Как могут быть расположены две прямые ответ кратко

Обновлено: 05.07.2024

Тот случай, когда зал подпевает хором. Две прямые могут:

1) совпадать;

2) быть параллельными: ;

3) или пересекаться в единственной точке: .

Справка: – это математический знак пересечения.

Как определить взаимное расположение двух прямых?

Начнём с первого случая:

Рассмотрим прямые и составим три уравнения из соответствующих коэффициентов: . Из каждого уравнения следует, что , следовательно, данные прямые совпадают.

Второй случай, когда прямые параллельны:

2) Две прямые параллельны тогда и только тогда, когда их коэффициенты при переменных и пропорциональны: , но

В качестве примера рассмотрим прямые . Сначала проверяем пропорциональность соответствующих коэффициентов при переменных :

Однако совершенно очевидно, что .

Вывод:

И третий случай, когда прямые пересекаются:

Так, оставим систему для прямых :

Из первого уравнения следует, что , а из второго уравнения: , значит, система несовместна (нет решений). Таким образом, коэффициенты при переменных не пропорциональны.

Вывод: прямые пересекаются

Задача 74

Выяснить взаимное расположение прямых:

Решение основано на исследовании направляющих векторов прямых:

а) Из уравнений найдём направляющие векторы прямых: .

Вычислим определитель, составленный из координат данных векторов:
, значит, векторы не коллинеарны и прямые пересекаются.

Вопрос: всё ли вам понятно? Если нет, то используйте три ссылки выше. Ну а остальные перепрыгивают камень и следуют дальше, прямо к Кащею Бессмертному =)

б) Найдем направляющие векторы прямых :
– прямые имеют один и тот же направляющий вектор, значит, они либо параллельны, либо совпадают (тут и определитель считать не надо).

Очевидно, что коэффициенты при переменных пропорциональны и .

Выясним, справедливо ли равенство :

в) Найдем направляющие векторы прямых :

Вычислим определитель, составленный из координат данных векторов:
, следовательно, направляющие векторы коллинеарны и прямые либо параллельны, либо совпадают.

Теперь выясним, справедливо ли равенство . Оба свободных члена нулевые, поэтому:

Полученное значение удовлетворяет данному уравнению (ему удовлетворяет вообще любое число).

Таким образом, прямые совпадают.

Ответ:

Очень скоро вы научитесь (или даже уже научились) решать рассмотренную задачу устно и буквально в считанные секунды – присмотрелись к уравнениям, и всё понятно.

Как известно из курса планиметрии, две прямые в плоскости могут пересекаться (имеют общую точку) или быть параллельными (не имеют общую точку).
В пространстве мы можем найти множество примеров ситуаций, когда две прямые не пересекаются, но они и не параллельны.

Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся (не лежат в одной плоскости).

Доказательство
Рассмотрим прямую \(AB\), лежащую в плоскости, и прямую \(CD\), которая пересекает плоскoсть в точке \(D\), не лежащей на прямой \(AB\).

Taisnes_plaknes1.jpg

1. Допустим, что прямые \(AB\) и \(CD\) всё-таки лежат в одной плоскости.
2. Значит, эта плоскость идёт через прямую \(AB\) и точку \(D\), то есть, она совпадает с плоскостью \(α\).
3. Это противоречит условиям теоремы, по которым прямая \(CD\) не находится в плоскости \(α\), а пересекает её.
Теорема доказана.

Paralelas.jpg

В пространстве прямые могут пересекаться, скрещиваться или быть параллельными.


Рис. \(4\). Пересекающиеся прямые.

Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна.

Taisnes_plaknes2.jpg

Доказательство
Рассмотрим скрещивающиеся прямые \(AB\) и \(CD\).

1. Через точку \(D\) можно провести прямую \(DE\), параллельную \(AB\).
2. Через пересекающиеся прямые \(CD\) и \(DE\) можно провести плоскость \(α\).
3. Так как прямая \(AB\) не лежит в этой плоскости и параллельна прямой \(DE\), то она параллельна плоскости.

4. Эта плоскость единственная, так как любая другая плоскость, проходящая через \(CD\), будет пересекаться с \(DE\) и \(AB\), которая ей параллельна.
Теорема доказана.

1. Если прямые параллельны, то угол между ними — 0 ° .
2. Углом между двумя пересекающимися прямыми называют величину меньшего из углов, образованных этими прямыми. Если все углы равны, то эти прямые перпендикулярны (образуют угол 90 ° ).
3. Углом между двумя скрещивающимися прямыми называют угол между двумя пересекающимися прямыми, соответственно параллельными данным скрещивающимся прямым.

Провести соответственные прямые, параллельные данным скрещивающимся прямым, можно через любую точку. Иногда удобно выбрать эту точку на одной из данных скрещивающихся прямых и провести через эту точку прямую, параллельную другой из скрещивающихся прямых.

Во-первых, две прямые на плоскости могут совпадать.

Это возможно в том случае, когда прямые имеют по крайней мере две общие точки. Действительно, в силу аксиомы, озвученной в предыдущем пункте, через две точки проходит единственная прямая. Иными словами, если через две заданные точки проходят две прямые, то они совпадают.

Во-вторых, две прямые на плоскости могут пересекаться.


В-третьих, две прямые на плоскости могут быть параллельными.


Две прямые на плоскости называются параллельными, если они не имеют общих точек. Если прямая a параллельна прямой b, то используют символическое обозначение . Для более полной информации смотрите статью параллельные прямые, параллельность прямых.


Прямую линию на плоскости с практической точки зрения удобно рассматривать вместе с векторами. Особое значение имеют ненулевые векторы, лежащие на данной прямой или на любой из параллельных прямых, их называют направляющими векторами прямой. В статье направляющий вектор прямой на плоскости даны примеры направляющих векторов и показаны варианты их использования при решении задач.


Также следует обратить внимание на ненулевые векторы, лежащие на любой из прямых, перпендикулярных данной. Такие векторы называют нормальными векторами прямой. О применении нормальных векторов прямой рассказано в статье нормальный вектор прямой на плоскости.


Когда на плоскости даны три и более прямых линии, то возникает множество различных вариантов их взаимного расположения. Все прямые могут быть параллельными, в противном случае некоторые или все из них пересекаются. При этом все прямые могут пересекаться в единственной точке (смотрите статью пучок прямых), а могут иметь различные точки пересечения.

Не будем подробно останавливаться на этом, а приведем без доказательства несколько примечательных и очень часто используемых фактов:

-если две прямые параллельны третьей прямой, то они параллельны между собой;

-если две прямые перпендикулярны третьей прямой, то они параллельны между собой;

-если на плоскости некоторая прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую прямую.


Взаимное расположение прямых на плоскости.

Во-первых, две прямые на плоскости могут совпадать.

Это возможно в том случае, когда прямые имеют по крайней мере две общие точки. Действительно, в силу аксиомы, озвученной в предыдущем пункте, через две точки проходит единственная прямая. Иными словами, если через две заданные точки проходят две прямые, то они совпадают.

Во-вторых, две прямые на плоскости могут пересекаться.


В-третьих, две прямые на плоскости могут быть параллельными.


Две прямые на плоскости называются параллельными, если они не имеют общих точек. Если прямая a параллельна прямой b, то используют символическое обозначение . Для более полной информации смотрите статью параллельные прямые, параллельность прямых.





Прямую линию на плоскости с практической точки зрения удобно рассматривать вместе с векторами. Особое значение имеют ненулевые векторы, лежащие на данной прямой или на любой из параллельных прямых, их называют направляющими векторами прямой. В статье направляющий вектор прямой на плоскости даны примеры направляющих векторов и показаны варианты их использования при решении задач.


Также следует обратить внимание на ненулевые векторы, лежащие на любой из прямых, перпендикулярных данной. Такие векторы называют нормальными векторами прямой. О применении нормальных векторов прямой рассказано в статье нормальный вектор прямой на плоскости.


Когда на плоскости даны три и более прямых линии, то возникает множество различных вариантов их взаимного расположения. Все прямые могут быть параллельными, в противном случае некоторые или все из них пересекаются. При этом все прямые могут пересекаться в единственной точке (смотрите статью пучок прямых), а могут иметь различные точки пересечения.

Не будем подробно останавливаться на этом, а приведем без доказательства несколько примечательных и очень часто используемых фактов:

-если две прямые параллельны третьей прямой, то они параллельны между собой;

-если две прямые перпендикулярны третьей прямой, то они параллельны между собой;

-если на плоскости некоторая прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую прямую.

Статья рассказывает о взаимном расположении линий в пространстве. Будут рассмотрены основные способы задания прямой с приведением примеров и наглядных рисунков.

Прямая в пространстве – понятие

Раздел о прямой на плоскости дает представление о течки и прямой. Расположение прямой в пространстве аналогично. Если мысленно отметить две точки и провести линию, соединив их, получим прямую, уходящую в бесконечность.

Точки, прямые и отрезки в пространстве обозначаются аналогично расположению в плоскости.

Если прямая располагается на плоскости в пространстве, тогда это можно подкрепить аксиомами:

  • через две точки можно провести единственную прямую;
  • если две точки прямой лежат в плоскости, то все остальные точки, расположенные на прямой принадлежат плоскости.

Имеет место аксиома, благодаря которой можно рассматривать прямую в пространстве в качестве двух пересеченных плоскостей:

Если две плоскости имеют общую точку, тогда имеют общую прямую, на которой лежат все общие точки этих плоскостей. Показано на рисунке, приведенном ниже.

Взаимное расположение прямых в пространстве

Прямые в пространстве могут совпадать, в таком случае они будут иметь большое количество общих точек или хотя бы 2 .

Две прямые, расположенные в пространстве, могут пересекаться в случае наличия одной общей точки.

Данный случай говорит о том, что прямые располагаются на плоскости трехмерного пространства. Когда прямые, расположенные в пространстве, пересекаются, то переходим к определению угла между пересекающимися прямыми.

Две прямые пространства параллельны в том случае, если расположены в одной плоскости без общих точек.

Рассмотрим ниже расположение параллельных прямых.

После рассмотрения определения параллельных прямых, расположенных в пространстве, необходимо добавить о направляющих векторах прямой.

Ненулевой вектор, который располагается на прямой или на параллельной ему прямой, называют направляющим вектором данной прямой.

Если по условию дана линия в пространстве, то он используется для решения задач.

Две прямые пространства могут быть скрещивающимися.

Две прямые называют скрещивающимися, при условии, что они лежат в одной плоскости.

Это тесно связано с определением угла между скрещивающимися прямыми.

Особым случаем считается пересечение или скрещивание прямых под прямым углом в пространстве. Их называют перпендикулярными. Рассмотрим на рисунке.

Способы задания прямой в пространстве

Для того, чтобы расположить прямую в пространстве, существует несколько методов.

Из аксиомы для двух точек плоскости имеем, что через них может быть задана единственная прямая. При расположении двух точек в пространстве также задается только одна прямая, проходящая через них.

При прямоугольной системе координат прямая задается с помощью координат точек, которые располагаются в трехмерном пространстве. Это и позволяет составить уравнение прямой, проходящей через две заданные точки.

Еще один способ задания прямой – это теорема. Через любую точку пространства, не лежащую на данной прямой, может проходить прямая, параллельная данной, причем только одна.

Отсюда следует, что при задавании прямой и точки, не лежащей на ней, сможем определить прямую, которая параллельна заданной и проходит через указанную точку.

Есть способ, когда можно указать точку, направляющий вектор и прямую, которая проходит через нее. При задании прямой относительно прямоугольной систему координат, можно говорить о канонических и параметрических уравнениях прямой в пространстве.

Немаловажный способ задания прямой – это способ, основанный на аксиоме: если две плоскости имеют общую точку, тогда имеют общую прямую, где располагаются общие точки заданных плоскостей. При задании двух пересекающихся плоскостей можно определить прямую пространства.

Если задана плоскость и нележащая в ней точка, тогда существует прямая, проходящая через нее и перпендикулярная заданной плоскости, причем только одна. Этот способ задания базируется на теореме. Получаем, что для определения прямой достаточно задать плоскость, перпендикулярную ей, с точкой, через которую проходит заданная прямая.

В случае, если прямая задается относительно введенной прямоугольной системы координат, то следует укрепить знания из статьиуравнения прямой, проходящей через заданную точку перпендикулярно в заданной плоскости.Рассмотрим задание прямой, используя точку, через которую она пройдет, и плоскости, которая располагается перпендикулярно относительно заданной прямой.

Читайте также: