Как открыли ускоренное расширение вселенной кратко

Обновлено: 05.07.2024

В 1870 году английский математик Уильям Клиффорд пришел к очень глубокой мысли, что пространство может быть искривлено, причем неодинаково в разных точках, и что со временем его кривизна может изменяться. Он даже допускал, что такие изменения как-то связаны с движением материи. Обе эти идеи спустя много лет легли в основу общей теории относительности. Сам Клиффорд до этого не дожил — он умер от туберкулеза в возрасте 34 лет за 11 дней до рождения Альберта Эйнштейна.

Красное смещение

Первые сведения о расширении Вселенной предоставила астроспектрография. В 1886 году английский астроном Уильям Хаггинс заметил, что длины волн звездного света несколько сдвинуты по сравнению с земными спектрами тех же элементов. Исходя из формулы оптической версии эффекта Допплера, выведенной в 1848 году французским физиком Арманом Физо, можно вычислить величину радиальной скорости звезды. Подобные наблюдения позволяют отследить движение космического объекта.

Четверть века спустя эту возможность по-новому использовал сотрудник обсерватории во Флагстаффе в штате Аризона Весто Слайфер, который с 1912 года изучал спектры спиральных туманностей на 24-дюймовом телескопе с хорошим спектрографом. Для получения качественного снимка одну и ту же фотопластинку экспонировали по нескольку ночей, поэтому проект двигался медленно. С сентября по декабрь 1913 года Слайфер занимался туманностью Андромеды и с помощью формулы Допплера–Физо пришел к выводу, что она ежесекундно приближается к Земле на 300 км.

В 1917 году он опубликовал данные о радиальных скоростях 25 туманностей, которые показывали значительную асимметрию их направлений. Только четыре туманности приближались к Солнцу, остальные убегали (и некоторые очень быстро).

Слайфер не стремился к славе и не пропагандировал свои результаты. Поэтому они стали известны в астрономических кругах, лишь когда на них обратил внимание знаменитый британский астрофизик Артур Эддингтон.

Космические острова

В начале 1920-х годов большинство астрономов полагало, что спиральные туманности расположены на периферии Млечного Пути, а за его пределами уже нет ничего, кроме пустого темного пространства. Правда, еще в XVIII веке некоторые ученые видели в туманностях гигантские звездные скопления (Иммануил Кант назвал их островными вселенными). Однако эта гипотеза не пользовалась популярностью, поскольку достоверно определить расстояния до туманностей никак не получалось.

Законы Хаббла

Эдвин Хаббл эмпирически выявил примерную пропорциональность красных смещений и галактических дистанций, которую он с помощью формулы Допплера–Физо превратил в пропорциональность между скоростями и расстояниями. Так что мы имеем здесь дело с двумя различными закономерностями.

Хаббл не знал, как эти закономерности связаны друг с другом, но что об этом говорит сегодняшняя наука?

Как показал еще Леметр, линейная корреляция между космологическими (вызванными расширением Вселенной) красными смещениями и дистанциями отнюдь не абсолютна. На практике она хорошо соблюдается лишь для смещений, меньших 0,1. Так что эмпирический закон Хаббла не точный, а приближенный, да и формула Допплера–Физо справедлива только для небольших смещений спектра.

А вот теоретический закон, связывающий радиальную скорость далеких объектов с расстоянием до них (с коэффициентом пропорциональности в виде параметра Хаббла V = Hd), справедлив для любых красных смещений. Однако фигурирующая в нем скорость V — вовсе не скорость физических сигналов или реальных тел в физическом пространстве. Это скорость возрастания дистанций между галактиками и галактическими скоплениями, которое обусловлено расширением Вселенной. Мы бы смогли ее измерить, только если были бы в состоянии останавливать расширение Вселенной, мгновенно протягивать мерные ленты между галактиками, считывать расстояния между ними и делить их на промежутки времени между измерениями. Естественно, законы физики этого не позволяют. Поэтому космологи предпочитают использовать параметр Хаббла H в другой формуле, где фигурирует масштабный фактор Вселенной, который как раз и описывает степень ее расширения в различные космические эпохи (поскольку этот параметр изменяется со временем, его современное значение обозначают H0). Вселенная сейчас расширяется с ускорением, так что величина хаббловского параметра возрастает.

Измеряя космологические красные смещения, мы получаем информацию о степени расширения пространства. Свет галактики, пришедший к нам с космологическим красным смещением z, покинул ее, когда все космологические дистанции были в 1 + z раз меньшими, нежели в нашу эпоху. Получить об этой галактике дополнительные сведения, такие как ее нынешняя дистанция или скорость удаления от Млечного Пути, можно лишь с помощью конкретной космологической модели. Например, в модели Эйнштейна—де Ситтера галактика с z = 5 отдаляется от нас со скоростью, равной 1,1 с (скорости света). А если сделать распространенную ошибку и просто уравнять V/c и z, то эта скорость окажется впятеро больше световой. Расхождение, как видим, нешуточное.

Справедливости ради стоит отметить, что за два года до Хаббла расстояние до Андромеды вычислил эстонский астроном Эрнст Опик, чей результат — 450 000 парсек — был ближе к правильному. Однако он использовал ряд теоретических соображений, которые не были так же убедительны, как прямые наблюдения Хаббла.

Модельеры космоса

Эддингтон заинтересовался результатами Слайфера еще до окончательного выяснения природы спиральных туманностей. К этому времени уже существовала космологическая модель, в определенном смысле предсказывавшая эффект, выявленный Слайфером. Эддингтон много размышлял о ней и, естественно, не упустил случая придать наблюдениям аризонского астронома космологическое звучание.

Современная теоретическая космология началась в 1917 году двумя революционными статьями, представившими модели Вселенной, построенные на основе общей теории относительности. Одну из них написал сам Эйнштейн, другую — голландский астроном Виллем де Ситтер.

Эйнштейновская модель позволила вычислить размер Вселенной, общее количество материи и даже значение космологической постоянной. Для этого нужна лишь средняя плотность космического вещества, которую, в принципе, можно определить из наблюдений. Не случайно этой моделью восхищался Эддингтон и использовал на практике Хаббл. Однако ее губит неустойчивость, которую Эйнштейн просто не заметил: при малейшем отклонении радиуса от равновесного значения эйнштейновский мир либо расширяется, либо претерпевает гравитационный коллапс. Поэтому к реальной Вселенной такая модель отношения не имеет.

Пустой мир

Де Ситтер тоже построил, как он сам считал, статичный мир постоянной положительной кривизны. В нем присутствует эйнштейновская космологическая константа, но зато полностью отсутствует материя. При введении пробных частиц сколь угодно малой массы они разбегаются и уходят в бесконечность. Кроме того, время на периферии вселенной де Ситтера течет медленней, нежели в ее центре. Из-за этого с больших расстояний световые волны приходят с красным смещением, даже если их источник неподвижен относительно наблюдателя. Поэтому в 1920-е годы Эддингтон и другие астрономы задались вопросом: не имеет ли модель де Ситтера чего-нибудь общего с реальностью, отраженной в наблюдениях Слайфера?

Эти подозрения подтвердились, хоть и в ином плане. Статичность вселенной де Ситтера оказалась мнимой, поскольку была связана с неудачным выбором координатной системы. После исправления этой ошибки пространство де Ситтера оказалось плоским, евклидовым, но нестатичным. Благодаря антигравитационной космологической константе оно расширяется, сохраняя при этом нулевую кривизну. Из-за этого расширения длины волн фотонов возрастают, что и влечет за собой предсказанный де Ситтером сдвиг спектральных линий. Стоит отметить, что именно так сегодня объясняют космологическое красное смещение далеких галактик.

Сопутствующие координаты

В космологических вычислениях удобно пользоваться сопутствующими координатными системами, которые расширяются в унисон с расширением Вселенной.

В идеализированной модели, где галактики и галактические кластеры не участвуют ни в каких собственных движениях, их сопутствующие координаты не меняются. А вот дистанция между двумя объектами в данный момент времени равна их постоянной дистанции в сопутствующих координатах, умноженной на величину масштабного фактора для этого момента. Такую ситуацию легко проиллюстрировать на надувном глобусе: широта и долгота каждой точки не меняются, а расстояние между любой парой точек увеличивается с ростом радиуса.

Использование сопутствующих координат помогает осознать глубокие различия между космологией расширяющейся Вселенной, специальной теорией относительности и ньютоновской физикой. Так, в ньютоновской механике все движения относительны, и абсолютная неподвижность не имеет физического смысла. Напротив, в космологии неподвижность в сопутствующих координатах абсолютна и в принципе может быть подтверждена наблюдениями.

Специальная теория относительности описывает процессы в пространстве-времени, из которого можно с помощью преобразований Лоренца бесконечным числом способов вычленять пространственные и временные компоненты. Космологическое пространство-время, напротив, естественно распадается на искривленное расширяющееся пространство и единое космическое время. При этом скорость разбегания далеких галактик может многократно превышать скорость света.

От статистики к динамике

История открыто нестатичных космологических теорий начинается с двух работ советского физика Александра Фридмана, опубликованных в немецком журнале Zeitschrift fur Physik в 1922 и 1924 годах. Фридман просчитал модели вселенных с переменной во времени положительной и отрицательной кривизной, которые стали золотым фондом теоретической космологии. Однако современники эти работы почти не заметили (Эйнштейн сначала даже счел первую статью Фридмана математически ошибочной). Сам Фридман полагал, что астрономия еще не обладает арсеналом наблюдений, позволяющим решить, какая из космологических моделей более соответствует реальности, и потому ограничился чистой математикой. Возможно, он действовал бы иначе, если бы ознакомился с результатами Слайфера, однако этого не случилось.

По-другому мыслил крупнейший космолог первой половины XX века Жорж Леметр. На родине, в Бельгии, он защитил диссертацию по математике, а затем в середине 1920-х изучал астрономию — в Кембридже под руководством Эддингтона и в Гарвардcкой обсерватории у Харлоу Шепли (во время пребывания в США, где он подготовил вторую диссертацию в МIT, он познакомился со Слайфером и Хабблом). Еще в 1925 году Леметру впервые удалось показать, что статичность модели де Ситтера мнимая. По возвращении на родину в качестве профессора Лувенского университета Леметр построил первую модель расширяющейся вселенной, обладающую четким астрономическим обоснованием. Без преувеличения, эта работа стала революционным прорывом в науке о космосе.

Вселенская революция

В своей модели Леметр сохранил космологическую константу с эйнштейновским численным значением. Поэтому его вселенная начинается статичным состоянием, но со временем из-за флуктуаций вступает на путь постоянного расширения с возрастающей скоростью. На этой стадии она сохраняет положительную кривизну, которая уменьшается по мере роста радиуса. Леметр включил в состав своей вселенной не только вещество, но и электромагнитное излучение. Этого не сделали ни Эйнштейн, ни де Ситтер, чьи работы были Леметру известны, ни Фридман, о котором он тогда ничего не знал.

Незамеченная работа

Графики Хаббла

Между тем в конце 1920-х годов Хаббл и Хьюмасон выявили линейную корреляцию между расстояниями до 24 галактик и их радиальными скоростями, вычисленными (в основном еще Слайфером) по красным смещениям. Хаббл сделал из этого вывод о прямой пропорциональности радиальной скорости галактики расстоянию до нее. Коэффициент этой пропорциональности сейчас обозначают H0 и называют параметром Хаббла (по последним данным, он немного превышает 70 (км/с)/мегапарсек).

Статья Хаббла с графиком линейной зависимости между галактическими скоростями и дистанциями была опубликована в начале 1929 года. Годом ранее молодой американский математик Хауард Робертсон вслед за Леметром вывел эту зависимость из модели расширяющейся Вселенной, о чем Хаббл, возможно, знал. Однако в его знаменитой статье эта модель ни прямо, ни косвенно не упоминалась. Позднее Хаббл высказывал сомнения, что фигурирующие в его формуле скорости реально описывают движения галактик в космическом пространстве, однако всегда воздерживался от их конкретной интерпретации. Смысл своего открытия он видел в демонстрации пропорциональности галактических расстояний и красных смещений, остальное предоставлял теоретикам. Поэтому при всем уважении к Хабблу считать его первооткрывателем расширения Вселенной нет никаких оснований.

И все-таки она расширяется!

В том же 1931 году Леметр опубликовал краткое (и без всякой математики) описание еще одной модели Вселенной, объединявшей в себе космологию и квантовую механику. В этой модели начальным моментом выступает взрыв первичного атома (Леметр также называл его квантом), породивший и пространство, и время. Поскольку тяготение тормозит расширение новорожденной Вселенной, его скорость уменьшается — не исключено, что почти до нуля. Позднее Леметр ввел в свою модель космологическую постоянную, заставившую Вселенную со временем перейти в устойчивый режим ускоряющегося расширения. Так что он предвосхитил и идею Большого взрыва, и современные космологические модели, учитывающие присутствие темной энергии. А в 1933 году он отождествил космологическую постоянную с плотностью энергии вакуума, о чем до того никто еще не додумался. Просто удивительно, насколько этот ученый, безусловно достойный титула первооткрывателя расширения Вселенной, опередил свое время!

Расширение Вселенной — явление, состоящее в почти однородном и изотропном расширении космического пространства в масштабах всей Вселенной. Экспериментально расширение Вселенной наблюдается в виде выполнения закона Хаббла. Началом расширения Вселенной наука считает так называемый Большой взрыв. Теоретически явление было предсказано и обосновано А. Фридманом на раннем этапе разработки общей теорией относительности из общефилософских соображений об однородности и изотропности Вселенной.

Universe expansion.jpg


Содержание

Расширение Вселенной в различных моделях

Ускорение расширения Вселенной

Ускоренное расширение Вселенной было открыто в 1998 году при наблюдениях за сверхновыми типа Ia [1] [2] . За это открытие Сол Перлмуттер, Брайан П. Шмидт и Адам Рисс получили премию Шоу по астрономии за 2006 год и Нобелевскую премию по физике за 2011 год. Затем эти наблюдения были подкреплены другими источниками: измерениями реликтового излучения, гравитационного линзирования, нуклеосинтеза Большого Взрыва. Все полученные данные хорошо вписываются в лямбда-CDM модель.

По имеющимся оценкам, ускоряющееся расширение Вселенной началось приблизительно 5 миллиардов лет назад. Предполагается, что до этого расширение замедлялось благодаря гравитационному действию тёмной материи и барионной материи. Плотность барионной материи в расширяющейся Вселенной уменьшается быстрее, чем плотность тёмной энергии. В конце концов, тёмная энергия начинает преобладать. Например, когда объём Вселенной удваивается, плотность барионной материи уменьшается вдвое, а плотность тёмной энергии остается почти неизменной (или точно неизменной — в варианте с космологической константой).

Предыстория Нобелевской премии

Существование гравитационно-отталкивающей темной энергии должно было иметь драматические следствия для фундаментальной физики. Наиболее консервативное предположение состояло в том, что Вселенная заполнена однородным морем квантовой энергии нулевых колебаний или конденсатом новых частиц, масса которых в раз меньше электрона. Некоторые исследователи также предполагали необходимость изменения общей теории относительности, в частности, новые дальнодействующие силы, ослабляющие действие гравитации. Но даже в самых консервативных предложениях имелись серьезные недостатки. Например, плотность энергии нулевых колебаний оказалась на 120 неправдоподобных порядка меньше теоретических предсказаний. С точки зрения этих экстремальных предположений казалось более естественным искать решение в рамках традиционных астрофизических понятий: межгалактическая пыль (рассеяние фотонов на ней и связанное с этим ослабление потока фотонов) или разница между новыми и старыми сверхновыми звездами. Эта возможность поддерживалась многими космологами, бодрствующими в ночи.

Наблюдения сверхновых и их анализ проведенный С. Перлмуттером, Б. Шмидтом и А. Риссом, дали понять, что убывание их яркости с расстоянием происходит заметно быстрее, чем этого следовало бы ожидать, по принятым в то время космологическим моделям. Совсем недавно это открытие было отмечено Нобелевской премией по физике. Такое дополнительное потускнение означает, что данному красному смещению соответствует некоторая эффективная добавка расстояния. Но это, в свою очередь, возможно только тогда, когда космологическое расширение происходит с ускорением, т.е. скорость удаления от нас источника света не убывает, а возрастает со временем. Важнейшая особенность новых экспериментов состояла и в том, что они позволили не только определить сам факт ускоренного расширения, но и сделать важное заключение о вкладе в плотность вещества во Вселенной различных составляющих.
До недавнего времени сверхновые звезды были единственным прямым доказательством ускоренного расширения и единственной убедительной опорой темной энергии. Точные измерения космического микроволнового фона, включающие WMAP (Wilkinson Microwave Anisotropy Probe) данные обеспечили независимое подтверждение реальности темной энергии. То же самое подтвердили и данные еще двух мощных проектов: крупномасштабное распределение галактик во Вселенной и Sloan Digital Sky Survey (SDSS).

image

image

Sloan Digital Sky Survey (SDSS, Слоуновский цифровой обзор неба) — проект широкомасштабного исследования изображений и спектров звёзд и галактик, использующий 2,5-метровый широкоугольный телескоп в Обсерватория Апачи-Пойнт, Нью-Мексико.

WMAP (Wilkinson Microwave Anisotropy Probe) — космический аппарат НАСА, предназначенный для изучения реликтового излучения, образовавшегося в результате Большого взрыва в момент зарождения Вселенной.

Комбинация данных WMAP, SDSS и других источников, нашли, что гравитационное отталкивание, генерируемое темной энергией, замедляет коллапс сверхплотных областей материи во Вселенной. Реальность темной энергии сразу стала существенно более приемлемой.

Космическое расширение

Космическое расширение было открыто Эдвином Хабблом в конце 1920-х и, может, является самой важной особенностью нашей Вселенной. Не только астрономические тела двигаются под влиянием гравитационного взаимодействия своих соседей, но и крупномасштабные структуры еще в большей степени растягиваются космическим расширением. Популярная аналогия – движение изюминок в очень большом пироге, находящемся в печи. Когда пирог подходит, расстояние между любой парой изюминок, погруженных в пирог, растет. Если мы вообразим, что одна конкретная изюминка представляет нашу галактику, то мы обнаружим, что все другие изюминки (галактики) удаляются от нас по всем направлениям. Наша Вселенная расширялась из горячего плотного космического супа, созданного в процессе Большого Взрыва, в куда более холодное и более разряженное собрание галактик и кластеров галактик, которой мы наблюдаем сегодня.

image

Чем дальше от Земли находится та или иная галактика, тем выше скорость ее удаления от нас и, соответственно, тем сильнее смещены к красному концу линии ее спектра.


Свет, испущенный звездами и газом в отдаленных галактиках, растягивается подобным же образом, удлиняя свою длину волны во время своего путешествия к Земле. Этот сдвиг в длине волны задается красным смещением , где — длина света на Земле и -длина волны испущенного света. Например, лайман альфа переход в атоме водорода характеризуется длиной волны нанометров (при возвращении в основное состояние). Этот переход можно обнаружить в излучении отдаленных галактик. В частности, он был использован для обнаружения рекордно большого красного смещения: ошеломляющее z=10 с линией лайман альфа при нанометров. Но красное смещение описывает только изменение в масштабах космоса при испускании и поглощении света и не дает прямой информации о расстоянии до излучателя или возрасте Вселенной, когда свет был испущен. Если мы знаем как расстояние до объекта, так и красное смещение, мы можем попытаться получить важную информацию о динамике расширения Вселенной.
Наблюдения сверхновых звезд обнаружили некоторую гравитационно-отталкивающую субстанцию, которая управляет ускорением Вселенной. Астрономы не первый раз столкнулись с проблемой недостающей материи. Светящиеся массы галактик оказались существенно меньше гравитирующих масс. Эта разница была восполнена темной материей – холодной нерелятивистской материи, в основном, вероятно, состоящей из частиц, слабо взаимодействующих с атомами и светом.
Однако наблюдения указывали, что полное количество материи во Вселенной, включая и темную материю, составляет всего 1/3 от полной энергии. Это было подтверждено исследованием миллионов галактик в рамках 2DF и SDSS проектов. Но общая теория относительности предсказывает, что имеется точная связь между расширением и энергетическим содержанием Вселенной. Мы, следовательно, знаем, что общая плотность энергии всех фотонов, атомов и темной материи должна быть дополнена до некоторого критического значения, определяемого постоянной Хаббла : . Загвоздка в том, чего нет, но это совсем другая история.

Краткая история темной энергии

Темная энергия и будущее Вселенной

С открытием темной энергии сильно изменились представления о том, каким может быть отдаленное будущее нашей Вселенной. До этого открытия вопрос о будущем однозначно связывался с вопросом о кривизне трехмерного пространства. Если бы, как многие раньше считали, кривизна пространства на 2/3 определяла современный темп расширения Вселенной, а темная энергия отсутствовала, то Вселенная расширялась бы неограниченно, постепенно замедляясь. Теперь же понятно, что будущее определяется свойствами темной энергии.


image

Еще более драматическая судьба ожидает Вселенную, если темная энергия — фантом, причем такой, что его плотность энергии возрастает неограниченно. Расширение Вселенной будет все более и более быстрым, оно настолько ускорится, что галактики будут вырваны из скоплений, звезды из галактик, планеты из Солнечной системы. Дело дойдет до того, что электроны оторвутся от атомов, а атомные ядра разделятся на протоны и нейтроны. Произойдет, как говорят, большой разрыв.
Такой сценарий, однако, представляется не очень вероятным. Скорее всего, плотность энергии фантома будет оставаться ограниченной. Но и тогда Вселенную может ожидать необычное будущее. Дело в том, что во многих теориях фантомное поведение — рост плотности энергии со временем — сопровождается неустойчивостями фантомного поля. В таком случае фантомное поле во Вселенной будет становиться сильно неоднородным, плотность его энергии в разных частях Вселенной будет разной, какие-то части будут быстро расширяться, а какие-то, возможно, испытают коллапс. Судьба нашей Галактики будет зависеть от того, в какую область она попадет. Все это, впрочем, относится к будущему, отдаленному даже по космологическим меркам. В ближайшие 20 миллиардов лет Вселенная будет оставаться почти такой же, как сейчас. У нас есть время для того, чтобы разобраться в свойствах темной энергии и тем самым более определенно предсказать будущее — а может быть, и повлиять на него.

Пару слов о себе

В настоящее время я профессионально занимаюсь космологией, наукой которая изучает наибольший из существующих объектов – всю Вселенную. В то же время я являюсь давним (и постоянным) читателем горячо любимого Хабра, который не перестает удивлять замечательными статьями по всем направлениям IT технологий. Однако, будучи представителем космологической науки, был сильно удивлен и расстроен тем, что нет подобного сайта и сообщества по космологической, достаточно современной и бурно развивающейся науке.

Мы захотели восполнить эту нишу, и создать сайт о современной космологии – ModCos. В силу ряда причин, не всё задуманное у нас вышло, но то что получилось, не кажется плохим, а возможно даже полезным.
Nota bene: Не являясь и не прибегая к помощи сторонних веб-разработчиков, сайт был написан нами с нуля, и был нашим первым блином.

Расширение Вселенной — явление, состоящее в почти Вселенной. Экспериментально расширение Вселенной наблюдается в виде выполнения закона Хаббла. Началом расширения Вселенной наука считает так называемый Большой взрыв. Теоретически явление было предсказано и обосновано А. Фридманом на раннем этапе разработки общей теорией относительности из общефилософских соображений об однородности и Файл:Universe expansion.jpg

Содержание

Расширение Вселенной в различных моделях

Ускорение расширения Вселенной

По имеющимся оценкам, ускоряющееся расширение Вселенной началось приблизительно 5 миллиардов лет назад. Предполагается, что до этого расширение замедлялось благодаря гравитационному действию тёмной материи и барионной материи. Плотность барионной материи в расширяющейся Вселенной уменьшается быстрее, чем плотность тёмной энергии. В конце концов, тёмная энергия начинает преобладать. Например, когда объём Вселенной удваивается, плотность барионной материи уменьшается вдвое, а плотность тёмной энергии остается почти неизменной (или точно неизменной — в варианте с космологической константой).


Лямбда-CDM, ускоренное расширение Вселенной . Временная шкала на этой схематической диаграмме простирается от эпохи Большого взрыва / инфляции 13,7 миллиарда лет назад до настоящего космологического времени.

Наблюдения показывают , что расширение по Вселенной ускоряется, таким образом, что скорость , при которой далекой галактики отступает от наблюдателя непрерывно увеличивается со временем.

Ускоренное расширение было обнаружено в течение 1998 года двумя независимыми проектами, проектом Supernova Cosmology Project и группой поиска сверхновых High-Z , которые оба использовали далекие сверхновые типа Ia для измерения ускорения. Идея заключалась в том, что, поскольку сверхновые типа Ia имеют почти такую ​​же внутреннюю яркость ( стандартная свеча ), и поскольку объекты, находящиеся дальше, кажутся более тусклыми, мы можем использовать наблюдаемую яркость этих сверхновых, чтобы измерить расстояние до них. Затем расстояние можно сравнить с космологическим красным смещением сверхновой , которое измеряет, насколько Вселенная расширилась с момента возникновения сверхновой. Неожиданным результатом стало то, что объекты во Вселенной удаляются друг от друга с ускоренной скоростью. В то время космологи ожидали, что скорость удаления всегда будет замедляться из-за гравитационного притяжения материи во Вселенной. Три члена этих двух групп впоследствии были удостоены Нобелевских премий за свое открытие. Подтверждающие доказательства были найдены в барионных акустических колебаниях и при анализе скоплений галактик.

СОДЕРЖАНИЕ

За десятилетия, прошедшие с момента обнаружения космического микроволнового фона (CMB) в 1965 году, модель Большого взрыва стала наиболее распространенной моделью, объясняющей эволюцию нашей Вселенной. Уравнение Фридмана определяет, как энергия Вселенной управляет ее расширением.

где κ представляет собой кривизну Вселенной , a ( t ) - масштабный фактор , ρ - полная плотность энергии Вселенной, а H - параметр Хаббла .

Затем мы можем переписать параметр Хаббла как

где четыре предполагаемых в настоящее время вкладчика в плотность энергии Вселенной - кривизна , материя , излучение и темная энергия . Каждый из компонентов уменьшается с расширением Вселенной (увеличение масштабного фактора), за исключением, возможно, члена темной энергии. Именно значения этих космологических параметров используют физики для определения ускорения Вселенной.

Уравнение ускорения описывает эволюцию масштабного фактора во времени.

где давление P определяется выбранной космологической моделью. (см. пояснительные модели ниже)

Одно время физики были настолько уверены в замедлении расширения Вселенной, что ввели так называемый параметр замедления q 0 . Текущие наблюдения показывают, что этот параметр замедления отрицательный.

Отношение к инфляции

Согласно теории космической инфляции , очень ранняя Вселенная пережила период очень быстрого квазиэкспоненциального расширения. Хотя временной масштаб для этого периода расширения был намного короче, чем у текущего расширения, это был период ускоренного расширения с некоторым сходством с текущей эпохой.

Техническое определение

поэтому параметр Хаббла со временем уменьшается, если только . Предпочтение отдается наблюдению , что подразумевает, что это положительно, но отрицательно. По сути, это означает, что космическая скорость удаления любой конкретной галактики увеличивается со временем, но ее соотношение скорость / расстояние все еще уменьшается; таким образом, различные галактики, расширяющиеся по сфере фиксированного радиуса, в более поздние времена пересекают сферу медленнее. q - 1 а ¨ >> d ЧАС / d т

Доказательства ускорения

Чтобы узнать о скорости расширения Вселенной, мы смотрим на соотношение звездных величин и красного смещения астрономических объектов с использованием стандартных свечей или на их соотношение между красным смещением и расстоянием с использованием стандартных линейок . Мы также можем посмотреть на рост крупномасштабной структуры и обнаружить, что наблюдаемые значения космологических параметров лучше всего описываются моделями, которые включают ускоряющееся расширение.

Наблюдение за сверхновой


Для сверхновых с красным смещением менее 0,1 или временем прохождения света менее 10 процентов возраста Вселенной это дает почти линейную зависимость между расстоянием и красным смещением в соответствии с законом Хаббла . На больших расстояниях, поскольку скорость расширения Вселенной менялась со временем, соотношение расстояние-красное смещение отклоняется от линейности, и это отклонение зависит от того, как скорость расширения изменялась с течением времени. Полный расчет требует компьютерного интегрирования уравнения Фридмана, но простой вывод может быть дан следующим образом: красное смещение z напрямую дает космический масштабный коэффициент в момент взрыва сверхновой.

Барионные акустические колебания

В ранней Вселенной до того, как произошла рекомбинация и разделение , фотоны и материя существовали в первичной плазме . Точки с более высокой плотностью в фотонно-барионной плазме сжимались под действием силы тяжести до тех пор, пока давление не становилось слишком большим, и они снова расширялись. Это сжатие и расширение создавало в плазме вибрации, аналогичные звуковым волнам . Поскольку темная материя взаимодействует только гравитационно, она остается в центре звуковой волны, источнике первоначальной сверхплотности. Когда произошло разделение, примерно через 380 000 лет после Большого взрыва, фотоны отделились от материи и смогли свободно течь через Вселенную, создавая космический микроволновый фон, каким мы его знаем. Это оставило оболочки барионной материи на фиксированном радиусе от сверхплотности темной материи, на расстоянии, известном как звуковой горизонт. Со временем Вселенная расширилась, и именно на этих неоднородностях плотности материи начали формироваться галактики. Таким образом, глядя на расстояния, на которых галактики с разным красным смещением стремятся к скоплению, можно определить расстояние стандартного углового диаметра и использовать его для сравнения с расстояниями, предсказанными различными космологическими моделями.

Были обнаружены пики в корреляционной функции (вероятность того, что две галактики будут находиться на определенном расстоянии друг от друга) при 100 ч -1 Мпк (где h - безразмерная постоянная Хаббла ), что указывает на то, что это размер звукового горизонта сегодня, и сравнивая это со звуковым горизонтом во время разделения (используя CMB), мы можем подтвердить ускоренное расширение Вселенной.

Скопления галактик

Измерение функций масс скоплений галактик , которые описывают плотность скоплений выше пороговой массы, также свидетельствует о темной энергии. Путем сравнения этих массовых функций при высоких и малых красных смещениях с предсказанными различными космологическими моделями, получены значения w и Ω m , которые подтверждают низкую плотность вещества и ненулевое количество темной энергии.

Возраст вселенной

Имея космологическую модель с определенными значениями космологических параметров плотности, можно интегрировать уравнения Фридмана и получить возраст Вселенной.

Сравнивая это с фактическими измеренными значениями космологических параметров, мы можем подтвердить справедливость модели, которая ускоряется сейчас и имела более медленное расширение в прошлом.

Гравитационные волны как стандартные сирены

Недавние открытия гравитационных волн с помощью LIGO и VIRGO не только подтвердили предсказания Эйнштейна, но и открыли новое окно во Вселенную. Эти гравитационные волны могут работать как стандартные сирены для измерения скорости расширения Вселенной. Abbot et al. В 2017 году значение постоянной Хаббла составило примерно 70 километров в секунду на мегапарсек. Амплитуды деформации h зависят от масс объектов, вызывающих волны, расстояния от точки наблюдения и частоты обнаружения гравитационных волн. Соответствующие меры расстояния зависят от космологических параметров, таких как постоянная Хаббла для близлежащих объектов, и будут зависеть от других космологических параметров, таких как плотность темной энергии, плотность материи и т. Д. Для удаленных источников.

Пояснительные модели


Темная энергия

Самым важным свойством темной энергии является то, что она имеет отрицательное давление (отталкивающее действие), которое относительно равномерно распределяется в пространстве.

где c - скорость света, а ρ - плотность энергии. Различные теории темной энергии предполагают разные значения w , причем w 1 / 3 для космического ускорения (это приводит к положительному значению ä в уравнении ускорения выше).

Самое простое объяснение темной энергии состоит в том, что это космологическая постоянная или энергия вакуума ; в этом случае w = −1 . Это приводит к модели лямбда-CDM , которая с 2003 года по настоящее время известна как Стандартная модель космологии, поскольку это простейшая модель, хорошо согласующаяся с множеством недавних наблюдений. Riess et al. обнаружили, что их результаты по наблюдениям сверхновых отдают предпочтение расширяющимся моделям с положительной космологической постоянной ( Ω λ > 0 ) и текущим ускоренным расширением ( q 0 ).

Фантомная энергия

Текущие наблюдения допускают возможность космологической модели, содержащей компонент темной энергии с уравнением состояния w . Эта фантомная плотность энергии станет бесконечной за конечное время, вызывая такое огромное гравитационное отталкивание, что Вселенная потеряет всю структуру и закончится Большим разрывом . Например, для w = - 3 / 2 и H 0 = 70 км · с −1 · Мпк −1 , время, оставшееся до того, как Вселенная закончится в этом Большом разломе, составляет 22 миллиарда лет.

Альтернативные теории

Другой тип модели, гипотеза обратной реакции, была предложена космологом Сикси Рясяненом: скорость расширения неоднородна, но мы находимся в области, где расширение происходит быстрее, чем фон. Неоднородности в ранней Вселенной вызывают образование стенок и пузырей, причем внутри пузыря содержится меньше вещества, чем в среднем. Согласно общей теории относительности, пространство менее искривлено, чем стены, и поэтому кажется, что оно имеет больший объем и более высокую скорость расширения. В более плотных областях расширение замедляется более сильным гравитационным притяжением. Следовательно, внутренний коллапс более плотных областей выглядит так же, как ускоренное расширение пузырьков, что приводит нас к выводу, что Вселенная подвергается ускоренному расширению. Преимущество в том, что для этого не требуется никакой новой физики, такой как темная энергия. Рясянен не считает эту модель вероятной, но без каких-либо фальсификаций она должна оставаться возможной. Для работы потребуются довольно большие колебания плотности (20%).

Последняя возможность состоит в том, что темная энергия - это иллюзия, вызванная некоторой погрешностью в измерениях. Например, если мы находимся в более пустой, чем в среднем, области пространства, наблюдаемая скорость космического расширения может быть ошибочно принята за изменение во времени или за ускорение. Другой подход использует космологическое расширение принципа эквивалентности, чтобы показать, как может казаться, что пространство расширяется быстрее в пустотах, окружающих наше локальное скопление. Будучи слабыми, такие эффекты, совокупно рассматриваемые в течение миллиардов лет, могут стать значительными, создавая иллюзию космического ускорения и создавая впечатление, будто мы живем в пузыре Хаббла . Еще одна возможность состоит в том, что ускоренное расширение Вселенной - это иллюзия, вызванная нашим относительным движением по отношению к остальной Вселенной, или что использованный размер выборки сверхновых не был достаточно большим.

Теории последствий для Вселенной

По мере расширения Вселенной плотность излучения и обычной темной материи снижается быстрее, чем плотность темной энергии (см. Уравнение состояния ), и, в конечном итоге, темная энергия доминирует. В частности, когда масштаб Вселенной удваивается, плотность материи уменьшается в 8 раз, но плотность темной энергии почти не меняется (она точно постоянна, если темная энергия является космологической постоянной ).

В моделях, где темная энергия является космологической постоянной, Вселенная будет экспоненциально расширяться со временем в далеком будущем, приближаясь к Вселенной де Ситтера . Это в конечном итоге приведет к исчезновению всех свидетельств Большого взрыва, поскольку космический микроволновый фон смещается в сторону более низких интенсивностей и длин волн. В конце концов, его частота станет достаточно низкой, чтобы он был поглощен межзвездной средой и, таким образом, был скрыт от любого наблюдателя в галактике. Это произойдет, когда возраст Вселенной будет меньше чем в 50 раз больше своего нынешнего возраста, что приведет к концу космологии в том виде, в каком мы ее знаем, поскольку далекая Вселенная потемнеет.

Читайте также: