Как меняется состав атмосферного воздуха с высотой кратко

Обновлено: 06.07.2024

(состав, строение, общая циркуляция и прогноз погоды)

1. Атмосфера – безбрежный воздушный океан планеты Земля

2. Состав атмосферы

В газовый состав атмосферы входят, главным образом, азот (≈78%) и кислород (≈21%). Доля остальных газов (углекислый газ, аргон, неон, радон, гелий, криптон, водород, метан, закись азота и озон) составляют примерно 1%. Есть еще газы техногенного происхождения (фреон).

Важную роль играют взвешенные частицы (пыль, капли воды, кристаллы льда и другие, называемые аэрозолями). Они попадают в атмосферу как естественным путем (выветривание), так и в результате деятельности человека.

В последние 100 лет под влиянием хозяйственной деятельности человека произошло изменение в химической составе атмосферы: увеличились выбросы парниковых газов – углекислого газа, метана, закиси азота и др. Особенно велики выбросы промышленно развитых стран. Дело в том, что установлена корреляционная связь между содержанием в атмосфере этих газов (особенно СО2) и увеличением температуры приземного воздуха. Поэтому в мировом сообществе делаются попытки принять соглашения об ограничении выбросов парниковых газов. Промышленные аэрозоли загрязняют атмосферный воздух вредными примесями, т.к. различные химические элементы интенсивно поглощаются при дыхании.

Газы, входящие в состав атмосферы имеют определенную плотность и поэтому оказывают на каждый кв.см земной поверхности давление, равное массе воздуха. Поэтому воздух постоянно движется, это давление часто изменяется, и человек физически (особенно метеочувствительный) ощущает на себе изменение давления (погоды). Благодаря сжижаемости воздуха, изменение (понижение) давления с высотой происходит неравномерно. Так, в слое до высоты 5 км находится примерно половина массы атмосферы, а до высоты 10 км – около ¾. Из-за уменьшения плотности воздуха с высотой у атмосферы нет четкой верхней границы, и она постоянно переходит в межпланетное пространство.

3. Строение атмосферы

Атмосфера термически расслоена как по вертикали, так и по горизонтали.

Основные слои атмосферы по вертикали общеизвестные (тропосфера, стратосфера, мезосфера и термосфера).

Тропосфера формируется благодаря нагреву солнечными лучами поверхности Земли, от которой и нагревается воздух, подобно нагреву воды в кастрюле от электрической плиты. В тех местах, где воздух нагревается больше, он расширяется, становится легче окружающего воздуха и поднимается вверх, и на его место опускается более холодный. Такое круговое (по вертикали) движение воздуха получило название конвекции. Именно благодаря конвекции, температура воздуха в тропосфере падает примерно на 0,65°С на каждые 100 м высоты. На экваторе Земля получает гораздо больше тепла, чем на полюсах, поэтому теплый воздух над экватором постоянно поднимается, а на его место приходит более холодный с севера и с юга. Поэтому над экватором тропосфера всегда более мощная, чем над полюсами.

Когда-то ученые полагали, что тропосфера (тонкий слой перехода от тропосферы к более высокому слою - стратосфере) опоясывает тропосферу сплошным слоем, постоянно понижаясь от экватора к полюсам. Однако оказалось, что тропосфера в значительной степени расслоена по горизонтали, и между этими слоями тропосфера подвержена разрывам. Вдоль таких разрывов создаются большие контрасты температуры, и образуются струйные течения (скорость ветра >30 м/с или >100 км/ч). Толщина струйных течений составляет часто несколько километров и длина – тысячи километров. Они опоясывают почти весь земной шар.

Выше тропосферы, до высоты 50 км, расположена стратосфера. В ней имеется еще одна поверхность нагрева – слой озона. Озон концентрируется в слое 15-25 км и поглощает ультрафиолетовое излучение Солнца, поэтому температура в стратосфере вначале остается почти постоянной, а затем даже повышается. Поглощая ультрафиолетовое излучение, озоновый слой не только нагревает стратосферу, но и защищает людей и животных от ее вредоносного воздействия (оно вызывает тяжелые заболевания). В стратосфере из-за отсутствия конвекции и сильных вертикальных движений нет облаков, и всегда светит солнце. Нет и опасных явлений погоды, поэтому самолеты предпочитают летать в стратосфере.

Выше стратосферы расположены мезосфера и термосфера – слои почти не оказывающие влияния на погоду из-за небольшой массы воздуха, содержащегося в них.

4. Глобальное, региональное и локальное расслоение тропосферы

Глобальное расслоение тропосферы по горизонтали связано с неравномерностью притока тепла по долготам. Различают тропический воздух, субтропический воздух и полярный (умеренных широт и арктический). Внутри этих глобальных воздушных масс приток тепла также неравномерен, поскольку суша (континенты) нагревается быстрее, чем океан. Морские воздушные массы летом холоднее, чем континентальные, а зимой, наоборот, теплее.

На границах воздушных масс с разными характеристиками возникают атмосферные фронты – поверхности раздела. Фронты между глобальными воздушными массами обычно называют главными фронтами или климатическими (тропический, полярный), а более мелкими – просто атмосферными фронтами. При больших контрастах метеовеличин, главным образом, температуры воздуха, на фронтах зарождаются вихри с вертикальной осью – циклоны и антициклоны, которые, в конце концов, сглаживают контрасты и приводят к однородному распределению температуры между воздушными массами.

5. Западно-восточный перекос

Выше уже говорилось, что различия в нагреве тропиков и полюсов способствуют перекосу воздуха в тропосфере на север, а в нижнем слое - на юг. Вращение Земли усложняет это движение. Вследствие того, что Земля – это шар, в каждом месте к северу или к югу от экватора линейная скорость меньше, чем на экваторе. На полюсах она вообще отсутствует. Благодаря инерции возникает, так называемая, сила Кариолиса, которая отклоняет ветер вправо от основного движения. В конечном итоге западные ветры значительно превышают восточные, и в целом атмосфера вращается вокруг полярной оси быстрее Земли.

6. Общая циркуляция атмосферы

Совокупность основных воздушных течений в атмосфере называют общей циркуляцией. Важнейшими ее звеньями являются зональный и меридиональный перекосы в тропосфере, муссоны, пассаты, циклическая деятельность, струйные течения, центры действия атмосферы и др.

Схема простой двумерной циркуляции свое начало берет еще со времен Гадлея (1735 г.). Сам Гадлей знал о некоторых, связанных с нею, противоречиях. Так, например, известную засушливость субтропиков от постарался учесть, введя частичное опускание воздуха, направленного к полюсу в южных широтах. Затем единственная ячейка циркуляции – экватор-полюс была замечена тремя колесами. Феррель заметил, что в средних широтах северного полушария ветры в основном не северо-западные, а юго-западные. Таким образом, в средних широтах появилась обратная ячейка. Появилась классическая теоретическая модель глобальных механизмов самого крупного масштаба.

Современные наблюдения показывают, что воздушные движения осуществляются не в форме замкнутых между экватором и полюсам ячеек циркуляции, а в виде неупорядоченного, турбулентного перемещения крупных воздушных масс в направлении меридиана. Одни воздушные массы, сформировавшиеся в низких широтах, прорываются далеко к полюсу. Другие, возникшие в высоких широтах, приникают далеко в направлении к экватору. Микротурбулентное перемешивание порождает потоки всех физических величин, стремящихся выровнять их градиенты.

7. Погода и погодные системы

Погодой принято называть состояние атмосферы, оказывающее воздействие на жизнь и деятельность людей. Оценить это состояние в заданной точке можно путем измерения метеорологических величин (температуры воздуха, атмосферного давления, ветра и др.), а также наличием или отсутствием явлений погоды (дождь, снегопад, гроза и др.).

Причиной изменчивости погоды является перемещение воздушных масс, формирование атмосферных вихрей (циклонов, антициклонов), также перемещающихся под влиянием общей циркуляции атмосферы. Циклоны бывают фронтальные, формирующиеся на атмосферных фронтах в умеренных широтах, и нефронтальные или тропические. Явления погоды и погодные системы отличаются друг от друга своими масштабами, а также степенью опасности для человеческой деятельности. Некоторые явления (смерч, бора) по масштабу невелики, но разрушительная сила их огромна.

В настоящее время установлено, что возникновение любого опасного явления связано с глобальными, региональными и локальными атмосферными процессами, а также местными воздействиями (рельефом и особенностями подстилающей поверхности).

8. Прогноз погоды

Еще в конце XVIII века были сформулированы основные законы движения воздуха, необходимые для описания атмосферных процессов. В конце XIX века была высказана идея предвычисления погоды с помощью уравнений гидротермодинамики на основе анализа первоначального состояния атмосферы. Эта идея впервые была осуществлена Л.Ричардсоном в 1922 году, но его расчеты доказали бесперспективность такого подхода, прежде всего, из-за необходимости огромного объема вычислений. По подсчетам Ричардсона даже для получения одного прогноза на сутки требовалось 64 000 человек!

Вследствие такой бесперспективности развитие прогностической метеорологии пошло по пути создания физических и статистических моделей, описывающих структуру и эволюцию погодных систем и определения закономерностей в общей циркуляции атмосферы. Развивать численные модели атмосферы стало возможным только после появления ЭВМ.

9. Международные метеорологические центры

Крупные метеорологические центры, оснащенные мощной вычислительной техникой, ежедневно на основе глобальных моделей общей циркуляции атмосферы производят расчет на 5-7 суток полей давления, высот изобарических поверхностей, полей ветра и температуры и другой продукции и автоматически, в кодированном виде, распространяют ее в оперативные прогностические организации.

10. Функции автоматизированной технологии численного прогноза

Оперативные технологические системы численного прогноза зависят от особенностей разработанных моделей, их сложности, информационного и программного обеспечения, а также конфигурации и мощности вычислительной техники. В связи с этим, в каждом метеорологическом центре имеются отличия в технологии выпуска прогнозов. Вместе с тем, в любой автоматизированной оперативной системе численного прогноза можно выделить функции, свойственные всем существующим системам.

К этим функциям относятся:

- сбор данных наблюдений с распознаванием метеорологических сводок и архивацией;

- подготовку базы данных, обеспечивающую декодирование сводок, контроль их качества, подготовку форматов данных для их анализа;

- усвоение данных, их объективный анализ и инициализацию;

- прогноз с помощью гидродинамической модели (решение уравнений, учет неадиабатических процессов);

- заключительную обработку выходных данных модели.

В численных моделях метеорологические величины для расчетов, как правило, представляются в точках регулярной сетки. При этом атмосфера подразделяется на серию слоев, число которых может быть различным, но обычно около 30.

Многие процессы, особенно в пограничном слое имеют мелкий масштаб, меньше шага сетки модели. Поэтому их необходимо определять на основе усредненных по территории величин, рассчитываемых по модели. Эта процедура получила название параметризации физических процессов. Современные численные модели, как правило, включают в себя параметризацию следующих характеристик и процессов:

- состояние планетарного пограничного слоя;

- основные характеристики подстилающей поверхности (орография, распределение температуры поверхности моря, распределение морского льда, альбедо и др.);

- разрушение гравитационных волн;

11. Глобальные системы наблюдения и телесвязи

В целях получения надежных данных о метеорологических величинах и явлениях погоды, которые можно использовать для обеспечения оперативной деятельности, а также для изучения атмосферы и подготовки прогнозов, существует государственная сеть гидрометеорологических станций, на которых проводятся инструментальные и визуальные наблюдения по стандартным практикам и процедурам, принятым Всемирной метеорологической организацией.

Государственная сеть любой страны входит в Глобальную систему наблюдений Всемирной метеорологической организации (ВМО), которая существует и развивается уже более 100 лет. Сейчас она стала не только глобальной, но и комплексной.

Метеорологические спутники, принадлежащие теперь уже многим странам, отслеживают явления погоды, изменения в растительном покрове, пространственное распределение льда и снега, водяного пара, измеряют температуру и ветер. Наземная подсистема наблюдений, кроме метеорологических станций, получила новые средства непрерывного слежения за погодой – метеорологические радиолокаторы, морские буи, автоматизированные устройства для измерения температуры и ветра на рейсовых самолетах, профилемеры и др. Современная технология, а также Интернет позволяют обеспечивать более быстрое распространение данных наблюдений, прогнозов и предупреждений по глобальной системе телесвязи.

12. Прогноз локальной погоды

Важно отметить, что прогресс в численном моделировании относится, главным образом, к крупномасштабным погодным системам. Прогнозы локальной погоды все еще связаны с некоторой неопределенностью в отношении конкретного местоположения, времени и интенсивности метеорологических явлений.

Поэтому локальные прогнозы составляются на основе результатов численного моделирования, но с использованием синоптического анализа карт погоды, различных физико-статистических методик прогноза, а также новых средств наблюдений за погодой.

Наиболее значимыми новыми средствами наблюдений являются искусственные спутники Земли (ИСЗ) и метеорологические радиолокаторы (МРЛ). Используются также местные признаки и климатические данные.

13. Анализ данных и ИСЗ

Со спутников поступает значительное количество информации, и ее анализ является неотъемлемой частью любых методик прогноза. Спутниковые данные позволяют следить за перемещением и развитием фронтальных систем, скоплений облаков, зон тумана, за подветренными волнами и другими опасными явлениями.

Существует два типа спутников, формирующих космическую подсистему наблюдений, - полярно-орбитальные и геостационарные.

Полярно-орбитальные спутники совершают оборот вокруг земного шара примерно за 100 мин. на высоте около 800 км. Они проходят над одним и тем же пунктом у поверхности Земли лишь два раза в сутки, но охватывают экваториальные и полярные районы с одинаковым разрешением.

Геостационарные спутники висят над одной и той же точкой на высоте 36 000 км и каждые 30 мин. передают обновленные изображения. Недостаток их заключается в том, что они дают искаженное изображение районов, находящихся к северу и к югу от субтропиков. Эти спутники часто используются в качестве ретранслятора для сбора и передачи данных наблюдений.

Спутники обеспечивают получение изображений облачности в видимом (0,4-1,1 мкм) и инфракрасном диапазонах. Комплексное рассмотрение двух типов снимков позволяет получить трехмерную структуру облаков. По спутниковым снимкам удается воссоздать общую картину пространственного распределения облачности и по ее характерным структурным особенностям определить довольно большое количество возмущений различного масштаба.

14. Анализ данных с МРЛ

С конца 70-х годов прошлого столетия для расширения зоны охвата используются сети радиолокаторов с автоматизированной обработкой данных на компьютерах. Такие системы позволяют создавать составные цветные изображения по результатам наблюдений, поступающим от нескольких радиолокаторов, а также объединять радиолокационные данные с информацией других типов, например, со спутниковой.

15. Автоматизированное рабочее место прогнозиста

Автоматизация прогноза погоды часто воспринимается как средство замены человека в деятельности ОПО. Однако опыт показывает, что машина и человек вместе могут достигнуть гораздо лучших результатов, чем каждый в отдельности. Роль человека в современных технологиях прогнозирования зависит от типа прогностического центра и объема выпускаемой им прогностической продукции. В крупном метеорологическом центре, каким, например, является Гидрометцентр России, выполняется весь технологический цикл оперативной подготовки прогнозов, начиная от численного прогноза на суперЭВМ и заканчивая подготовкой специализированных прогнозов с использованием автоматизированного рабочего места синоптика. В небольших ОПО, в которых основная часть информации приходит из более крупных метеорологических центров, основная задача сводится к мониторингу погоды, обработке и анализу данных и интерпретации имеющейся прогностической продукции, т.е. составлению прогнозов. При этом очень важно иметь автоматизированный доступ прогнозиста к информационной базе данных для более широкого его использования при составлении прогноза погоды.

Использование вычислительных возможностей персональных ЭВМ и доступ к информационной продукции и, в частности, выходных данных моделей, способствует:

- более правильному диагнозу физических процессов, определяющих развитие метеорологических явлений;

- пониманию сильных и слабых сторон численных прогнозов;

- концентрации внимания на более важных процессах;

- комплексному использованию данных наблюдений и численной продукции.

16. Специализированные прогнозы погоды

Из специализированных прогнозов погоды наиболее широко применяются прогнозы погоды для авиации и для морских отраслей. Метеорологи и авиаторы, как на национальном, так и на международном уровнях совместно разрабатывают регламентирующие документы, определяющие порядок и форму метеорологического обеспечения и оценки прогнозов.

Морское гидрометеорологическое обслуживание выполняет две основные функции:

- обеспечение различных видов деятельности в прибрежных районах;

- обеспечение международного мореплавания, рыбного промысла и прочих видов деятельности в открытых океанических районах.

Некоторые прогнозы не относятся напрямую к категории метеорологических, но используют в качестве основы метеорологические прогнозы. Так, прогноз перемещения и эволюции вредных выбросов в атмосферу базируется на прогнозе траекторий перемещения воздуха, предвычисленных по моделям общей циркуляции атмосферы. Рекомендованные курсы для морских судов определяются на основе прогноза поля давления у поверхности земли. Планирование полетов воздушных судов осуществляется по прогнозам ветра на высотах.

17. Долгосрочные прогнозы погоды и климата

Современное прогнозирование глобальной динамики климата осуществляется путем проведения численных экспериментов на климатических моделях общей циркуляции атмосферы и океана (МОЦАО). Более сложные модели используют активные химические и биологические связи. Сравнение результатов моделирования с историческими данными показало, что они способны адекватно отображать крупномасштабную годовую цикличность. Благодаря этим моделям появилась уверенность, что глобальные изменения климата связаны с деятельностью человека (выбросами парниковых газов). Нужно иметь в виду, что сейчас предсказуемые результаты нельзя рассматривать как прогноз на каждый конкретный год. Тем не менее они дают физически согласованную картину будущих изменений климата и их роль в его предсказании будет возрастать!

Всем известный факт, что атмосфера меняется с высотой, чем выше, тем другой состав атмосферного воздуха можно наблюдать. Принято считать в глобальном плане, что состав атмосферы очень слабо меняется до высоты в 100 километров. Это в глобальном понимании так и есть, но если смотреть детально, то уже на высоте 5 километров есть заметные изменения. Так с высотой плотность кислорода в атмосфере становится значительно ниже, примерно в два раза, это очень сильно ощущается. Люди, которые поднимаются на такую высоту, используют кислородные маски. С высотой плотность воздуха еще больше меняется.

Процентное содержание составных частей сухого воздуха в нескольких нижних десятках километров (до 100-120 км) с высотой почти не меняется. Воздух, находящийся в постоянном движении, хорошо перемешивается по вертикали, и атмосферные газы не расслаиваются по плотности, как это было бы в условиях спокойной атмосферы (где доля более легких газов должна была бы возрастать с высотой). Однако выше 100 км такое расслоение газов по плотности начинается и постепенно увеличивается с высотой. Примерно до высоты 200 км преобладающим газом атмосферы все-таки остается азот. Выше начинает преобладать кислород, причем кислород в атомарном состоянии: под действием ультрафиолетовой радиации Солнца его двухатомные молекулы разлагаются на заряженные атомы. Выше 1000 км атмосфера состоит главным образом из гелия и водорода, причем водород - также в атомарном состоянии, т. е. в виде заряженных атомов, - преобладает. Процентное содержание водяного пара в воздухе меняется с высотой. Водяной пар постоянно поступает в атмосферу снизу, а распространяясь вверх конденсируется, сгущается. Поэтому упругость и плотность водяного пара убывают с высотой быстрее, чем упругость и плотность остальных газов воздуха. На высоте 5 км упругость водяного пара и, следовательно, его содержание в воздухе в десять раз меньше, чем у земной поверхности, а на высоте 8 км - в сто раз меньше. Таким образом, выше 10-15 км содержание водяного пара в воздухе ничтожно мало.

. . Просветленный (34516) атмосферой принято считать ту область вокруг Земли, в которой газовая среда вращается вместе с Землёй как единое целое, при таком определении атмосфера переходит в межпланетное пространство постепенно, в экзосфере, начинающейся на высоте около 1000 км от поверхности Земли, граница атмосферы также может условно проводиться по высоте в 1300 км


Её верхняя граница находится на высоте 8—10 км в полярных, 10—12 км в умеренных и 16—18 км в тропических широтах; зимой ниже, чем летом. Нижний, основной слой атмосферы содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция, возникают облака, развиваются циклоны и антициклоны. Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 м

Тропопауза

Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11—25 км (нижний слой стратосферы) и повышение её в слое 25—40 км от −56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.

Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).

Мезосфера

Мезосфера начинается на высоте 50 км и простирается до 80—90 км. Температура с высотой понижается со средним вертикальным градиентом (0,25—0,3)°/100 м. Основным энергетическим процессом является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов, колебательно возбуждённых молекул и т. д. обусловливают свечение атмосферы.

Мезопауза

Переходный слой между мезосферой и термосферой. В вертикальном распределении температуры имеет место минимум (около —90 °C).

Линия Кармана

Высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом. Линия Кармана находится на высоте 100 км над уровнем моря.

Граница атмосферы Земли

Принято считать, что граница атмосферы Земли и ионосферы находится на высоте 118 километров. Это показывает анализ параметров движения высокоэнергетических частиц, перемещающихся в атмосфере и ионосфере.

Термосфера

Термопауза

Область атмосферы прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.

Экзосфера (сфера рассеяния)

Экзосфера — зона рассеяния, внешняя часть термосферы, расположенная выше 700 км. Газ в экзосфере сильно разрежен, и отсюда идёт утечка его частиц в межпланетное пространство (диссипация).

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200—250 км соответствует температуре ~150 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000—3500 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разреженных пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы — около 20 %; масса мезосферы — не более 0,3 %, термосферы — менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000—3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу. Гетеросфера — это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера. Граница между этими слоями называется турбопаузой, она лежит на высоте около 120 км.

Читайте также: