, происходящих в системе, остается постоянным (сохраняется) и может только перераспределяться между частями системы в результате их взаимодействия.


три закона, лежащие в

основе ньютоновской классической механики .

1-й закон (закон инерции): материальная точка находится в состоянии прямолинейного и равномерного движения или покоя, если на нее не действуют другие тела или действие этих тел скомпенсировано.

2-й закон (основной закон динамики) : ускорение, полученное телом, прямо пропорционально равнодействующей всех сил, действующих на тело, и обратно пропорционально массе тела. a  F ; m

3-й закон (закон взаимодействия тел): две материальные точки взаимодействуют друг с другом силами одной природы равными по величине и противоположными по направлению вдоль прямой, соединяющей эти точки . зависимости между основными параметрами газов — давлением, объемом, температурой и молекулярной массой.


— описывает изобарный

процесс: для данной массы данного газа при постоянном давлении отношение объема к абсолютной температуре есть величина постоянная. V  const .

— описывает изохорный процесс:

давление данной массы газа при постоянном объеме пропорционально температуре.

p  const. T

— в равных объемах различных

газов при одинаковой температуре и давлении содержится одинаковое число молекул.

— один из основных газовых смеси химически не

взаимодействующих идеальных газов равно сумме парциальных давлений этих газов.


сохранения энергии для термодинамической системы: количество теплоты Q, сообщенное системе, расходуется на изменение внутренней энергии системы U и совершение системой работы

A против внешних сил.

— один из основных

законов термодинамики, согласно которому: невозможен процесс, единственным результатом

— основной закон электростатики,


выражающий зависимость силы взаимодействия двух неподвижных точечных зарядов от расстояния между ними: два неподвижных точечных заряда взаимодействуют с силой прямо пропорциональной произведению величин этих зарядов и обратно пропорциональной квадрату расстояния между ними и диэлектрической проницаемости среды, в которой находятся заряды. q q 1 2  .

F k     r 2

сила постоянного электрического тока на участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его

сопротивлению. I U . R

сила постоянного электрического тока в цепи прямо пропорциональна э. д. с. источника тока и обратно пропорциональна полному сопротивлению электрической цепи.

— закон взаимодействия двух

проводников с токами: параллельные проводники с токами одного направления притягиваются, а с токами противоположного направления — отталкиваются. Определяет силу, действующую в магнитном поле на малый отрезок проводника с током.

FB I   l sin  .

— закон, описывающий тепловое

действие электрического тока: количество теплоты, выделяющееся в проводнике при прохождении по нему постоянного тока, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока.

QI 2  R t  .

закон, описывающий явление возникновения электрического поля при изменении магнитного (явление электромагнитной индукции): электродвижущая сила индукции прямо пропорциональна скорости изменения магнитного потока.  Ф .


— правило, определяющее

направление индукционных токов, возникающих при электромагнитной индукции: индукционный ток всегда имеет такое направление, что его собственный магнитный поток компенсирует изменения внешнего магнитного потока, вызвавшие этот ток. Является следствием закона сохранения энергии.

определяющее направление силы, которая действует на находящийся в магнитном поле проводник с током: если левую руку расположить так, чтобы вытянутые пальцы показывали направление тока, а силовые линии магнитного поля входили в ладонь, то отставленный большой палец укажет направление силы, действующей на проводник.

— правило, которое позволяет


— метод, позволяющий

определить положение фронта волны в любой момент времени: все точки, через которые проходит фронт волны в момент времени t, являются источниками вторичных сферических волн, а искомое положение фронта волны в данный момент времени совпадает с поверхностью, огибающей все вторичные волны. Позволяет объяснить законы отражения и преломления света.

— один из законов геометрической оптики: в однородной среде свет распространяется прямолинейно.

геометрической оптики: луч падающий, луч отраженный и перпендикуляр, восставленный в точку падения луча, лежат в одной плоскости, причем угол

падения равен углу преломления. Применяется в равной степени и для отражения в зеркале.

— один из законов

геометрической оптики, характеризующий изменение направления распространения света при переходе из одной среды в другую: луч падающий, луч преломленный и перпендикуляр, восставленный в точку падения луча, лежат в одной плоскости, причем для данных двух сред отношение синуса угла падения к синусу угла преломления есть величина постоянная, для данных двух сред

АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА

введенные Нильсом Бором без доказательства, и положенные в основу теории Бора:

1) Атомная система устойчива только в стационарных состояниях, которые соответствуют дискретной последовательности значений энергии атома. Каждое изменение этой энергии связано с полным переходом атома из одного стационарного состояния в другое.

2) Поглощение и излучение энергии атомом происходит по закону, согласно которому связанное с переходом излучение является монохроматическим и обладает частотой h :

«Теперь я хочу рассказать Вам об искусстве угадывания законов природы. Это действительно искусство. Как же это делается? Для того чтобы попытаться получить ответ на этот вопрос, можно, например, обратиться к истории науки и посмотреть, как это делали другие. Вот поэтому мы и займёмся историей.

Нам нужно начать с Ньютона . Он находился в таком положении, что его знания были неполными, и он мог угадывать законы, сопоставляя понятия и представления, которые лежали близко к эксперименту. Между наблюдениями и экспериментальной проверкой не было дистанции огромного размера. Таков первый способ, но сегодня при его помощи вам вряд ли удастся добиться успеха.

В случае с теорией относительности характер открытия был совершенно другим. К этому времени накопилось много парадоксов: известные законы давали взаимно исключающие результаты. Формировался новый тип анализа - с точки зрения возможной симметрии физических законов . Ситуация была особенно сложной, ибо впервые стало ясно, что законы (и пример тому законы Ньютона) очень долго могут считаться правильными и всё же в конце концов оказаться неверными. Кроме того, было трудно поверить, что могут быть неверными такие обычные, казалось бы, от рождения нам присущие представления о пространстве и времени.

К открытию квантовой механики мы пришли двумя совершенно разными путями - и пусть это послужит нам уроком. Здесь вновь, и даже в большей степени, накопилось огромное число парадоксов, открытых экспериментальным путем, и их никак не удавалось разрешить на основании уже известных законов. Дело было не в том, что нам не хватало знаний, а в том, что их было слишком много. Вы предсказываете, что должно происходить одно, а на самом деле происходит совсем другое. Два разных пути были выбраны Шредингером , который угадал основное направление, и Гейзенбергом , утверждавшим, что нужно исследовать только то, что может быть измерено. Эти два совершенно различных философских подхода привели в конце концов к одному открытию.

В самое последнее время в связи с открытием уже упомянутых мною законов слабых взаимодействий (распад нейтрона на протон, электрон и антинейтрино, о которых далеко ещё не всё известно) возникла совсем другая ситуация. На этот раз нам просто не хватало знаний и догадки строились лишь о виде уравнений. Но теперь особенную трудность представляло то, что все эксперименты оказались неправильными. А как можно угадать правильный ответ, если каждый теоретический результат расходится с экспериментом? Для того чтобы утверждать, что эксперимент неверен, требуется немалое мужество.

Если Вы застряли, ответ не может быть получен по одной из этих схем потому, что прежде всего Вы попробовали использовать именно их. Каждый раз нужно искать новый путь. Каждый раз, когда образуется длительный затор, когда накапливается слишком много нерешённых задач, это происходит потому, что мы пользуемся теми же методами, которыми пользовались раньше. Новую же схему, новое открытие нужно искать совсем на другом пути. Так что от истории науки не следует ждать особой помощи.

Хочу остановиться теперь коротко на идее Гейзенберга , согласно которой не нужно говорить о том, что всё равно нельзя измерить. Дело в том, что об этом толкуют многие, по-настоящему не понимая смысла этого утверждения.

Часто приходится слышать жалобы на то, что мы совершенно необоснованно распространяем на сферу атомной физики наши представления о частицах, траекториях и т. п. Но ведь это совсем не так, в подобной экспансии нет ничего необоснованного. Мы просто обязаны, мы вынуждены распространять всё то, что мы уже знаем, на как можно более широкие области, выходить за пределы уже постигнутого. Опасно? Да. Ненадёжно? Да. Но ведь это единственный путь прогресса. Хотя этот путь неясен, только на нём наука оказывается плодотворной. Ведь наука приносит пользу только тогда, когда говорит Вам о ещё непоставленных экспериментах. Она никому не нужна, если позволяет судить лишь о том, что известно из опыта, что только что произошло. Поэтому всегда необходимо распространять идеи за рамки того, на чем они уже опробованы.

Но как угадать, что нужно сохранять, а чем можно и пожертвовать? У нас столько прекрасных принципов и известных фактов - и всё-таки у нас не сходятся концы с концами. То мы вновь получаем бесконечно большие значения, то наше объяснение оказывается неполным - чего-то недостаёт. Иногда это значит, что нам нужно расстаться с какой-то идеей. По крайней мере в прошлом всегда оказывалось, что для того чтобы выйти из аналогичного затруднения, приходилось пожертвовать каким-то глубоко укоренившимся представлением. Весь вопрос как раз и сводится к тому, что сохранить, а что отбросить. Если пожертвовать сразу всем, то это заведёт нас слишком далеко, и у нас практически ничего не останется для работы. В конце концов, закон сохранения энергии кажется разумным, он удобен, и мне не хотелось бы с ним расстаться. Для того чтобы угадать, что сохранить и что отбросить, требуется немалое мастерство. По-правде говоря, я вполне допускаю, что дело здесь только в удаче, но выглядит все именно так, как если бы для этого требовалось большое мастерство.

Амплитуды вероятностей выглядят очень странно, и с первого взгляда Вы совершенно уверены, что эта новая теория безусловно нелепа. Но всё, что можно вывести из представления о квантовомеханических амплитудах вероятности, как бы странно это представление ни выглядело, оказывается верным, и так на протяжении всей теории странных частиц, на все 100 %. Поэтому я не думаю, что когда мы откроем законы внутренней структуры нашего мира, эти представления окажутся неправильными Мне кажется, что эта часть физики правильна, но я только высказываю предположение, я рассказываю Вам, как я строю догадки. В то же время теория, согласно которой пространство непрерывно, мне кажется неверной, потому что она приводит к бесконечно большим величинам и другим трудностям. Кроме того, она не даёт ответа на вопрос о том, чем определяются размеры всех частиц. Я сильно подозреваю, что простые представления геометрии, распространённые на очень маленькие участки пространства, неверны. Говоря это, я, конечно, всего лишь пробиваю брешь в общем здании физики, ничего не говоря о том, как её заделать. Если бы я это смог, то я закончил бы лекцию новым законом.

Другая стоящая перед нами задача связана с наличием слабых симметрий. Существование таких симметрий вроде утверждения, что нейтрон и протон совершенно одинаковы, за исключением их электрических свойств, или что принцип зеркального отображения вереи всюду, кроме реакции одного типа, всё это очень досадно. Казалось бы, всё симметрично, но на самом деле не до конца. По этому вопросу сейчас существуют две различные точки зрения. Одна утверждает, что на самом деле всё просто, что на самом деле всё симметрично и что все дело в небольших осложнениях, немного нарушающих идеальную симметрию. Другая школа, у которой всего один последователь, - это я, не согласна с этим и верит, что всё очень сложно и что простота достигается лишь через сложность . Древние греки считали, что планеты движутся по круговым орбитам. На самом же деле эти орбиты эллиптические. Они не идеально симметричны, но очень мало отличаются от окружностей. Возникает вопрос, а почему они симметричны только приближённо? Почему они так мало отличаются от окружностей? Из-за долговременного и очень сложного эффекта приливного трения - это очень сложная теория. Очень может быть, что в глубине души природа совершенно несимметрична , но в хитросплетениях реальности она начинает выглядеть почти симметричной, и эллипсы начинают походить на окружности. Вот Вам и другая возможность. Но никто не знает ответа наверняка, все это просто догадки.

А это напоминает мне ещё об одном вопросе, о том, что совсем незначительные поправки к теории могут потребовать радикальной перестройки понятий и представлений, лежащих в её основе. Например, представления Ньютона о пространстве и времени прекрасно согласовались с экспериментом, но для того, чтобы правильно объяснить движение планеты Меркурий, а оно едва заметно отличалось от того, что получалось по теории Ньютона, потребовались колоссальные изменения в характере всей теория. Причина этого кроется в том, что законы Ньютона были весьма просты, весьма совершенны и давали вполне определённые результаты. Для того, чтобы построить теорию, которая вносила бы едва заметные поправки, её нужно было полностью изменить. Формулируя новый закон, нельзя ввести неидеальности в идеальную схему: нужна совершенно новая идеальная теория. Вот почему так велика разница в философии теории гравитации Эйнштейна и теории всемирного тяготения Ньютона.

Ещё один метод работы, конечно, состоит в выдумывании новых принципов. В теории гравитации Эйнштейн сверх всех остальных принципов придумал принцип, основанный на идее, что силы всегда пропорциональны массам. Он догадался, что если Вы сидите в разгоняющемся автомобиле, то Вы не сможете отличить своё состояние от того, в котором Вы оказались бы в поле тяжести. Добавив этот последний принцип ко всем остальным, он смог правильно угадать уравнения гравитационного поля.

Если публикация Вас заинтересовала - поставьте лайк или напишите об этом комментарий внизу страницы.

Дополнительные материалы

+ Ваши дополнительные возможности:

Второй приоритет – Ваши вопросы по направлениям:

Вы можете свободно оставить Ваши вопросы в регистрационной форме .

ЭНЕРГИИ СОХРАНЕНИЯ И ПРЕВРАЩЕНИЯ ЗАКОН - общий закон природы: энергия любой замкнутой системы при всех процессах, происходящих в системе, остается постоянной (сохраняется). Энергия может только превращаться из одной формы в другую и перераспределяться между частями системы. Для незамкнутой системы увеличение (уменьшение) ее энергии равно убыли (возрастанию) энергии взаимодействующих с ней тел и физических полей.

АРХИМЕДА ЗАКОН - закон гидро- и аэростатики: на тело, погруженное в жидкость или газ, действует выталкивающая сила, направленная вертикально вверх, числено равная весу жидкости или газа, вытесненного телом, и приложенная в центре тяжести погруженной части тела. F A = gV, где r - плотность жидкости или газа, V - объем погруженной части тела. Иначе можно сформулировать так: тело, погруженное в жидкость или газ, теряет в своем весе столько, сколько весит вытесненная им жидкость (или газ). Тогда P= mg - F A Открыт др. гр. ученым Архимедом в 212г. до н.э. Является основой теории плавания тел.

ВСЕМИРНОГО ТЯГОТЕНИЯ ЗАКОН - закон тяготения Ньютона: все тела притягиваются друг к другу с силой прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними: , где M и m - массы взаимодействующих тел, R - расстояние между этими телами, G - гравитационная постоянная (в СИ G=6,67 . 10 -11 Н . м 2 /кг 2 .

ГАЛИЛЕЯ ПРИНЦИП ОТНОСИТЕЛЬНОСТИ, механический принцип относительности - принцип классической механики: в любых инерциальных системах отсчета все механические явления протекают одинаково при одних и тех же условиях. Ср. относительности принцип.

ГУКА ЗАКОН - закон, согласно которому упругие деформации прямо пропорциональны вызывающим их внешним воздействиям.

ИМПУЛЬСА СОХРАНЕНИЯ ЗАКОН - закон механики: импульс любой замкнутой системы при всех процессах, происходящих в системе, остается постоянным (сохраняется) и может только перераспределяться между частями системы в результате их взаимодействия.

НЬЮТОНА ЗАКОНЫ - три закона, лежащие в основе ньютоновской классической механики . 1-й закон (закон инерции): материальная точка находится в состоянии прямолинейного и равномерного движения или покоя, если на нее не действуют другие тела или действие этих тел скомпенсировано. 2-й закон (основной закон динамики): ускорение, полученное телом, прямо пропорционально равнодействующей всех сил, действующих на тело, и обратно пропорционально массе тела (). 3-й закон: две материальные точки взаимодействуют друг с другом силами одной природы равными по величине и противоположными по направлению вдоль прямой, соединяющей эти точки ().

ОТНОСИТЕЛЬНОСТИ ПРИНЦИП - один из постулатов относительности теории , утверждающий, что в любых инерциальных системах отсчета все физические (механические, электромагнитные и др.) явления при одних и тех же условиях протекают одинаково. Является обобщением Галилея принципа относительности на все физические явления (кроме тяготения).

2. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

АВОГАДРО ЗАКОН - один из основных законов идеальных газов: в равных объемах различных газов при одинаковой температуре и давлении содержится одинаковое число молекул. Открыт в 1811 году итал. физиком А.Авогадро(1776-1856).

БОЙЛЯ-МАРИОТТА ЗАКОН - один из законов идеального газа: для данной массы данного газа при постоянной температуре произведение давления на объем есть величина постоянная. Формула: pV=const. Описывает изотермический процесс.

ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ - один из основных законов термодинамики , согласно которому невозможен периодический процесс единственным результатом которого является совершение работы, эквивалентной количеству теплоты, полученному от нагревателя. Другая формулировка: невозможен процесс, единственным результатом которого является передача энергии в форме теплоты от менее нагретого тела к более нагретому. В.з.т. выражает стремление системы, состоящей из большого количества хаотически движущихся частиц, к самопроизвольному переходу из состояний менее вероятных в состояния более вероятные. Запрещает создание вечного двигателя второго рода.

ГЕЙ-ЛЮССАКА ЗАКОН - газовый закон: для данной массы данного газа при постоянном давлении отношение объема к абсолютной температуре есть величина постоянная ,где =1/273 К -1 - температурный коэффициент объемного расширения.

ДАЛЬТОНА ЗАКОН - один из основных газовых законов: давление смеси химически не взаимодействующих идеальных газов равно сумме парциальных давлений этих газов.

ПАСКАЛЯ ЗАКОН - основной закон гидростатики : давление, производимое внешними силами на поверхность жидкости или газа, передается одинаково по всем направлениям.

ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ - один из основных законов термодинамики, являющийся законом сохранения энергии для термодинамической системы: количество теплоты Q, сообщенное системе, расходуется на изменение внутренней энергии системы U и совершение системой работы A против внешних сил. Формула: Q= U+A. Лежит в основе работы тепловых машин.

ШАРЛЯ ЗАКОН - один из основных газовых законов: давление данной массы идеального газа при постоянном объеме прямо пропорционально температуре: где p 0 - давление при 0 0 С, =1/273,15 К -1 - температурный коэффициент давления.

3. ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

АМПЕРА ЗАКОН - закон взаимодействия двух проводников с токами; параллельные проводники с токами одного направления притягиваются, а с токами противоположного направления - отталкиваются. А.з. называют также закон, определяющий силу, действующую в магнитном поле на малый отрезок проводника с током. Открыт в 1820г. А.-М. Ампером.

ДЖОУЛЯ-ЛЕНЦА ЗАКОН - закон, описывающий тепловое действие электрического тока. Согласно Д. - Л.з. количество теплоты, выделяющееся в проводнике при прохождении по нему постоянного тока, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения.

ЗАРЯДА СОХРАНЕНИЯ ЗАКОН - один из фундаментальных законов природы: алгебраическая сумма электрических зарядов любой электрически изолированной системы остается неизменной. В электрически изолированной системе З.с.з. допускает появление новых заряженных частиц (напр., при электролитической диссоциации, ионизации газов, рождении пар частица - античастица и др.), но суммарный электрический заряд появившихся частиц всегда должен быть равен нулю.

КУЛОНА ЗАКОН - основной закон электростатики , выражающий зависимость силы взаимодействия двух неподвижных точечных зарядов от расстояния между ними: два неподвижных точечных заряда взаимодействуют с силой прямо пропорциональной произведению величин этих зарядов и обратно пропорциональной квадрату расстояния между ними и диэлектрической проницаемости среды, в которой находятся заряды. В СИ имеет вид: . Величина числено равна силе, действующей между двумя точечными неподвижными зарядами по 1 Кл каждый, находящимися в вакууме на расстоянии 1 м друг от друга. К.з. является одним из экспериментальных обоснований электродинамики.

ЛЕВОЙ РУКИ ПРАВИЛО - правило, определяющее направление силы, которая действует на находящийся в магнитном поле проводник с током (или движущуюся заряженную частицу). Оно гласит: если левую руку расположить так, чтобы вытянутые пальцы показывали направление тока (скорости частицы), а силовые линии магнитного поля (линии магнитной индукции) входили в ладонь, то отставленный большой палец укажет направление силы, действующей на проводник (положительную частицу; в случае отрицательной частицы направление силы противоположно).

ЛЕНЦА ПРАВИЛО (ЗАКОН) - правило, определяющее направление индукционных токов, возникающих при электромагнитной индукции. Согласно Л.п. индукционный ток всегда имеет такое направление, что его собственный магнитный поток компенсирует изменения внешнего магнитного потока, вызвавшие этот ток. Л.п. - следствие закона сохранения энергии.

ОМА ЗАКОН - один из основных законов электрического тока: сила постоянного электрического тока на участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению. Справедлив для металлических проводников и электролитов, температура которых поддерживается постоянной. В случае полной цепи формулируется следующим образом: сила постоянного электрического тока в цепи прямо пропорциональна эдс источника тока и обратно пропорциональна полному сопротивлению электрической цепи.

проводника, то четыре вытянутых пальца покажут направление индукционного тока; 2) направление линий магнитной индукции прямолинейного проводника с током: если большой палец правой руки расположить по направлению тока, то направление обхвата проводника четырьмя пальцами покажет направление линий магнитной индукции.

ФАРАДЕЯ ЗАКОНЫ - основные законы электролиза. Первый Фарадея закон: масса вещества, выделившегося на электроде при прохождении электрического тока, прямо пропорциональна количеству электричества (заряду), прошедшему через электролит (m=kq=kIt). Второй Ф.з.: отношение масс различных веществ, претерпевающих химические превращения на электродах при прохождении одинаковых электрических зарядов через электролит равно отношению химических эквивалентов. Установлены в 1833-34 г. М. Фарадеем. Обобщенный закон электролиза имеет вид: , где M - молярная (атомная) масса, z - валентность, F - Фарадея постоянная . Ф.п. равна произведению элементарного электрического заряда на постоянную Авогадро. F=e . N A . Определяет заряд, прохождение которого через электролит приводит к выделению на электроде 1 моля одновалентного вещества. F=(96484,56 0,27) Кл./моль. Названа в честь М.Фарадея.

ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ ЗАКОН - закон, описывающий явление возникновения электрического поля при изменении магнитного (явление электромагнитной индукции): электродвижущая сила индукции прямо пропорциональна скорости изменения магнитного потока. Коэффициент пропорциональности определяется системой единиц, знак - Ленца правилом. Формула в СИ: , где Ф - изменение магнитного потока, а t - промежуток времени, в течение которого это изменение произошло. Открыт М. Фарадеем.

ГЮЙГЕНСА ПРИНЦИП - метод, позволяющий определить положение фронта волны в любой момент времени. Согласно г.п. все точки, через которые проходит фронт волны в момент времени t, являются источниками вторичных сферических волн, а искомое положение фронта волны в момент времени t t совпадает с поверхностью, огибающей все вторичные волны. Позволяет объяснить законы отражения и преломления света.

ГЮЙГЕНСА - ФРЕНЕЛЯ - ПРИНЦИП - приближенный метод решения задач о распространении волн. Г.-Ф. п. гласит: в любой точке, находящейся вне произвольной замкнутой поверхности, охватывающей точечный источник света, световая волна, возбуждаемая этим источником, может быть представлена как результат интерференции вторичных волн, излучаемых всеми точками указанной замкнутой поверхности. Позволяет решать простейшие задачи дифракции света .

ОТРАЖЕНИЯ ВОЛН ЗАКОН - луч падающий, луч отраженный и перпендикуляр, восставленный в точку падения луча, лежат в одной плоскости, причем угол падения равен углу преломления. Закон справедлив для зеркального отражения.

ПРЕЛОМЛЕНИЕ СВЕТА - изменение направления распространения света (электромагнитной волны) при переходе из одной среды в другую, отличающуюся от первой показателем преломления . Для преломления выполняется закон: луч падающий, луч преломленный и перпендикуляр, восставленный в точку падения луча, лежат в одной плоскости, причем для данных двух сред отношение синуса угла падения к синусу угла преломления есть величина постоянная, называемая относительным показателем преломления второй среды относительно первой.

ПРЯМОЛИНЕЙНОГО РАСПРОСТРАНЕНИЯ СВЕТА ЗАКОН - закон геометрической оптики, заключающийся в том, что в однородной среде свет распространяется прямолинейно. Объясняет, напр., образование тени и полутени.

6. АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА.

БОРА ПОСТУЛАТЫ - основные допущения, введенные без доказательства Н.Бором, и положенные в основу БОРА ТЕОРИИ: 1) Атомная система устойчива только в стационарных состояниях, которые соответствуют дискретной последовательности значений энергии атома. Каждое изменение этой энергии связано с полным переходом атома из одного стационарного состояния в другое. 2) Поглощение и излучение энергии атомом происходит по закону, согласно которому связанное с переходом излучение является монохроматическим и обладает частотой : h =E i -E k , где h - Планка постоянная , а E i и E k - энергии атома в стационарных состояниях.

Три закона Ньютона лежат в основе классической физики, хотя за прошедшие годы стало понятно, что они — лишь частный случай теории относительности. В нашей статье разбираем формулы и определения законов Ньютона простыми словами


Вплоть до XVII века мировая наука жила в условиях почти религиозной веры в постулаты, заданные великим философом Аристотелем. Покушение на них воспринималось как ересь и безжалостно наказывалось. Доходило даже до инквизиции. В этих условиях деятельность Галилея, Декарта, Ньютона была не только научным, но и человеческим подвигом. Их открытия сегодня могут быть даже переформулированы, не теряя своего смысла и значения.

Про то, как Ньютон открыл закон всемирного тяготения, знают практически все. Это та самая история про яблоко, которое упало ему на голову. На самом деле, яблоко на голову Ньютона не падало, но все это происходило в осеннем яблоневом саду, где яблоки действительно падали.



Но перед тем, как формулировки этих законов были напечатаны, много чего произошло. Начиная с Древней Греции, многие мыслители пытались облечь в слова фундаментальные законы движения. Потребовалось несколько веков, чтобы сложились предпосылки для этого. Ближе всего к этому подошел Галилей. Но и ему помешали господствующие в научном сообществе иллюзии. Все были безоговорочно уверены, что небесные тела движутся строго по круговым орбитам, потому что это творение Бога, и это творение должно быть совершенно и безупречно. Пошатнуть эти иллюзии удалось Кеплеру. Но и он в своих размышлениях пошел не туда.

Гениальность Ньютона заключается в том, что, изучая труды своих великих предшественников, он смог разглядеть неочевидные вещи, которые даже нам кажутся парадоксальными. Именно Ньютон выдвинул революционную идею, что если на тело не действуют никакие силы, то тело может двигаться прямолинейно и равномерно. В условиях Земли это невозможно, так как действует сила земного тяготения. А вот вне Земли — это обычное дело.

Долгие годы размышлений, черновых набросков, сомнений, которые он выражал в письмах своим коллегам, завершились блестящими формулировками всех трех законов. И эти законы по праву носят имя Ньютона. О каждом из этих законов можно написать отдельную статью — настолько велико и многогранно их значение.

Первый закон Ньютона еще называют закон инерции. Фактически он был открыт Галилеем, но именно Исаак Ньютон дал точную его формулировку и включил в число основных законов механики.

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго. Формулы первый закон Ньютона не имеет.

Действие второго закона Ньютона мы можем часто наблюдать в жизни. Возьмём теннисную ракетку и мяч. Если ударить ракеткой по мячу, то мяч приобретёт ускорение равное отношению равнодействующей всех сил к массе.

В инерциальных системах отсчёта ускорение, приобретаемое материальной точкой, прямо пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки.


Третий закон Ньютона объясняет, как, например, двигаются утки. Они находятся во взаимодействии с водой, отталкивая ее назад лапками, а сами благодаря ответному действию двигаются вперед.

Материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению.


— В школе изучают четыре закона Ньютона. Первые три являются фундаментом классической динамики. С их помощью можно описать любое движение тела, которое движется со скоростью, значительно меньшей скорости света.

Особняком стоит закон всемирного тяготения. Он лежит в основе классической теории гравитации. Этот закон перекликается со вторым законом, касающемся соотношения между ускорением тела, его массой и действующей на него силой. Но все же это разные законы. Так как второй закон Ньютона более универсален, чем закон всемирного тяготения.

— Эти законы настолько фундаментальны, что увидеть их можно практически всюду. Пуля из ружья летит туда, куда толкают ее пороховые газы. Ракета летит туда, куда толкают ее продукты горения ракетного топлива. Мяч летит туда, куда пинает его футболист. Это примеры действия первого закона Ньютона.

Третий закон Ньютона устанавливает закон взаимодействия тел. Сила действия равна силе противодействия. Например, если чашка кофе стоит на столе и не проваливается сквозь него на пол, значит, стол оказывает достаточное противодействие силе тяжести, действующей на чашку. В результате эти две силы уравновешивают друг друга, и чашка стоит на столе без какого-либо движения.

Читайте также: