Как определяется энергия необходимая для полного расщепления ядра на составляющие его нуклоны кратко

Обновлено: 07.07.2024

А | Б | В | Г | Д | Е | Ж | З | И | К | Л | М | Н | О | П | Р | С | Т | У | Ф | Х | Ц | Ч | Ш | Щ | Э | Ю | Я

Известно, что энергия покоя частицы связана с ее массой соотношением Эйнштейна:

Значит энергия покоя ядра всегда меньше суммы энергий покоя свободных нуклонов, входящих в состав ядра:

Более детально (2.3) записывается следующим образом:

Соотношение (2.4) называется энергией связи ядра относительно всех составляющих его нуклонов. Энергия связи представляет собой величину энергии, которую нужно затратить, чтобы разделить данное ядро на все составляющие его нуклоны. Очевидно, что энергию связи является мерой прочности (устойчивости) ядра.

Масса Δm, соответствующая энергии связи:

называется дефектом массы ядра. На эту величину уменьшается масса всех нуклонов при образовании из них ядра.

Процесс полного расщепления ядра на составляющие его нуклоны является скорее гипотетическим. В действительности при делении ядер и других ядерных реакциях происходит распад ядра на два, реже более осколков. Знание энергии связи ядер позволяет рассчитать энергетический баланс не только для довольно редкого процесса полного расщепления, но и для любых процессов распада и взаимных превращений ядер. Например, энергия Ep отделения протона, т.е. минимальная энергия, необходимая для выбивания протона из ядра Z X A равна разности энергий связи ядер Z X A и Z-1X A-1 :

Аналогично En энергия отделения нейтрона:

Для выбивания из ядра α-частицы нужна энергия, равная:

Легко увидеть, что энергия связи может быть выражена через массы нейтральных атомов. Это вытекает из того, что масса атома отличается от массы ядра на Z электронных масс (с точностью до энергии связи электронов):

Этот вариант формулы более удобен, так как в большинстве экспериментов измеряется масса атома, а не масса ядра. Поэтому в таблицах обычно приводятся значения масс нейтральных атомов.

Энергия связи любого ядра положительна; она должна составлять заметную часть его энергии покоя. Точные значения масс атомных ядер определяются с помощью специальных приборов, называемых масс-спектрометрами .

Энергия связи, отнесенная к массовому числу А называется удельной энергией связи нуклонов в ядре:

Величина Eуд показывает, какую энергию в среднем необходимо затратить, чтобы удалить из ядра один нуклон, не сообщая ему кинетической энергии. Величина Eудуд имеет своё значение для каждого ядра. Чем больше Eуд, тем более устойчиво ядро. На рисунке 2.2 приведена зависимость Eуд от массового числа A.

Видно, что Eуд вырастает от 0 МэВ при А = 1 (протон) до 8.7 МэВ при A=50–60 (24Cr – 30Zn) и постепенно уменьшается до 7.5 МэВ для последнего встречающего в природе элемента ( 92U). Для сравнения, энергия связи валентных электронов в атоме порядка 10 эВ, что в миллион раз меньше. Из рисунка 2.2 видно, что наибольшей удельной энергией связи обладают ядра с массовыми числами в диапазоне от 50 до 60. С уменьшением или возрастанием A удельная энергия связи уменьшается с разной интенсивностью, так как уменьшение удельной энергии происходит по разным механизмам.

Главные причины различия в энергии связи разных ядер заключается в следующем. Все нуклоны, из которых состоит ядро, можно условно разделить на две группы: поверхностные и внутренние.

Рисунок 2.2. Зависимость удельной энергии связи Eуд от массового числа A.

Внутренние нуклоны окружены соседними нуклонами со всех сторон, поверхностные же имеют соседей только с внутренней стороны. Поэтому внутренние нуклоны взаимодействуют с остальными нуклонами сильнее, чем поверхностные. Но процент внутренних нуклонов особенно мал у легких ядер (у самых легких ядер все нуклоны можно считать поверхностными) и постепенно повышается по мере утяжеления. Поэтому и энергия связи растет вместе с ростом числа нуклонов в ядре. Однако этот рост не может продолжаться очень долго, так как начиная с некоторого достаточно большого число нуклонов (A = 50–60) количество протонов становится настолько большим (практически в любом ядре протоны составляют не менее 40% общего числа нуклонов), что делается заметным их взаимное электрическое отталкивание даже на фоне сильного ядерного притяжения. Это отталкивание и приводит к уменьшению энергии связи у тяжелых ядер.

Различие в энергии связи разных ядер может быть использовано для освобождения внутриядерной энергии . Энергетически выгодно:

  • деление тяжелых ядер на более легкие;
  • слияние легких ядер друг с другом в более тяжелые.

Как в первом, так и во втором случаях получаются более прочные (более устойчивые) ядра, чем исходные. При обоих процессах выделяется огромное количество энергии; эти процессы в настоящее время реализованы практически: реакции деления ядер и реакции термоядерного синтеза ядер (глава 4).

Проблема термоядерного синтеза решена наполовину: освоен взрывной синтез.

Это соотношение позволяет сделать два вывода относительно свойств ядерных сил, связывающих нуклоны в ядре.

Из пропорциональности ΔЕсв и A следует свойство насыщения ядерных сил, т.е. способность нуклона к взаимодействию не со всеми окружающими его нуклонами, а только с ограниченным их числом. Действительно, если бы каждый нуклон ядра взаимодействовал со всеми остальными (A – 1) нуклонами, то суммарная энергия связи была бы пропорциональна A∙(A – 1) ≈ A 2 ,не A.

Энергия связи является мерой прочности ядра. Особенно велика энергия связи у 2He 4 , 6С 12 , 8О 16 и других четно-четных ядер.

Ядра с полностью заполненными оболочками являются наиболее устойчивыми – магические ядра, у которых число протонов Z или нейтронов N равно одному из магических чисел: 2, 8, 20, 28, 50, 82, 26.

Ядра, у которых магическими являются и Z, и N, называются дважды магическими. Дважды магических ядер известно всего пять: 2He 4 , 8О 16 , 20Ca 40 , . 82Pb 208 .

В частности, особенная устойчивость ядра гелия проявляется в том, что это единственная частица, испускаемая тяжелыми ядрами при радиоактивном распаде (она называется α-частицей).

Из большой величины средней энергии связи ≈ 8 МэВ следует чрезвычайно большая интенсивность ядерного взаимодействия. Так, например, средняя энергия связи нуклона в ядре 2He 4 ( ≈ 7 МэВ) существенно больше кулоновского расталкивания двух протонов этого ядра. Это следовало ожидать: в противном случае протоны в ядре не могли бы быть связаны.

А | Б | В | Г | Д | Е | Ж | З | И | К | Л | М | Н | О | П | Р | С | Т | У | Ф | Х | Ц | Ч | Ш | Щ | Э | Ю | Я

Важнейшую роль во всей ядерной физике играет понятие энергии связи ядра. Энергия связи позволяет объяснить устойчивость ядер, выяснить, какие процессы ведут к выделению ядерной энергии. Нуклоны в ядре прочно удерживаются ядерными силами. Для того чтобы удалить нуклон из ядра, надо совершить довольно большую работу, т. е. сообщить ядру значительную энергию.

Под энергией связи ядра понимают ту энергию, которая необходима для полного расщепления ядра на отдельные нуклоны. На основе закона сохранения энергии можно также утверждать, что энергия связи ядра равна той энергии, которая выделяется при образовании ядра из отдельных частиц .

Энергия связи атомных ядер очень велика. Но как ее определить?

В настоящее время рассчитать энергию связи теоретически, подобно тому как это можно сделать для электронов в атоме, не удается. Выполнить соответствующие расчеты можно, лишь применяя соотношение Эйнштейна между массой и энергией:

Точнейшие измерения масс ядер показывают, что масса покоя ядра Мя всегда меньше суммы масс входящих в его состав протонов и нейтронов:

Существует, как говорят, дефект масс: разность масс

положительна. В частности, для гелия масса ядра на 0,75% меньше суммы масс двух протонов и двух нейтронов. Соответственно для гелия в количестве вещества один моль ΔM = 0,03 г.

Уменьшение массы при образовании ядра из нуклонов означает, что при этом уменьшается энергия этой системы нуклонов на значение энергии связи Есв:

Но куда при этом исчезают энергия Есв и масса ΔM?

При образовании ядра из частиц последние за счет действия ядерных сил на малых расстояниях устремляются с огромным ускорением друг к другу. Излучаемые при этом γ-кванты как раз обладают энергией Есв и массой

Энергия связи — это энергия, которая выделяется при образовании ядра из отдельных частиц, и соответственно это та энергия, которая необходима для расщепления ядра на составляющие его частицы.

О том, как велика энергия связи, можно судить по такому примеру: образование 4 г гелия сопровождается выделением такой же энергии, что и при сгорании 1,5—2 вагонов каменного угля.

Важную информацию о свойствах ядер содержит зависимость удельной энергии связи от массового числа А.

Удельной энергией связи называют энергию связи, приходящуюся на один нуклон ядра. Ее определяют экспериментально. Из рисунка 13.11 хорошо видно, что, не считая самых легких ядер, удельная энергия связи примерно постоянна и равна 8 МэВ/нуклон. Отметим, что энергия связи электрона и ядра в атоме водорода, равная энергии ионизации, почти в миллион раз меньше этого значения. Кривая на рисунке 13.11 имеет слабо выраженный максимум. Максимальную удельную энергию связи (8,6 МэВ/нуклон) имеют элементы с массовыми числами от 50 до 60, т. е. железо и близкие к нему по порядковому номеру элементы. Ядра этих элементов наиболее устойчивы.

У тяжелых ядер удельная энергия связи уменьшается за счет возрастающей с увеличением Z кулоновской энергии отталкивания протонов. Кулоновские силы стремятся разорвать ядро.

Частицы в ядре сильно связаны друг с другом. Энергия связи частиц определяется по дефекту масс.

Ядерные реакции

Атомные ядра при взаимодействиях испытывают превращения. Эти превращения сопровождаются увеличением или уменьшением кинетической энергии участвующих в них частиц.

Ядерными реакциями называют изменения атомных ядер при взаимодействии их с элементарными частицами или друг с другом. С примерами ядерных реакций вы уже ознакомились в § 103. Ядерные реакции происходят, когда частицы вплотную приближаются к ядру и попадают в сферу действия ядерных сил. Одноименно заряженные частицы отталкиваются друг от друга. Поэтому сближение положительно заряженных частиц с ядрами (или ядер друг с другом) возможно, если этим частицам (или ядрам) сообщена достаточно большая кинетическая энергия. Эта энергия сообщается протонам, ядрам дейтерия — дейтронам, α-частицам и другим более тяжелым ядрам с помощью ускорителей.

Для осуществления ядерных реакций такой метод гораздо эффективнее, чем использование ядер гелия, испускаемых радиоактивными элементами. Во-первых , с помощью ускорителей частицам может быть сообщена энергия порядка 105 МэВ, т. е. гораздо большая той, которую имеют α-частицы (максимально 9 МэВ). Во-вторых , можно использовать протоны, которые в процессе радиоактивного распада не появляются (это целесообразно потому, что заряд протонов вдвое меньше заряда α-частиц, и поэтому действующая на них сила отталкивания со стороны ядер тоже в 2 раза меньше). В-третьих , можно ускорить ядра более тяжелые, чем ядра гелия.

Первая ядерная реакция на быстрых протонах была осуществлена в 1932 г. Удалось расщепить литий на две α-частицы:

Как видно из фотографии треков в камере Вильсона (рис. 13.12), ядра гелия разлетаются в разные стороны вдоль одной прямой согласно закону сохранения импульса (импульс протона много меньше импульса возникающих α-частиц; на фотографии треки протонов не видны).

Энергетический выход ядерных реакций. В описанной выше ядерной реакции кинетическая энергия двух образующихся ядер гелия оказалась больше кинетической энергии вступившего в реакцию протона на 7,3 МэВ. Превращение ядер сопровождается изменением их внутренней энергии (энергия связи). В рассмотренной реакции удельная энергия связи в ядрах гелия больше удельной энергии связи в ядре лития. Поэтому часть внутренней энергии ядра лития превращается в кинетическую энергию разлетающихся α-частиц.

Изменение энергии связи ядер означает, что суммарная энергия покоя участвующих в реакциях ядер и частиц не остается неизменной. Ведь энергия покоя ядра Мя*с2 согласно формуле (13.5) непосредственно выражается через энергию связи. В соответствии с законом сохранения энергии изменение кинетической энергии в процессе ядерной реакции равно изменению энергии покоя участвующих в реакции ядер и частиц .

Энергетическим выходом ядерной реакции называется разность энергий покоя ядер и частиц до реакции и после реакции. Согласно вышесказанному энергетический выход ядерной реакции равен также изменению кинетической энергии частиц, участвующих в реакции.

Если суммарная кинетическая энергия ядер и частиц после реакции больше, чем до реакции, то говорят о выделении энергии. В противном случае реакция идет с поглощением энергии.

Выделяющаяся при ядерных реакциях энергия может быть огромной. Но использовать ее при столкновениях ускоренных частиц (или ядер) с неподвижными ядрами мишени практически нельзя. Ведь бо́льшая часть ускоренных частиц пролетает мимо ядер мишени, не вызывая реакцию.

Ядерные реакции на нейтронах. Открытие нейтрона было поворотным пунктом в исследовании ядерных реакций. Так как нейтроны не имеют заряда, то они беспрепятственно проникают в атомные ядра и вызывают их изменения. Например, наблюдается следующая реакция:

Великий итальянский физик Энрико Ферми первым начал изучать реакции, вызываемые нейтронами. Он обнаружил, что ядерные превращения обусловлены не только быстрыми, но и медленными нейтронами. Причем эти медленные нейтроны оказываются в большинстве случаев даже гораздо более эффективными, чем быстрые. Поэтому быстрые нейтроны целесообразно предварительно замедлять. Замедление нейтронов до тепловых скоростей происходит в обыкновенной воде. Этот эффект объясняется тем, что в воде содержится большое число ядер водорода — протонов, масса которых почти равна массе нейтронов. Следовательно, нейтроны после соударений движутся со скоростью теплового движения. При центральном соударении нейтрона с покоящимся протоном он целиком передает протону свою кинетическую энергию.

Реакции, в которые вступают атомные ядра, очень разнообразны. Нейтроны не отталкиваются ядрами и поэтому особенно эффективно вызывают превращения ядер.


Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев.

Темы кодификатора ЕГЭ: энергия связи нуклонов в ядре, ядерные силы.

Атомное ядро, согласно нуклонной модели, состоит из нуклонов - протонов и нейтронов. Но какие силы удерживают нуклоны внутри ядра?

За счёт чего, например, держатся вместе два протона и два нейтрона внутри ядра атома гелия? Ведь протоны, отталкиваясь друг от друга электрическими силами, должны были бы разлететься в разные стороны! Может быть, это гравитационное притяжение нуклонов друг к другу не даёт ядру распасться?

Давайте проверим. Пусть два протона находятся на некотором расстоянии друг от друга. Найдём отношение силы их электрического отталкивания к силе их гравитационного притяжения:

Заряд протона Кл, масса протона кг, поэтому имеем:

Какое чудовищное превосходство электрической силы! Гравитационное притяжение протонов не то что не обеспечивает устойчивость ядра - оно вообще не заметно на фоне их взаимного электрического отталкивания.

Следовательно, существуют иные силы притяжения, которые скрепляют нуклоны внутри ядра и превосходят по величине силу электрического отталкивания протонов. Это - так называемые ядерные силы.

Ядерные силы.

До сих пор мы знали два типа взаимодействий в природе - гравитационные и электромагнитные. Ядерные силы служат проявлением нового, третьего по счёту типа взаимодействий - сильного взаимодействия. Мы не будем вдаваться в механизм возникновения ядерных сил, а лишь перечислим их наиболее важные свойства.

1. Ядерные силы действуют между любыми двумя нуклонами: протоном и протоном, протоном и нейтроном, нейтроном и нейтроном.
2. Ядерные силы притяжения протонов внутри ядра примерно в 100 раз превосходят силу электрического отталкивания протонов. Более мощных сил, чем ядерные, в природе не наблюдается.
3. Ядерные силы притяжения являются короткодействующими: радиус их действия составляет около м. Это и есть размер ядра - именно на таком расстоянии друг от друга нуклоны удерживаются ядерными силами. При увеличении расстояния ядерные силы очень быстро убывают; если расстояние между нуклонами станет равным м, ядерные силы почти полностью исчезнут.

На расстояниях, меньших м, ядерные силы становятся силами отталкивания.

Сильное взаимодействие относится к числу фундаментальных - его нельзя объяснить на основе каких-то других типов взаимодействий. Способность к сильным взаимодействиям оказалась свойственной не только протонам и нейтронам, но и некоторым другим элементарным частицам; все такие частицы получили название адронов. Электроны и фотоны к адронам не относятся - они в сильных взаимодействиях не участвуют.

Атомная единица массы.

Массы атомов и элементарных частиц чрезвычайно малы, и измерять их в килограммах неудобно. Поэтому в атомной и ядерной физике часто применяется куда более мелкая единица - так
называемая атомная единица массы (сокращённо а. е. м.).

По определению, атомная единица массы есть 1/12 массы атома углерода . Вот её значение с точностью до пяти знаков после запятой в стандартной записи:

(Такая точность нам впоследствии понадобится для вычисления одной очень важной величины, постоянно применяющейся в расчётах энергии ядер и ядерных реакций.)

Оказывается, что 1 а. е. м., выраженная в граммах, численно равна величине, обратной к постоянной Авогадро моль:

Почему так получается? Вспомним, что число Авогадро есть число атомов в 12г углерода. Кроме того, масса атома углерода равна 12 а. е. м. Отсюда имеем:

поэтому а. е. м.=г, что и требовалось.

Как вы помните, любое тело массы m обладает энергией покоя E, которая выражается формулой Эйнштейна:

Выясним, какая энергия заключена в одной атомной единице массы. Нам надо будет провести вычисления с достаточно высокой точностью, поэтому берём скорость света с пятью знаками после запятой:

Итак, для массы а. е. м. имеем соответствующую энергию покоя :

В случае малых частиц пользоваться джоулями неудобно - по той же причине, что и килограммами. Существует гораздо более мелкая единица измерения энергии - электронвольт (сокращённо эВ).

По определению, 1 эВ есть энергия, приобретаемая электроном при прохождении ускоряющей разности потенциалов 1 вольт:

(вы помните, что в задачах достаточно использовать величину элементарного заряда в виде Кл, но здесь нам нужны более точные вычисления).

И вот теперь, наконец, мы готовы вычислить обещанную выше очень важную величину - энергетический эквивалент атомной единицы массы, выраженный в МэВ. Из (2) и (3) получаем:

Итак, запоминаем: энергия покоя одной а. е. м. равна 931,5 МэВ. Этот факт вам неоднократно встретится при решении задач.

В дальнейшем нам понадобятся массы и энергии покоя протона, нейтрона и электрона. Приведём их с точностью, достаточной для решения задач.

а. е. м., МэВ;
а. е. м., МэВ;
а. е. м., МэВ.

Дефект массы и энергия связи.

Мы привыкли, что масса тела равна сумме масс частей, из которых оно состоит. В ядерной физике от этой простой мысли приходится отвыкать.

Давайте начнём с примера и возьмём хорошо знакомую нам -частицу ядро . В таблице (например, в задачнике Рымкевича) имеется значение массы нейтрального атома гелия: она равна 4,00260 а. е. м. Для нахождения массы M ядра гелия нужно из массы нейтрального атома вычесть массу двух электронов, находящихся в атоме:

В то же время, суммарная масса двух протонов и двух нейтронов, из которых состоит ядро гелия, равна:

Мы видим, что сумма масс нуклонов, составляющих ядро, превышает массу ядра на

Величина называется дефектом массы. В силу формулы Эйнштейна (1) дефекту массы отвечает изменение энергии:

Величина обозначается также и называется энергией связи ядра . Таким образом, энергия связи -частицы составляет приблизительно 28 МэВ.

Каков же физический смысл энергии связи (и, стало быть, дефекта масс)?

Чтобы расщепить ядро на составляющие его протоны и нейтроны, нужно совершить работу против действия ядерных сил. Эта работа не меньше определённой величины ; минимальная работа по разрушению ядра совершается в случае, когда высвободившиеся протоны и нейтроны покоятся.

Ну а если над системой совершается работа, то энергия системы возрастает на величину совершённой работы. Поэтому суммарная энергия покоя нуклонов, составляющих ядро и взятых по отдельности, оказывается больше энергии покоя ядра на величину .

Следовательно, и суммарная масса нуклонов, из которых состоит ядро, будет больше массы самого ядра. Вот почему возникает дефект массы.

В нашем примере с -частицей суммарная энергия покоя двух протонов и двух нейтронов больше энергии покоя ядра гелия на 28 МэВ. Это значит, что для расщепления ядра на составляющие его нуклоны нужно совершить работу, равную как минимум 28 МэВ. Эту величину мы и назвали энергией связи ядра.

Итак, энергия связи ядра - это минимальная работа, которую необходимо совершить для расщепления ядра на составляющие его нуклоны.

Энергия связи ядра есть разность энергий покоя нуклонов ядра, взятых по отдельности, и энергии покоя самого ядра. Если ядро массы состоит из протонов и нейтронов, то для энергии связи имеем:

Величина , как мы уже знаем, называется дефектом массы.

Удельная энергия связи.

Важной характеристикой прочности ядра является его удельная энергия связи, равная отношению энергии связи к числу нуклонов:

Удельная энергия связи есть энергия связи, приходящаяся на один нуклон, и имеет смысл средней работы, которую необходимо совершить для удаления нуклона из ядра.

На рис. 1 представлена зависимость удельной энергии связи естественных (то есть встречающихся в природе 1 ) изотопов химических элементов от массового числа A.


Рис. 1. Удельная энергия связи естественных изотопов

Элементы с массовыми числами 210–231, 233, 236, 237 в естественных условиях не встречаются. Этим объясняются пробелы в конце графика.

У лёгких элементов удельная энергия связи возрастает с ростом , достигая максимального значения 8,8 МэВ/нуклон в окрестности железа (то есть в диапазоне изменения примерно от 50 до 65). Затем она плавно убывает до величины 7,6 МэВ/нуклон у урана .

Такой характер зависимости удельной энергии связи от числа нуклонов объясняется совместным действием двух разнонаправленных факторов.

Первый фактор - поверхностные эффекты. Если нуклонов в ядре мало, то значительная их часть находится на поверхности ядра. Эти поверхностные нуклоны окружены меньшим числом соседей, чем внутренние нуклоны, и, соответственно, взаимодействуют с меньшим числом соседних нуклонов. При увеличении доля внутренних нуклонов растёт, а доля поверхностных нуклонов - падает; поэтому работа, которую нужно совершить для удаления одного нуклона из ядра, в среднем должна увеличиваться с ростом .

Однако с возрастанием числа нуклонов начинает проявляться второй фактор - кулоновское отталкивание протонов. Ведь чем больше протонов в ядре, тем большие электрические силы отталкивания стремятся разорвать ядро; иными словами, тем сильнее каждый протон отталкивается от остальных протонов. Поэтому работа, необходимая для удаления нуклона из ядра, в среднем должна уменьшаться с ростом .

Пока нуклонов мало, первый фактор доминирует над вторым, и потому удельная энергия связи возрастает.

В окрестности железа действия обоих факторов сравниваются друг с другом, в результате чего удельная энергия связи выходит на максимум. Это область наиболее устойчивых, прочных ядер.

Затем второй фактор начинает перевешивать, и под действием всё возрастающих сил кулоновского отталкивания, распирающих ядро, удельная энергия связи убывает.

Насыщение ядерных сил.

Тот факт, что второй фактор доминирует у тяжёлых ядер, говорит об одной интересной особенности ядерных сил: они обладают свойством насыщения. Это означает, что каждый нуклон в большом ядре связан ядерными силами не со всеми остальными нуклонами, а лишь с небольшим числом своих соседей, и число это не зависит от размеров ядра.

Действительно, если бы такого насыщения не было, удельная энергия связи продолжала бы возрастать с увеличением - ведь тогда каждый нуклон скреплялся бы ядерными силами со всё большим числом нуклонов ядра, так что первый фактор неизменно доминировал бы над вторым. У кулоновских сил отталкивания не было бы никаких шансов переломить ситуацию в свою пользу!

Я́дерная эне́ргия (атомная энергия), внутренняя энергия атомных ядер, выделяющаяся при некоторых ядерных превращениях. Использование ядерной энергии основано на осуществлении цепных реакций деления тяжелых ядер и реакций термоядерного синтеза легких ядер.

Я́дерная эне́ргия (атомная энергия), внутренняя энергия атомных ядер, выделяющаяся при ядерных превращениях (ядерных реакциях).

Энергия связи ядра. Дефект массы

Нуклоны (протоны и нейтроны) в ядре прочно удерживаются ядерными силами. Чтобы удалить нуклон из ядра, надо совершить большую работу, т. е. сообщить ядру значительную энергию. Под энергией связи ядра понимают энергию, которая необходима для полного расщепления ядра на отдельные нуклоны. На основании закона сохранения энергии можно утверждать, что энергия связи равна энергии, которая выделяется при образовании ядра из отдельных частиц. Энергия связи атомных ядер очень велика по сравнению с энергией связи электронов с атомным ядром.

Определить энергию связи ядра можно, зная массу ядра и массы частиц —протонов и нейтронов, из которых оно состоит. Существует т. н. дефект массы: масса покоя ядра всегда меньше суммы масс покоя входящих в него нуклонов. Энергия связи ядер вычисляется с помощью известного соотношения Эйнштейна для связи энергии Е и массы m: E = mc 2 (где с —скорость света) и равна произведению дефекта массы (т. е. суммарной массы свободных нуклонов минус масса ядра) на квадрат скорости света.

Удельная энергия связи

Важную информацию о свойствах ядер дает знание удельной энергии связи ядра, т. е. энергии связи, приходящейся на один нуклон. Она определяется делением энергии связи на массовое число, равное числу нуклонов в ядре. С увеличением массового числа удельная энергия связи, начиная с гелия, сначала слабо растет, достигает максимума в области железа (массовое число 56), после чего плавно снижается. Для большинства химических элементов (за исключением самых легких ядер) эта энергия примерно равна 8 МэВ/нуклон. Наиболее устойчивыми являются ядра, обладающие самой большой удельной энергией связи, т. е. железо и близкие к нему химические элементы периодической системы.

Рост энергии связи легких элементов с увеличением атомного номера происходит из-за того, что значительная доля нуклонов этих элементов находится на периферии ядра. Каждый нуклон из-за короткодействия ядерных сил взаимодействует лишь с небольшим числом соседних нуклонов, и чем меньше массовое число, тем меньше число нуклонов участвует в полноценной ядерной связи со своими соседями. Уменьшение удельной энергии связи у тяжелых ядер обусловлено растущей с увеличением атомного номера энергией отталкивания протонов и означает относительную неустойчивость таких ядер. Становится энергетически выгодно их деление. Использование ядерной энергии основано на осуществлении цепных реакций деления тяжелых ядер и реакций термоядерного синтеза —слияния легких ядер; и те, и другие реакции сопровождаются выделением энергии.

Механизм деления ядер

В тяжелых ядрах, наряду с большими силами электрического отталкивания, стремящимися разорвать ядро на части, действуют еще значительные ядерные силы, которые удерживают ядро от распада.

Под влиянием поглощенного нейтрона ядро возбуждается и начинает деформироваться, приобретая вытянутую форму. Оно растягивается до тех пор, пока силы отталкивания половинок ядра не начинают преобладать над силами притяжения, действующими в перешейке. В результате ядро разрывается на две части (так называемые осколки). Под действием кулоновского отталкивания осколки разлетаются со скоростью, равной 1/30 скорости света; одновременно испускается излучение высокой частоты. Большая часть выделяемой энергии приходится на кинетическую энергию осколков.

Ядерная цепная реакция

Не все ядра способны к делению. Наиболее легко делится изотоп урана 235 92U, составляющий всего 1/140 от более распространенного изотопа 238 92U. Это деление вызывается как медленными, так и быстрыми нейтронами, попавшими в ядро. При каждом акте деления ядра испускается 2-3 нейтрона, которые в свою очередь могут вызывать деление других ядер. В результате возникает ядерная цепная реакция. Она сопровождается выделением огромной энергии. При делении одного ядра выделяется около 200 МэВ. При полном же делении ядер, находящихся в 1 г урана, выделяется энергия 2, 3*10 4 кВт·ч. Это эквивалентно энергии, получаемой при сгорании 3 т угля или 2, 5 т нефти.

Управляемая реакция деления ядер используется в ядерных реакторах. Вероятность захвата ядрами урана медленных нейтронов с последующим делением ядер в сотни раз больше, чем быстрых. Поэтому в ядерных реакторах, работающих на естественном уране, используются замедлители нейтронов. Лучшим замедлителем нейтронов является тяжелая вода. Хорошим замедлителем считается также графит, ядра которого не поглощают нейтронов. Цепная реакция начинает идти, как только масса делящегося вещества превышает некую критическую массу. Управление реактором осуществляется при помощи стержней, содержащих кадмий или бор, являющиеся хорошими поглотителями нейтронов.

Неуправляемая цепная реакция осуществляется в атомной бомбе. Для того, чтобы происходило практически мгновенное выделение энергии (ядерный взрыв), реакция должна идти на быстрых нейтронах (без замедлителей). Взрывчатым веществом служит чистый уран 235 92U или плутоний 239 94Pu.

Термоядерные реакции

Выделение энергии при слиянии ядер легких атомов дейтерия, трития или литияс образованием гелия происходит в ходе термоядерных реакций. Эти реакции называются термоядерными, так как могут протекать лишь при очень высоких температурах. В противном случае, силы электрического отталкивания не позволяют ядрам сблизиться настолько, чтобы начали действовать ядерные силы притяжения. Реакции ядерного синтеза являются источником звездной энергии. Эти же реакции протекают при взрыве водородной бомбы.

Осуществление управляемого термоядерного синтеза на Земле сулит человечеству новый, практически неисчерпаемый источник энергии. Наиболее перспективна в этом отношении реакция слияния дейтерия и трития. Экономически выгодная реакция может идти только при нагревании реагирующих веществ до температуры порядка 10 8 К при большой плотности вещества (10 14 -10 15 частиц в 1 см 3 ). Такие температуры могут быть достигнуты путем создания в плазме мощных электрических разрядов. Основная трудность заключается в том, чтобы удержать плазму столь высокой температуры внутри установки в течение 0, 1-1, 0 с. Из-за неустойчивости высокотемпературной плазмы эта задача пока остается нерешенной, и в качестве промышленного источника ядерной энергии в настоящее время используются только реакции деления ядер.

Читайте также: