Как можно передать сигнал укв радиостанций на большое расстояние кратко

Обновлено: 05.07.2024

1. Рассеяние радиоволн на неоднородностях тропосферы. Наблюдается практически всегда, но для практического использования необходима достаточно хорошая энергетика. Коммерческие тропосферные каналы с ERP=60 dB (ERP - от английских слов Effective Radiated Power - эффективно излучаемая мощность) и более обеспечивают стабильную связь на расстояниях порядка 300 км. При типичных для любительской УКВ DX станции ERP порядка 30 dB за счет рассеяния достаточно часто удается проводить CW связи на расстояние до 400 км. Затухание на трассе существенно зависит от погодных условий и уменьшается в ночное время. Вращение плоскости поляризации незначительно. Телеграфные сигналы дальних станций часто имеют характерный дрожащий тон.


2. Тропосферное прохождение (”Тропо”). Коэффициент рефракции в тропосфере зависит от того, как меняется с высотой температура, давление и влажность воздуха. Увеличению его способствует повышенное давление (антициклон), а также температурная инверсия - ситуация, когда температура воздуха с высотой не понижается, а повышается. Наблюдается чаще в ночное время и утренние часы. Повышенная рефракция дает возможность проводить связи на расстояния 100…400 км станциям с ERP порядка 10. Иногда коэффициент рефракции достигает такой величины, что волна, ”загибаясь” в тропосфере, падает на поверхность земли, отражается от нее, и повторяет такие скачки многократно (сверхрефракция). Говорят, что в тропосфере образуется волноводный канал. При этом дальность связи может достигать нескольких тысяч километров. Необходимая энергетика обычно выше, чем в случае простой рефракции, но может быть весьма различной в каждом конкретном случае. Вращение плоскости поляризации также незначительно. Известно, что созданию таких условий способствует перемещение атмосферных фронтов. Надо отметить, что явление это достаточно редкое и изучено оно далеко не полностью.

3. ”Аврора” - отражение радиоволн от приполярных областей ионосферы во время магнитных бурь. Поскольку спектр сигнала существенно меняется, телеграф является существенно более предпочтительным. Сигнал принимается в виде характерного ”шипения”. От силы возмущения зависит, насколько далеко на юг распространится область, в которой наблюдается прохождение. Если для северных областей это достаточно частое явление, то границ Украины ”аврора” достигает 1-2 раза в год. Наиболее вероятное время суток - 14-17 и 21-24 UT. Для центральной России обычными являются корреспонденты из Скандинавских стран, более редкими (и желанными) -Дании, Германии, Польши. Иногда признаком ”Авроры” является появление на КВ диапазонах северных станций с искаженным, ”шипящим” тоном (на фоне общего ухудшения прохождения). Необходимым ERP можно считать уровень 25-30 dB. Антенну, как правило, следует направлять на север, с отклонениями до 300 . В отличие от предыдущих случаев, поляризация может существенно меняться, хотя существует мнение, что использование одинаковой поляризации обоими корреспондентами предпочтительно.

4. Спорадическое (Es) прохождение возникает при образовании в ионосфере (слой E) под влиянием интенсивной солнечной радиации ”облаков” с МПЧ, превышающей 144 MHz. Наиболее вероятное время года - с мая по август, время суток - со второй половины светового дня до полуночи. Более вероятно в южных районах, где чаще всего и происходит формирование ”облаков”, которые затем могут перемещаться на север. Отличается чрезвычайно малым затуханием при расстояниях между корреспондентами 1-2 тысячи километров. Шансы на проведение дальних связей имеют даже те станции, ERP которых меньше 10 dB. Известны случаи установления сверхдальних связей при помощи портативных радиостанций. Обнаружить приближение ”спорадика” можно по появлению дальних радиостанций в УКВ вещательных диапазонах или сигналов дальних телецентров на 2-12 каналах. Поляризация не сохраняется. С целью экономии времени лучше использовать SSB или FM.

5. Связь с отражением от метеорных следов (Ms) является весьма специфической ввиду того, что области ионизации, появляющиеся в результате сгорания в атмосфере метеоритов, существуют весьма короткое время (от долей секунды до нескольких секунд, очень редко - десятки секунд). Количество метеоров резко возрастает во время прохождения Землей метеорных потоков, наиболее мощный из которых - августовские Персеиды. Связи проводятся либо SSB, либо с использованием высокоскоростной телеграфии (HSCW). Применение компьютеров для передачи и приема HSCW существенно облегчает работу. Расчет оптимального времени и направления так же удобно выполнять с помощью компьютерных программ. Минимальным ERP для успешной работы можно считать уровень в 30 dB (средняя MS станция обычно имеет мощность порядка 300 Вт и 1-2 этажа антенн длинной 4-8 м.). Следует использовать антенны с горизонтальной поляризацией.

6. ”Ионо” (FAI) - связь за счет рассеяния на неоднородностях ионосферы. Позволяет устанавливать связи на значительные расстояния (1 - 2 тысячи километров). Затухание на трассе, как правило, достаточно велико, поэтому требуется хорошая энергетика, сравнимая с используемой для EME связей (см. ниже).

7. Использование отражения сигналов от Луны (EME) позволяет устанавливать связи практически на любые расстояния. В то же время огромное затухание на трассе (252 dB для частоты 144 MHz) требует применения совершенной аппаратуры и антенн с большим усилением. Для того, что бы услышать собственное эхо (время распространения сигнала до Луны и обратно - около 3 секунд), необходимо иметь ERP порядка 50 dB (типичная радиостанция ”начинающего лунатика” имеет мощность передатчика 1 kW и стек из 4-х антенн ”волновой канал” длинной 6-8 м каждая) при условии, что шум-фактор приемника и потери в фидере не превышают 0.5 dB. При меньших величинах ERP можно установить связь, если у корреспондента имеется ”запас” по усилению антенны. Плоскость поляризации волны изменяется при прохождении ею ионосферы (эффект Фарадея), что при применении антенн с линейной поляризацией вызывает периодические ”замирания” сигнала. Тем не менее в диапазоне 144-146 MHz антенны с круговой поляризацией для EME используют крайне редко ввиду их громоздкости. Подготовка к работе через Луну требует вложения значительных сил и средств. Необходимо учитывать такие факторы, как уровень помех в месте расположения станции, необходимость построения антенной системы больших размеров, вращающейся в двух плоскостях, возможность возникновения помех от мощного передатчика приему телевидения и радио. Наградой за труды является возможность проводить связи практически со всем Миром (причем, в отличие от КВ диапазонов, сигналы станций Украины и Австралии слышны с одинаковым уровнем). Можно сказать, что EME - это своего рода Эверест для ультракоротковолновиков.

8. Трансэкваториальное прохождение (ТЭП). Отражение радиоволн происходит от слоя F2 (высота 250-500 км).
Как это происходит.
Между 20 северной и южной широты от геомагнитного экватора (не путайте с географическим) ионосфера имеет наклон в форме выпуклости. После заката (время появления ТЭП) возникает эффект расширения слоя F2 (эффект полуденного источника). Вероятно это следствие увеличения электрических полей слоя E от востока до запада вблизи экватора (далее имеется в виду геомагнитный, а не географический экватор). Взаимодействуя с магнитным полем Земли и ионосферными ветрами эти поля вызывают бомбардировку электронами слоя Е и двигаясь снизу вверх по слою F, достигая слоя F2. Таким образом происходит сильная ионизация слоя F2.
В районе экватора ионосфера искривлена кверху. Радиоволны способны отражаться от северного края с южному и попадать на края выпуклости под низким углом атаки к Земле. Необходима высокая ионизация краёв для такого отражения, что возможно в периоды весеннего и осеннего равноденствий, когда Солнце одинаково освещает Северное и Южное полушария (оптимальное время для ТЭП).
Возможно есть и другие причины объясняющие появление ТЭП на 144 Мгц. Таким образом всё, что необходимо для ТЭП, это:
1. Высокий уровень ионизации слоя F2 около экватора (напомню, что в данной статье это геомагнитный, а не географический экватор), при этом влияние потока солнечных частиц незначительно.
2. Умеренная геомагнитная активность (А-индекс около 30, что соответствует малому возмущению магнитного поля Земли).
3. Ни каких больших антенн и больших мощностей ( желающие принимать ТЭП со штырями могут поменять место жительства на 20 северной широты-hi)
4. Возможны QSO на 430 МГц.
5. Лучшие даты находятся около равноденствий (с февраля по апрель и с сентября по ноябрь), но не отрицается проведение QSO и в другие месяцы.
6. Лучшее время QSO, за несколько часов после заката ( для QSO Европа-Африка 17-19 UTC, для Америки 00-02 UTC, для Японии-Австралии 10-12 UTC).

Ультракороткие волны, излучаемые радиовещательными радиостанциями, обычно принимаются в пределах прямой видимости, на расстоянии 100. 150 км от передатчика средней мощности. На высокочувствительный УКВ-радиоприемник с внешней антенной, имеющей усилитель, можно принять радиопередачу от радиостанции со значительной мощностью, если она расположена на расстоянии 200. 300 км. Помимо этого, благодаря рассеиванию верхних неоднородных слоев атмосферы, УКВ могут достигать антенн радиоприемников удаленных от радиостанции на расстоянии более 300 км. При этом, мы имеем дело с так называемым тропосферным приемом. При использовании высококачественной приемной радиоаппаратуры и тропосферного приема иногда возможен регулярный дальней прием УКВ-станций (рис. 31.21).

УКВ при отражениях от различных слоев ионосферы в некоторых случаях способны распространяться на очень большие расстояния порядка 1000. 2500 км, если они отражатся от спорадического слоя Es, а при отражении от вышерасположенного слоя F2 — на 2500. 5000 км. Сигналы после таких отражений в некоторых случаях имеют большую силу. В этих случаях прием УКВ удается вести на обычные антенны и радиоприемники. Прием сигналов от слоя F2 имеет нерегулярный характер и происходит на частота* до 80. 100 МГц с мая по июль месяцы. Явление отражения УКВ от слоя F2 на частотах до 50. 55 МГц происходят в годы максимума солнечной активности, зимой, в дневное время. Длительный DX прием, УКВ-радиостанций, основывается на приеме слабого сигнала с помощью высокочувствительной приемной аппаратуры и высокоэффективных антенн.

В северных районах России осенью и зимой в момент появления полярного сияния возможен нерегулярный и кратковременный DX прием УКВ. Полярное сияние происходит на высоте 90. 100 км в результате свечения разряженных слоев атмосферы под действием протонов и электронов, проникающих в нее из космоса. Сигнал радиостанции, отраженный от полярного сияния, может быть принят от нее на расстоянии более 1500 км. Для приема такого сигнала необходимо использовать высокочувствительный приемник и высокоэффективную антенну, так сила сигнала очень мала. Аналогичный характер имеет DX прием УКВ через метеоритные потоки. Метеориты испаряются, в основном, на высоте 80. 170 км над поверхностью Земли. Дальность метеоритной связи возможна до 2000 км.

Разновидности дальнего приема УКВ

Рис. 31.21. Разновидности дальнего приема УКВ

Следует отметить, что причины дальнего DX приема УКВ полностью пока еще не раскрыты. Замечена связь между началом дальнего УКВ прохождения и предгрозового фронта. Объяснить это можно, по всей видимости тем, что в верхний слоях атмосферы, расположенных ближе к ионосфере, возникают неоднородные по плотности и температуре слои, которые способствуют отражению радиоволн. Этому способствует и грозовая деятельность, приводящая к ионизации слоев. Приведенные предположения подтверждаются тем фактом, что летнее Es-прохождение почти не зависит от фазы 11-летнего периода солнечной активности.

Для обнаружения дальнего прохождения на УКВ, необходимо включить радиоприемник и пройтись по свободным частотам. Если вы хорошо знаете частоты станций, вещающих в данной местности, то при наличии прохождения легко обнаружить радиостанции ранее не принимавшиеся в данное время. Такие радиостанции обычно принимаются с сильным замиранием и с интерференцией от других станций или собственного сигнала, пришедшего на радиоприемник со сдвигом по фазе. О появившейся возможности дальнего прохождения УКВ можно так же судить косвенно, в частности, по улучшению характера радиоприема на частотах свыше 20 МГц, относящихся к КВ-диапазону.

Радиовещание на УКВ в разных странах мира ведется на различных частотных диапазонах (табл. 31.9).

Длинные волны (далее ДВ) - это электромагнитные волны длиннее 3000 м (частота колебаний менее 100 КГц). Они сравнительно хорошо огибают земную поверхность за счет явления дифракции радиоволн. По мере удлинения волны уменьшаются потери энергии в почве (воде) и улучшаются условия отражения радиоволн от ионосферы, что приводит к увеличения дальности действия радиостанции. При расстоянии менее 100 км до передатчиков ДВ преобладают сигналы, распространяющиеся вдоль земной поверхности, а на больших расстояниях решающую роль играют сигналы, отраженные от ионосферы.

Средние волны (далее СВ) - это электромагнитные волны длиной от 3000 до 200 м, что соответствует частотам 100 - 1500 КГц. Энергия СВ очень сильно поглощается в почве и морской воде (с укорочением длины волны поглощение увеличивается).

Короткие волны (далее КВ) - это электромагнитные волны длиной от 200 до 10 м, что соответствует частоте колебаний от 1.5 МГц (1500 КГц) до 30 МГц. Основной особенностью распространения КВ является их способность отражаться от ионосферы при сравнительно небольших потерях. Отраженная от ионосферы волна, на больших отдалениях от передатчика возвращаются на землю, что и позволяет установить радиосвязь между точками,закрытыми друг от друга выпуклостью земного шара.

Ультракороткие волны (далее УКВ) - это радиоволны короче 10м, что соответствует электромагнитным колебаниям с частотой более 30 МГц. УКВ в обычных условиях не отражаются от ионосферы. Прямые волны, распространяющиеся вблизи поверхности земли, сильно ею поглощаются. Диапазон УКВ принято разбивать на: метровые, дециметровые, сантиметровые и миллиметровые.

Высота подвеса антенны

Зона уверенного приема УКВ определяется расстоянием прямой видимости от передающей антенны до приемной. В связи с тем, что поверхность Земли шарообразна (радиус 6370 км), можно использовать приблизительную формулу для определения максимальной дальности, соответствующей прямой видимости:

Формула определения максимальной дальности. Где D - максимальная дальность прямой видимости h1 и h2 высоты антенн

Формула определения максимальной дальности. Где D - максимальная дальность прямой видимости h1 и h2 высоты антенн

У нас имеются 2 антенны

1 антенна на 25 метров, 2 антенна на 30 метров

Подставляем эти числа в формулу, вычетам квадратный корень и умножаем на 3.57

И получаем приблизительную максимальную дальность в 26.4 км.

Из данного примера видно, что чем выше подняты антенны, тем дальше прием.

Рассчитать максимальную дальность можно здесь

Рельеф местности

Формула не учитывает рельефа местности и предполагает, что антенны установлены на идеально гладкой поверхности. Кроме того, при распространении радиоволн УКВ диапазона все-таки имеет место и дифракция и рефракция радиоволн. Область, в пределах которой оказывается возможным уверенный прием радиосигнала, можно разбить на 2 зоны: прямой видимости и полутени.

Таким образом, получаем, что на распространение радиосигнал УКВ диапазона влияет в большей степени высота подвеса антенн. Для увеличения дальности распространения УКВ диапазона в области полутени необходимо применять высокоэффективные направленные антенны, высокочувствительное приемопередающее оборудование, кабели с низкими потерями.

Для портативных радиостанций мы ограниченны ростом человека использующего рации (не более 2 метров за редким исключением).

В данных условиях, самыми важными становятся следующие факторы:

  • соответствие кратности габаритных размеров устройства к используемой длине волны
  • мощность излучения радиостанции
  • чувствительность приемника устройства
  • хорошая согласованность между выходным трактом рации и антенной

Поэтому очень важно приобретать носимые рации производителей, которые не экономят на научных исследованиях и тестах, а разобраться в этом мы сможем вам помочь.

Компания Радиоцентр за свою более 25-летнюю историю протестировала модели всех известных производителей радиосвязи и сможет помочь вам сделать оптимальный выбор средств радиосвязи под вашу задачу.

Радиоволна – это взаимосвязанные колебания электрического и магнитного полей, которые способны распространяться в пространстве со скоростью света. Они обладают такими свойствами как отражение, затухание, преломление. Радиодиапазон составляют волны с длинами от 0,1 мм до 100 км. Волны короче 0,1 мм относят к оптическим, длиннее 100 км используют исключительно в научных целях.

Радиоволна и ее особенности

Радиоволна создается при изменении электрического либо магнитного поля. Для ее создания используются специальные электромагнитные генераторы. Каждая волна изначально обладает запасом энергии, которую переносит через пространство. Она может терять энергию – такой процесс называется затуханием.


Электромагнитные волны характеризуются следующими параметрами:

В зависимости от скорости изменения направления электрического (либо магнитного) поля можно определить частоту волны, которая измеряется в Герцах (Гц). Чтобы определить длину волны, необходимо знать расстояние между точками, где поле находится в одной фазе. Частота и длина волны – взаимно обратные величины. Знание длины волны очень важно для правильного выбора размера передающей антенны.

Важным свойством электромагнитных волн является то, что они не встречая сопротивления проходят через воздух и могут свободно распространяться в пространстве. Однако, если волна встречает на пути металлические объекты, а также любой другой проводящий электричество материал, то она теряет часть своей энергии, ее мощность падает, а в проводнике генерирует переменный ток. Также часть энергии волны отражается от проводника – данный принцип лег в основу радиолокации.

Дальность связи зависит от мощности передатчика генерирующего электромагнитную волну. Именно это устройство передает волне запас энергии, которую та будет расходовать при распространении. Запас будет уменьшаться при контакте с поверхностью планеты, а также при взаимодействии с различными объектами. Однако, дальность распространения будет зависеть не только от запаса энергии, но и от других свойств – в первую очередь, от длины волны.

Распространение радиоволн, расстояние и длина волны

Радиоволны распространяются в пространстве различным образом. Способ их движения в первую очередь зависит от их длины. Так, например, волны от 10 км и выше (сверхдлинные – СДВ) без труда огибают наземные препятствия как искусственного, так и естественного происхождения. Они теряют мало энергии в процессе своего распространения и затухают гораздо медленнее, чем волны других длин. По этой причине они могут перемещаться в пространстве на тысячи километров. Также они обладают высокой степенью проникновения в среду, поэтому их широко используют для исследований земной коры для нужд археологии, геологии, инженерного дела. Их применяют для исследования атмосферы планеты. Также с их помощью осуществляют связь с подводными объектами.


Короткие волны (КВ – 10-100 м) распространяются не далее чем на 250 км, однако обладают интересным свойством. Часть их, уходящая под большим углом к горизонту, соприкасаясь с верхними слоями атмосферы (ионосферой) отражается и направляется обратно к поверхности. Затем они снова отражаются, теперь уже от земли и снова направляются вверх. Распространяясь таким образом короткие волны могут несколько раз обойти вокруг планеты. Ионосфера теряет свою отражательную способность в ночное время, поэтому связь на коротких волнах в это время суток будет хуже.

Миллиметровые волны (ММВ) во многом схожи с УКВ, однако для них серьезной помехой служат атмосферные явления, такие как дождь, снег, туман, облака. За счет ММВ обеспечивается работа высокоскоростной радиорелейной связи. Они нашли свое применение в быту, их используют в медицине, они пригодились в радиоастрономии.

Оборудование применяемое для передачи радиоволн, способы увеличения дальности

Радиосвязь – быстрый и относительно надежный способ передачи данных на большие расстояния. При этом нет необходимости в использовании физического носителя, например проводов.


Свойства волн разной длины напрямую влияют на их применение для обеспечения радиосвязи. Кроме того, на качество передачи информации с их помощью влияют следующие факторы:

  • Высота приемной и передающей антенн;
  • Рельеф поверхности;
  • Солнечная активность, метеоусловия, время суток.

Процесс приема-передачи информации с помощью радиоволн состоит из следующих основных этапов:

  • формирование сигнала;
  • выделение несущей частоты;
  • связывание передаваемой информации с несущей частотой (модуляция);
  • трансформация сигнала в дискретный вид, его кодирование (для цифровых систем);
  • передача в радиоэфир с помощью антенны;
  • прием сигнала;
  • декодировка и демодуляция;
  • преобразование сигнала в форму понятную абоненту.

Чтобы реализовать обмен информации необходимо чтобы у принимающей и передающей стороны в наличии было следующее оборудование:

  • Передатчик;
  • Антенна;
  • Ретрансляционное устройство – позволяет увеличить дальность передачи сигнала;
  • Принимающее устройство;
  • Оборудование модуляции-демодуляции, сжатия, оцифровки и кодирования;
  • Фильтры помех, усилители.

Две простейшие радиостанции, как правило, могут обмениваться информацией на очень небольших расстояниях. Чтобы значительно увеличить зону покрытия, необходимо использовать один из следующих методов:

  • сеть ретрансляторов, установленных на поверхности планеты;
  • орбитальные спутники;
  • системы передвижной радиосвязи.

Применяется несколько способов радиосвязи, для каждого из которых используется специфическое оборудование. Три наиболее распространенных вида:

  • Сотовая связь;
  • Радиорелейная связь;
  • Спутниковая связь.

Сотовая связь

Радиорелейная связь

Вид радиосвязи, осуществляемой с помощью цепочки передающих станций, находящихся в прямой видимости их антенн. Работают в дециметровом и сантиметровом диапазонах. Возможна одновременное функционирование большого количества передатчиков. Уровень индустриальных и атмосферных помех радиоприему в ДМ и СМ диапазонах низкий. Главный недостаток – ограниченное расстояние передачи и высокая степень зависимости от коммуникационной инфраструктуры – сети ретрансляторов.


Как правило на передающих станциях размещается большой комплекс передающих устройств, находящихся в едином техническом здании. Они применяют общие источники электроэнергии, антенны и их опоры. На каждом объекте создается несколько стволов связи, что позволяет значительно повысить пропускную способность станции, что позволяет реализовать многоканальную связь.

Спутниковая связь

Данный вид – это следующий этап развития радиорелейной связи. Вместо наземной коммуникационной сети используются спутники, расположенные на околоземных орбитах. Радиосигнал сигнал передается со специализированной станции, находящейся на поверхности планеты на космический аппарат. Здесь он обрабатывается, усиливается и отправляется либо на принимающую наземную станцию, либо на другой спутник, находящийся в радиусе действия. Главным достоинством данного вида связи является возможность передавать информацию в любую точку планеты – независимо от ее местоположения: на суше, в полярных льдах, посреди океана.

Сферы применения

Возможность практически мгновенной передачи информации на любые расстояния создает широкие возможности использования во всех сферах деятельности человека. Радиосвязь успешно применяется в следующих отраслях:

  • Телевизионное и радиовещание;
  • Качественная связь по безопасным линиям востребована в военной отрасли. Позволяет осуществлять управление и координацию боевых подразделений;
  • В области транспорта – обеспечивается постоянная связь с поездами, морскими и речными судами, самолетами, грузовыми и легковыми автомобилям (полиция, скорая помощь, такси, курьерские службы);
  • Организация диспетчерских служб;
  • Обеспечение различных видов коммуникации: спутниковая, мобильная связь;
  • Беспроводное подключение к сети Интернет.

Также широкие возможности коммуникации являются неотъемлемым инструментом практически любого современного бизнеса. При помощи беспроводной связи можно успешно решать вопросы управления удаленными объектами.

Алгоритмы кодирования и декодирования, методики защиты информации

У силовых ведомств, частных служб охраны и безопасности, а также других организаций возникает необходимость защитить данные от несанкционированного доступа. Применяется два основных метода: дискретизация с шифрованием, а также аналоговое скремблирование.


В целом же существует два основных подхода к шифрованию речи, передаваемой в цифровом виде:

  • с использованием специального шифратора и дешифратора на передающем и принимающем устройстве, либо за счет программно-аппаратного комплекса;
  • функции шифрования реализуются с помощью устройства модуляции-демодуляции – модема.

В средствах аналогово связи защита данных достигается за счет использования аналоговых скремблеров. Они трансформируют первоначальный звуковой сигнал в неразборчивую смесь звуков, что не позволяет злоумышленникам понять смысл передаваемых данных. Применяются следующие виды преобразования:

  • Частотная инверсия;
  • Разбиение полосы частот на поддиапазоны и их перестановка по частоте или инверсия;
  • Разбиение речи на сегменты и их перестановка по времени.

Частоты и каналы

Классификация радиоволн подразумевает разделение на 8 типов по длине и частоте:

  • ОНЧ (они же СДВ) – 3-30 кГц (100-10 км);
  • НЧ (они же ДВ) – 30-300 кГц (10-1 км);
  • СЧ (они же СЧ) – 300-3 МГц (1 км-100 м);
  • ВЧ (КВ) – 3-30 МГц (10-100 м);
  • ОВЧ (МВ) – 30-300 МГц;
  • УВЧ (ДМВ) – 300 МГц-3 ГГц;
  • СВЧ (СМВ) – 3-30 ГГц;
  • КВЧ (ММВ) – 30-300 ГГц.

Для переговоров в РФ разрешены следующие диапазоны частот:

  • CB, 26-27 МГц;
  • LPD, 433-434 МГц;
  • PMR, 446 МГц;
  • И 144-146 МГц – для лицензированных радиооператоров.

Остальные диапазоны законодательно запрещены к использованию. Они выделяются для служебных нужд различных ведомств и их использование может повлечь за собой административное или уголовное наказание – в зависимости от тяжести последствий несанкционированного вмешательства.

Для удобства общения, чтобы максимально упростить использование радиосвязи, были выделены определенные частоты. Они были пронумерованы так, что их стало не сложно запомнить и настроить. Эти номера и называют – каналы радиосвязи. Во многих простейших моделях раций нет ни клавиатуры, ни ручек настройки для установки произвольной частоты – только кнопки позволяющие переключать каналы. Таким образом рацией может пользоваться любой человек и ему не нужно знать что такое частоты, LPD или PMR, достаточно перещелкнуть рацию на заданный канал и успешно ею пользоваться.

Следует помнить, что рации предназначенные для различных диапазонов частот не могут связаться друг с другом. Аппарат предназначенный для других частот просто не будет работать с сигналом лежащим вне его рабочего диапазона. Узнать какие именно параметры поддерживает устройство можно, если заглянуть в его паспорт. Обычно LPD рация предлагает 69 каналов, а PMR – 8. Также существуют аппараты, которые поддерживают сразу несколько диапазонов.

Связь с помощью радиоволн – один из основных способов обмена информацией в современном мире. Существует большое разнообразие различных методов их применения. Они широко используются для радио и телевещания, для исследования, обеспечения дальней связи, повседневной коммуникации, а также для организации деятельности различных специальных служб: охранных подразделений, полиции, пожарных, медицинской службы. Все типы радиоволн находят себе применение в деятельности человека.

Читайте также: