Как ньютон изменил третий закон кеплера кратко

Обновлено: 05.07.2024

Закон всемирного тяготения. Напомним известную из курса физики формулировку закона всемирного тяготения: все тела притягиваются друг к другу с силой, модуль ко­торой прямо пропорционален произведению их масс и об­ратно пропорционален квадрату расстояния между ними.

Закон всемирного тяготения записывается в виде:

где т1 и т2 — массы тел; r — расстояние между их цен­трами; G — постоянная всемирного тяготения (ее значение в СИ G = 6,67·10 -11 Н·м 2 /кг 2 ).

Из физики вы знаете, что гравитация — общее свойство всех тел в природе. Исключительно важную роль она играет в мире небесных тел; ею объясняются не только почти все движения, но и многие процессы, связанные с образованием и развитием небесных тел. Если законы Кеплера отвечают на вопрос, по каким траекториям движутся небесные тела, то закон всемирного тяготения отвечает на вопрос, какая сила удерживает планеты около Солнца, спутники около планет и т. д.

Раздел астрономии, исследующий движения небесных тел под действием их взаимного притяжения, называется небесной механикой . Законы Кеплера и закон всемирного тяготения — основные законы небесной меха­ники.

2. Возмущения. Открытие Нептуна. Строго эллиптиче­ское движение происходит под действием притяжения одного тела. Но любая планета испытывает притяжение со стороны других планет, своих спутников и т. д. В резуль­тате возникают отклонения от эллиптической траектории, которые называются в небесной механике возмущениями .

Исаак Ньютон

Меркурий, Венера, Марс, Юпитер и Сатурн были из­вестнылюдям с глубокой древности. Мысль о том, что наша Земля — тоже планета Солнечной системы, впервые была научно обоснована Н. Коперником. Планету, находя­щуюся за орбитой Сатурна и не видимую невооруженным глазом, открыл в1781 г. с помощью телескопа английский астроном (профессиональный музыкант, который начал зани­маться астрономией как любитель)Уильям Гершель (1738— 1822). Она была названа Ураном. Основываясь на законах небесной механики, астрономы вычислили орбиту Урана, но довольно скоро выяснилось, что в движении новой планеты заметны отклонения от кеплеровской орбиты. Наблюдаемые отклонения могли означать либо то, что действие закона всемирного тяготения ограничено лишь близкими плане­тами, либо то, что за Ураном есть еще какая-нибудь пла­нета, возмущающая его движение. Сделав именно это, вто­рое предположение, астрономы решили попытаться открыть новую планету, вычислив ее положение в пространстве. Не­зависимо друг от друга такую задачу удалось решить двум молодым математикам — англичанину Джону Адамсу (1819—1892) и французуУрбену Леверье (1811—1877). Астроном Берлинской обсерватории Иоганн Галле (1812— 1910), получив телеграмму от Леверье с просьбой поискать планету в указанном месте, 23 сентября1846 г. обнаружил в созвездии Водолея светило, которого не было на звездной карте. Так была открыта восьмая планета Солнечной си­стемы, названная Нептуном. Это был триумф небесной ме­ханики, торжество гелиоцентрической системы. Девятую планету Солнечной системы — Плутон — удалось открыть лишь в1930 г.

3. Законы Кеплера в формулировке Ньютона. Как вы уже знаете, Кеплер открыл свои законы эмпирическим пу­тем. Ньютон вывел законы Кеплера из закона всемирного тяготения. Он доказал, что под действием силы тяготения одно небесное тело может двигаться по отношению к дру­гому по окружности, эллипсу, параболе и гиперболе. В этом заключается первый обобщенный Ньютоном закон Ке­плера. Он имеет универсальный характер и справедлив для любых тел, между которыми действует взаимное тяготение. Ему подчиняется и движение искусственных небесных тел. Напомним, что форма орбиты зависит от модуля и направ­ления начальной скорости (рис. 23).

Рис. 23. Зависимость формы орбиты искусственного небесного тела от начальной скорости υо.

Орбиты при различных начальных скоростях (векторы скоростей во всех случаях направлены горизонтально, т.е. перпендикулярно радиусу Земли): 1 — круговая (υо=7,9 км/с); 2,3,4 — эллиптические (υо соответственно равны 10,0 км/с, 11,0 км/с, 11,1 км/с); 5 — параболическая (υо≈11,2 км/с); 6 — гипер-болическая (υо≈12,0 км/с).

Формулировка второго закона Кеплера не потребовала обобщения.

Для определения масс небесных тел важное значение имеет обобщение Ньютоном третьего закона Кеплера на любые системы обращающихся тел. Если, в частности, массивным (центральным) телом является Солнце, то для него и двух движущихся вокруг него планет третий закон Кеплера будет иметь вид:

т. е. квадраты сидерических периодов планет ( и ), умноженные на сумму масс Солнца и планеты ( и ), относятся как кубы больших полуосей орбит планет ( и ).

Можно применить третий закон Кеплера и к другим си­стемам, например к движению планеты вокруг Солнца и спутника вокруг планеты. Обозначим массы Солнца, пла­неты и ее спутника соответственно через , т и m 1 пери­оды обращения планеты вокруг Солнца и спутника вокруг планеты — через T и Т1 и, наконец, средние расстояния планеты от Солнца и спутника от планеты — через а и ах Тогда третий закон Кеплера можно записать в виде:

Формула (18) была получена из рассмотрения движения планеты вокруг Солнца и спутника вокруг планеты. Анало­гичный вид будет иметь формула для определения массы планеты (имеющей спутника!), если эту систему небесных тел сравнить с другой планетой и ее спутником:

где и — соответственно массы сравниваемых планет; и — периоды обращения спутников планет; а' и — средние расстояния между спутниками планет ипланетами.

Пример. Вычислить массу Юпитера, зная, что один из его спутников (Ио) совершает оборот вокруг планеты за 1,77 сут на расстоянии 422 тыс. км от Юпитера.

Для решения задачи сравним обращение Ио вокруг Юпитера с обращением Луны вокруг Земли. Массу Земли примем за единицу (т. е. = = 1), период обращения Луны 27,32 сут ( = 27,32 д — такое обозначение для су­ток принято в астрономии), а среднее расстояние Луны от Земли 384 тыс. км.

Законы кеплера.ppt

Физические условия на Луне. Луна практически ли­шена атмосферы. Если допустить, что в прошлом у Луны была атмосфера, то легко понять, почему ее нет сейчас. Дело в том, что сравнительно небольшие (по массе) небес­ные тела (подобные Луне) не могут длительное время удер­живать атмосферу. Уже при скорости 2,38 км/с (вторая кос­мическая скорость для Луны) молекулы газа способны по­кинуть Луну.

На небе Луны видны те же самые созвездия, что и на небе Земли. Из-за отсутствия атмосферы яркие звезды и планеты видны на Луне и днем. Поэтому космонавты могут ориентироваться на Луне по звездам и днем и ночью. Ори­ентировка по звездам приобретает на Луне особое значение, так как там магнитный компас бесполезен. (Луна не имеет магнитного поля, подобного земному.)

Меркурий и Венеру можно наблюдать с Луны даже в непосредственной близости от Солнца. Эффектное украшение неба Луны — наша Земля (рис. 31). Диск Земли примерно в 3,5 раза больше солнечного диска.

Рис. 31. Земля на небе Луны.

Рис. 32. Видимая с Земли сторона Луны (вид в телескоп).

Поверхность Луны. Даже невооруженным глазом на Луне видны обширные темные участки ( моря ) и светлые ( материки ). Более подробно их можно рассмотреть в школьный телескоп (рис. 32). Несмотря на то, что в лунных морях нет ни капли воды, в науке сохранилась прежняя система наименований, предложенная еще в XVII в. В отли­чие от морей (сравнительно ровных участков лунной поверх­ности, покрытых темным веществом), материки представ­ляют собой гористые районы.

На обращенной к Земле стороне Луны материки зани­мают около 70%, а моря — 30% территории видимого с Земли полушария Луны.

Характерная особенность лунного рельефа — кольцевые структуры ( кратеры ). Только на видимой стороне кра­теров диаметром более1 кмпримерно 300 000. Среди них есть такие, диаметры которых превышают200 км. Большин­ство крупных лунных кратеров имеют ровное дно, в центре которого возвышается горка .

Многие лунные моря окаймлены протяженными горными хребтами . Хребты получили названия земных горных цепей (Кавказ, Альпы, Пиренеи и др.).

В полнолуние в небольшой телескоп (призменный би­нокль) хорошо видны Океан Бурь, Море Дождей, Море Яс­ности, а также кратеры (Тихо, Коперник, Кеплер), от которых расходятся протяженные лучевые системы . Когда Луна находится в других фазах, то вблизи границы освещенной и неосвещенной частей поверхности Луны (та­кая граница называется терминатором ) кратеры вы­деляются особенно рельефно (рис. 33).

Рис. 33. Вид кратеров в школьный телескоп.

На невидимом с Земли полушарии Луны преобладают материки. Средний диаметр крупного моря — Моря Москвы — достигает460 км. Много на обратной стороне Луны и кратеров (им присвоены имена выдающих­ся деятелей науки — Ломоносов, Джордано Бруно, Циолковский, Жолио-Кюри и др.) Нередко кратеры образуют длинные цепочки, тянущиеся на сотни километров. Там находится и самый большой кратер. Его диаметр около 2500 км(!), а глубина12 км. Скорее всего, это самый боль­шой кратер в Солнечной системе.

Большинство мелких и средних лунных кратеров образо­валось в результате падения метеоритов, которые, достигая поверхности Луны, обладают такой кинетической энергией, что при ударе происходит взрыв. Метеорит разрушается, дробится; лунный грунт разлетается в разные стороны от места взрыва. Так образуются первичные кратеры. Чем их больше на данном участке лунной поверхности, тем больше возраст этого участка. Выброшенные при образовании пер­вичных кратеров большие камни могут, падая на поверх­ность Луны, создавать вторичные кратеры. Возможно, что из таких вторичных кратеров состоят лучевые системы, ко­торые хорошо видны в полнолуние у некоторых крупных молодых кратеров. Образование крупных кратеров, веро­ятно, связано и с бурной вулканической деятельностью, ха­рактерной для далекого прошлого Луны.

Лунные породы. Благодаря мягким посадкам автома­тических станций на Луну, а затем и полетам на Луну аме­риканскихастронавтов стали известны механические свой­ства лунного грунта и его химический состав. На Луне не оказалось толстого слоя пыли, которого когда-то опасались многие конструкторы лунников, но пыль на Луне есть. Она темно-серого цвета и по внешнему виду напоминает цемент.

Образцы лунных пород внешне похожи на земные извер­женные базальты. В состав их входят хорошо известные на Земле химические элементы ( Si , Al , Fe , Ca , Mg и др.). Но в лунных породах больше, чем в земных, содержится туго­плавких элементов ( Ti , Zr , Сг и др.) и меньше — легкоплав­ких (РЬ, К, Na и др.). Химический состав различных участ­ков поверхности Луны неодинаков.

В поверхностном слое Луны ( реголите ) содержатся осколки магматических пород, шлакообразные частицы с оплавленными гранями. Многие образцы как бы обработаны песком. Их вид свидетельствует о том, что они длительное время подвергались своеобразной эрозии (ударам мелких ме­теоритов и обработке потоками частиц, непрерывно исходя­щими от Солнца).

Из-за отсутствия воды минералов на Луне значительно меньше, чем на Земле. Микроорганизмов на Луне не обнаружено.

Есть только два способа прожить жизнь. Первый — будто чудес не существует. Второй — будто кругом одни чудеса.

А.Эйнштейн

Вопросы к экзамену

Для всех групп технического профиля

Учу детей тому, как надо учиться

Часто сталкиваюсь с тем, что дети не верят в то, что могут учиться и научиться, считают, что учиться очень трудно.

Третий закон Кеплера (гармонический закон)

Третий закон Кеплера (гармонический закон) - Квадраты периодов обращения планет вокруг Солнца относятся, как кубы больших полуосей орбит планет.


Справедливо не только для планет, но и для их спутников.

Ньютон установил, что гравитационное притяжение планеты определенной массы зависит только от расстояния до неё, а не от других свойств, таких, как состав или температура. Он показал также, что третий закон Кеплера не совсем точен — в действительности в него входит и масса планеты:


Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их орбиты и орбитальные периоды.

и — периоды обращения двух планет вокруг Солнца

и — длины больших полуосей их орбит


— масса Солнца

и — массы планет

Если Вы являетесь автором материалов или обладателем авторских прав, и Вы возражаете против его использования на моем интернет-ресурсе - пожалуйста, свяжитесь со мной. Информация будет удалена в максимально короткие сроки.

Спасибо тем авторам и правообладателям, которые согласны на размещение своих материалов на моем сайте! Вы вносите неоценимый вклад в обучение, воспитание и развитие подрастающего поколения.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Обобщение и уточнение Ньютоном законов Кеплера Учитель физики ВКК МБОУ СОШ №.

Описание презентации по отдельным слайдам:

Обобщение и уточнение Ньютоном законов Кеплера Учитель физики ВКК МБОУ СОШ №.

Обобщение и уточнение Ньютоном законов Кеплера Учитель физики ВКК МБОУ СОШ № 54 г. Воронежа Кутузова Ирина Валериевна

Кеплер вывел свои законы эмпирическим путем Закон всемирного тяготения Ньюто.

Кеплер вывел свои законы эмпирическим путем Закон всемирного тяготения Ньютон сформулировал почти через 40 лет после смерти Кеплера (1666г.)

Закон всемирного тяготения Все тела притягиваются друг к другу с силой, модул.

Закон всемирного тяготения Все тела притягиваются друг к другу с силой, модуль которой прямо пропорционален произведению их масс и обратно пропорционален квадрату расстояния между ними

Гравитация – общее свойство всех тел в природе, играющая основную роль в мир.

Гравитация – общее свойство всех тел в природе, играющая основную роль в мире небесных тел. Законы Кеплера отвечают на вопрос: по каким траекториям движутся планеты? Закон всемирного тяготения отвечает на вопрос: какая сила удерживает одно небесное тело около другого? Также гравитация влияет на многие процессы образования и развития небесных тел

Раздел астрономии, исследующий движения небесных тел под действием их взаимн.

Раздел астрономии, исследующий движения небесных тел под действием их взаимного притяжения, называется небесной механикой

Орбита планеты может быть строго эллиптической под действием притяжения толь.

Орбита планеты может быть строго эллиптической под действием притяжения только одного тела. Но любая планета испытывает притяжение со стороны других планет, своих спутников, и т.д. Возмущения – отклонения траектории от строго эллиптической формы

По возмущениям орбиты Урана Джон Адамс и Урбен Леверье вычислили положение в.

По возмущениям орбиты Урана Джон Адамс и Урбен Леверье вычислили положение в пространстве неизвестной на тот момент планеты, а Иоганн Галле 23 сентября 1846г. обнаружил восьмую планету - Нептун

Законы Кеплера в формулировке Ньютона

Законы Кеплера в формулировке Ньютона

Первый закон Под действием силы тяготения одно небесное тело может двигаться.

Первый закон Под действием силы тяготения одно небесное тело может двигаться по отношению к другому по окружности, эллипсу, параболе или гиперболе Форма орбиты зависит от модуля и направления начальной скорости


Второй закон Радиус-вектор планеты в равные промежутки времени описывает равн.

Второй закон Радиус-вектор планеты в равные промежутки времени описывает равные площади (не изменился)

Третий закон Для двух планет, движущихся вокруг Солнца: Квадраты сидерических.

Третий закон Для двух планет, движущихся вокруг Солнца: Квадраты сидерических периодов двух планет, умноженные на сумму масс Солнца и планеты, относятся как кубы больших полуосей орбит планет

Третий закон можно применить к движению вокруг Солнца планеты и её спутника.

Третий закон можно применить к движению вокруг Солнца планеты и её спутника. Обозначим: m и T – масса и период планеты; m1 и T1 – масса и период спутника

Т.к. масса Солнца во много раз больше массы любой из планет, а масса планеты.

Т.к. масса Солнца во много раз больше массы любой из планет, а масса планеты обычно также очень велика по сравнению с массой спутника, то с достаточной степенью точности можно рассчитать отношение массы Солнца к массе планеты:

Спасибо за внимание!

Спасибо за внимание!

Краткое описание документа:

Строго эллиптическое движение происходит под действием одного тела. Но любая планета испытывает притяжение со стороны других планет, своих спутников и так далее. В результате возникают отклонения от эллиптической траектории. Ньютон обобщил законы Кеплера, основываясь на сформулированном им законе Всемирного тяготения.

  • подготовка к ЕГЭ/ОГЭ и ВПР
  • по всем предметам 1-11 классов
  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Дистанционные курсы для педагогов

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 613 057 материалов в базе

  • ЗП до 91 000 руб.
  • Гибкий график
  • Удаленная работа

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

Свидетельство и скидка на обучение каждому участнику

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

  • 22.10.2018 3758
  • PPTX 1.5 мбайт
  • 91 скачивание
  • Рейтинг: 5 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Кутузова Ирина Валериевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

40%

  • Подготовка к ЕГЭ/ОГЭ и ВПР
  • Для учеников 1-11 классов

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Россияне ценят в учителях образованность, любовь и доброжелательность к детям

Время чтения: 2 минуты

Рособрнадзор предложил дать возможность детям из ДНР и ЛНР поступать в вузы без сдачи ЕГЭ

Время чтения: 1 минута

Отчисленные за рубежом студенты смогут бесплатно учиться в России

Время чтения: 1 минута

В Госдуме предложили ввести сертификаты на отдых детей от 8 до 17 лет

Время чтения: 1 минута

Новые курсы: преподавание блогинга и архитектуры, подготовка аспирантов и другие

Время чтения: 16 минут

В Россию приехали 10 тысяч детей из Луганской и Донецкой Народных республик

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Заслуга открытия законов движения планет принадлежит выдающемуся немецкому учёному, астроному и математику, Иоганну Кеплеру (1571 – 1630 гг.)– человеку большого мужества и необыкновенной любви к науке.


Первый закон Кеплера:Каждая планета обращается вокруг Солнца по эллипсу, в одном из фокусов которого находится Солнце.

Под действием силы притяжения одно небесное тело движется в поле тяготения другого небесного тела по одному из конических сечений – кругу, эллипсу, параболе или гиперболе. [2 ]


Эллипсом называется плоская замкнутая кривая, имеющая такое свойство, что сумма расстояний каждой её точки от двух точек, называемых фокусами, остаётся постоянной. Эта сумма расстояний равна длине большой оси эллипса. Точка О – центр эллипса, F1 и F2 – фокусы. Солнце находится в данном случае в фокусе F1.


Ближайшая к Солнцу точка орбиты называется перигелием, самая далёкая – афелием. Линия, соединяющая какую-либо точку эллипса с фокусом, называется радиус-вектором. Отношение расстояния между фокусами к большой оси (к наибольшему диаметру) называется эксцентриситетом е. эллипс тем сильнее вытянут, чем больше его эксцентриситет. Большая полуось эллипса а – среднее расстояние планеты до Солнца.

По эллиптическим орбитам движутся и кометы и астероиды. У окружности е = 0, у эллипса 0 1.

Орбиты планет – эллипсы, мало отличаются от окружностей; их эксцентриситеты малы. Например, эксцентриситет орбиты Земли е = 0,017.

Второй закон Кеплера: Радиус-вектор планеты за одинаковые промежутки времени описывает равные площади (определяет скорость движения планеты по орбите). Скорость планеты тем больше, чем она ближе к Солнцу. [1]


Планета проходит путь от точки А до А1 и от В до В1 за одно и то же время. Другими словами, планета движется быстрее всего в перигелии, а медленнее всего – когда находится на наибольшем удалении (в афелии). Так, скорость кометы Галлея в перигелии равна 55 км/с, а в афелии 0,9 км/с.

Самый близкий к Солнцу Меркурий обегает вокруг светила за 88 дней. За ним движется Венера, и год на ней длится 225 земных суток. Земля обращается вокруг Солнца за 365 суток, то есть ровно за один год. Марсианский год почти в два раза продолжительнее земного. Юпитерский год равен почти 12 земным годам, а далёкий Сатурн обходит свою орбиту за 29,5 лет! Словом, чем дальше планета от Солнца, тем продолжительнее на планете год. И Кеплер пытался найти зависимость между размерами орбит различных планет и временем их обращения вокруг Солнца.




15 мая 1618 года после множества неудачных попыток Кеплер установил наконец очень важное соотношение, известное как

Третий закон Кеплера:Квадраты периодов обращения планет вокруг Солнца относятся как кубы их средних расстояний от Солнца. [1]

Если периоды обращения любых двух планет, например Земли и Марса, обозначить через Тз и Тм , а их средние расстояния от Солнца – аз и ам, то третий закон Кеплера можно записать в виде равенства:

Т 2 м / Т 2 з = а 3 м / а 3 з.

Но ведь период обращения Земли вокруг Солнца равен одному году (Тз = 1), а среднее расстояние Земля – Солнце принято за одну астрономическую единицу (аз = 1 а.е.). Тогда данное равенство примет более простой вид:

Период обращения планеты (в нашем примере Марса) можно определить из наблюдений. Он составляет 687 земных суток, или 1,881 года. Зная это, нетрудно вычислить среднее расстояние планеты от Солнца в астрономических единицах:


Т.е. Марс находится в среднем в 1,524 раза дальше от Солнца, чем наша Земля. Следовательно, если известно время обращения какой-нибудь планеты, то по нему можно найти её среднее расстояние от Солнца. Таким путём Кеплеру удалось определить расстояния всех известных в ту пору планет:

Только это были относительные расстояния – числа, показывающие, во сколько раз та или иная планета дальше от Солнца или ближе к Солнцу, чем Земля. Истинные значения этих расстояний, выраженные в земных мерах (в км), оставались неизвестными, ибо ещё не была известна длина астрономической единицы – среднего расстояния Земли от Солнца.

Третий закон Кеплера связал в единую стройную систему всё солнечное семейство. На поиски ушло девять трудных лет. Победило упорство учёного!

Вывод: законы Кеплера теоретически развивали гелиоцентрическое учение и тем самым укрепляли позиции новой астрономии. Астрономия Коперника – самое мудрое из всех произведений человеческого ума. [1]

Заслуга открытия законов движения планет принадлежит выдающемуся немецкому учёному, астроному и математику, Иоганну Кеплеру (1571 – 1630 гг.)– человеку большого мужества и необыкновенной любви к науке.


Первый закон Кеплера:Каждая планета обращается вокруг Солнца по эллипсу, в одном из фокусов которого находится Солнце.

Под действием силы притяжения одно небесное тело движется в поле тяготения другого небесного тела по одному из конических сечений – кругу, эллипсу, параболе или гиперболе. [2 ]


Эллипсом называется плоская замкнутая кривая, имеющая такое свойство, что сумма расстояний каждой её точки от двух точек, называемых фокусами, остаётся постоянной. Эта сумма расстояний равна длине большой оси эллипса. Точка О – центр эллипса, F1 и F2 – фокусы. Солнце находится в данном случае в фокусе F1.


Ближайшая к Солнцу точка орбиты называется перигелием, самая далёкая – афелием. Линия, соединяющая какую-либо точку эллипса с фокусом, называется радиус-вектором. Отношение расстояния между фокусами к большой оси (к наибольшему диаметру) называется эксцентриситетом е. эллипс тем сильнее вытянут, чем больше его эксцентриситет. Большая полуось эллипса а – среднее расстояние планеты до Солнца.

По эллиптическим орбитам движутся и кометы и астероиды. У окружности е = 0, у эллипса 0 1.

Орбиты планет – эллипсы, мало отличаются от окружностей; их эксцентриситеты малы. Например, эксцентриситет орбиты Земли е = 0,017.

Второй закон Кеплера: Радиус-вектор планеты за одинаковые промежутки времени описывает равные площади (определяет скорость движения планеты по орбите). Скорость планеты тем больше, чем она ближе к Солнцу. [1]


Планета проходит путь от точки А до А1 и от В до В1 за одно и то же время. Другими словами, планета движется быстрее всего в перигелии, а медленнее всего – когда находится на наибольшем удалении (в афелии). Так, скорость кометы Галлея в перигелии равна 55 км/с, а в афелии 0,9 км/с.

Самый близкий к Солнцу Меркурий обегает вокруг светила за 88 дней. За ним движется Венера, и год на ней длится 225 земных суток. Земля обращается вокруг Солнца за 365 суток, то есть ровно за один год. Марсианский год почти в два раза продолжительнее земного. Юпитерский год равен почти 12 земным годам, а далёкий Сатурн обходит свою орбиту за 29,5 лет! Словом, чем дальше планета от Солнца, тем продолжительнее на планете год. И Кеплер пытался найти зависимость между размерами орбит различных планет и временем их обращения вокруг Солнца.

15 мая 1618 года после множества неудачных попыток Кеплер установил наконец очень важное соотношение, известное как

Третий закон Кеплера:Квадраты периодов обращения планет вокруг Солнца относятся как кубы их средних расстояний от Солнца. [1]

Если периоды обращения любых двух планет, например Земли и Марса, обозначить через Тз и Тм , а их средние расстояния от Солнца – аз и ам, то третий закон Кеплера можно записать в виде равенства:

Т 2 м / Т 2 з = а 3 м / а 3 з.

Но ведь период обращения Земли вокруг Солнца равен одному году (Тз = 1), а среднее расстояние Земля – Солнце принято за одну астрономическую единицу (аз = 1 а.е.). Тогда данное равенство примет более простой вид:

Период обращения планеты (в нашем примере Марса) можно определить из наблюдений. Он составляет 687 земных суток, или 1,881 года. Зная это, нетрудно вычислить среднее расстояние планеты от Солнца в астрономических единицах:


Т.е. Марс находится в среднем в 1,524 раза дальше от Солнца, чем наша Земля. Следовательно, если известно время обращения какой-нибудь планеты, то по нему можно найти её среднее расстояние от Солнца. Таким путём Кеплеру удалось определить расстояния всех известных в ту пору планет:

Только это были относительные расстояния – числа, показывающие, во сколько раз та или иная планета дальше от Солнца или ближе к Солнцу, чем Земля. Истинные значения этих расстояний, выраженные в земных мерах (в км), оставались неизвестными, ибо ещё не была известна длина астрономической единицы – среднего расстояния Земли от Солнца.

Третий закон Кеплера связал в единую стройную систему всё солнечное семейство. На поиски ушло девять трудных лет. Победило упорство учёного!

Вывод: законы Кеплера теоретически развивали гелиоцентрическое учение и тем самым укрепляли позиции новой астрономии. Астрономия Коперника – самое мудрое из всех произведений человеческого ума. [1]

Читайте также: