Как люди используют тепловую энергию недр земли технология 6 класс кратко

Обновлено: 05.07.2024


Тепловая энергия относится к энергии, которой обладает объект в результате движения частиц внутри объекта. Это внутренняя кинетическая энергия объекта, которая исходит от случайных движений молекул и атомов объекта.

В то время как молекулы и атомы, составляющие материю, постоянно движутся, когда объект нагревается, повышение температуры заставляет эти частицы двигаться быстрее и сталкиваться друг с другом. Чем быстрее движутся эти частицы, тем выше тепловая энергия объекта.

Она может быть записана математически как произведение постоянной Больцмана (k B) и абсолютной температуры (T).

Тепловая энергия = k B T

Термин "тепловая энергия" может также применяться к количеству передаваемого тепла или энергии, переносимой тепловым потоком.

Тепловая энергия (или термическая энергия) может передаваться от одного тела другому через три процесса -

  • Проводимость: это наиболее распространенная форма теплопередачи, которая происходит через физический контакт: передача внутренней энергии за счет микроскопических столкновений частиц и движения электронов внутри тела. : представляет собой передачу тепла из одной области в другую в результате движения жидкостей, например, жидкостей и газов.
  • Излучение - это передача энергии в виде частиц или волн через пространство или среду. Чем горячее объект, тем больше он будет излучать тепловой энергии.

Чтобы лучше объяснить это явление, мы собрали некоторые из лучших примеров тепловой энергии, которые вы видите в повседневной жизни.

12. Солнечная энергия


Тип теплопередачи: Излучение

Солнце - это почти идеальная сфера горячей плазмы, которая преобразует водород в гелий посредством миллиардов химических реакций, которые в конечном итоге производят интенсивное количество тепла.

Вместо того, чтобы находиться рядом с Солнцем, тепло излучается вдаль от звезды и в космос. Небольшая часть этой энергии (тепла) достигает Земли в виде света. В основном она содержит инфракрасный, видимый и ультрафиолетовый свет. Передача тепловой энергии таким образом называется тепловым излучением.

В то время как часть тепловой энергии проникает в атмосферу Земли и достигает земли, часть ее блокируется облаками или отражается от других объектов. Солнечный свет, достигающий поверхности Земли, нагревает ее.

По данным Университета Орегона, вся Земля получает в среднем 164 Ватта на квадратный метр в течение суток. Это означает, что вся планета получает 84 тераватта энергии.

11. Тающий лед

Тип теплопередачи: Конвекция

Тепловая энергия всегда течет из регионов с более высокой температурой в регионы с более низкой температурой. Например, когда вы добавляете к напитку кубики льда, тепло переходит из жидкости в кубики льда.

Температура жидкости падает по мере того, как тепло переходит от напитка к льду. Тепло продолжает перемещаться в самую холодную область напитка до тех пор, пока не достигнет равновесия. Потеря тепла приводит к падению температуры напитка.

10. Топливные элементы

Топливный элемент, который принимает водород и кислород в качестве входных данных

Теплопередача: зависит от типа топливного элемента

Топливные элементы - это электрохимические устройства, которые преобразуют химическую энергию топлива и окислителя в электрическую энергию. При работе топливного элемента значительная часть входной энергии используется для выработки электрической энергии, а оставшаяся часть преобразуется в тепловую энергию в зависимости от типа топливного элемента.

Тепло, получаемое в ходе этого процесса, используется для повышения энергоэффективности. Теоретически топливные элементы являются гораздо более энергоэффективными, чем обычные процессы: если отработанное тепло улавливается в когенерационной схеме, эффективность может достигать 90%.

9. Геотермальная энергия

Тип теплопередачи: мантийная конвекция

Геотермальная энергия - это тепло, получаемое в недрах Земли. Оно содержится в жидкостях и породах под земной корой и может быть найдено глубоко в горячей расплавленной породе Земли - магме.

Она образуется в результате радиоактивного распада материалов и непрерывной потери тепла от формирования планеты. Температура и давление на границе ядра и мантии могут достигать более 4000°C и 139 ГПа, в результате чего некоторые породы расплавляются, а твердая мантия ведет себя пластически.

Это приводит к тому, что части мантии конвектируются вверх (так как расплавленная порода легче, чем окружающие твердые породы). Пар и/или вода переносят геотермальную энергию на поверхность планеты, откуда она может быть использована для охлаждения и обогрева, или может быть использована для производства чистого электричества.

8. Тепловая энергия в океане

Тип теплопередачи: Конвекция и Проводимость

На протяжении десятилетий океаны поглощали более 9/10 избыточного тепла атмосферы от выбросов парниковых газов. Согласно исследованию, океан нагревается со скоростью 0,5-1 ватт энергии на квадратный метр в течение последних десяти лет.

Океаны обладают невероятным потенциалом для хранения тепловой энергии. Поскольку их поверхности подвергаются воздействию прямых солнечных лучей в течение длительных периодов времени, существует огромная разница между температурами мелководных и глубоководных морских районов.

Эта разница температур может быть использована для запуска теплового двигателя и выработки электроэнергии. Этот тип преобразования энергии, известный как преобразование тепловой энергии океана, может работать непрерывно и может поддерживать различные побочные отрасли.

7. Солнечная плита

Тип теплопередачи: излучение и проводимость

Солнечная плита - это низкотехнологичное, недорогое устройство, использующее энергию прямых солнечных лучей для нагрева, приготовления или пастеризации напитков и других пищевых материалов. В солнечный день она может достигать температуры до 400°C.

Все солнечные плиты работают по трем основным принципам:

  • Концентрат солнечного света : устройство имеет зеркальную поверхность для концентрации солнечного света в небольшой зоне для приготовления пищи.
  • Преобразование световой энергии в тепловую энергию. Когда свет падает на материал приемника (кастрюлю), он преобразует свет в тепло, и это мы называем проводимостью.
  • Ловушка тепловой энергии : стеклянная крышка изолирует воздух внутри плиты от наружного воздуха, сводя к минимуму конвекцию (потери тепла).

6. Потирая руку

Тип теплопередачи: Проводимость

Когда вы потираете руки, трение превращает механическую энергию в тепловую. Механическая энергия относится к движению ваших рук.

Поскольку трение происходит за счет электромагнитного притяжения между заряженными частицами на двух соприкасающихся поверхностях, трение рук друг о друга приводит к обмену электромагнитной энергией между молекулами наших рук. Это приводит к тепловому возбуждению молекул наших рук, которые в конечном итоге вырабатывают энергию в виде тепла.

5. Тепловой двигатель


Тип теплопередачи: Конвекция

Тепловой двигатель преобразует тепловую энергию в механическую энергию, которую затем можно использовать для выполнения механической работы. Двигатель забирает энергию из тепла (по сравнению с окружающей средой) и превращает ее в движение.

В зависимости от типа двигателя применяются разные процессы, такие как использование энергии ядерных процессов для выработки тепла (уран) или воспламенение топлива в результате сгорания (уголь или бензин). Во всех процессах цель одна и та же: преобразовать тепло в работу.

Ежедневные примеры тепловых двигателей включают паровоз, двигатель внутреннего сгорания и тепловую электростанцию. Все они приводятся в действие расширением нагретых газов.

4. Горящая свеча


Тип теплопередачи: Проводимость, Конвекция, Излучение

Свечи делают свет, производя тепло. Они преобразуют химическую энергию в тепло. Химическая реакция называется сгоранием, при котором воск свечи вступает в реакцию с кислородом на воздухе и образует бесцветный газ, называемый углекислым газом, вместе с небольшим количеством пара.

Пар образуется в синей части пламени, где воск горит чисто с большим количеством кислорода. Но поскольку ни один воск не горит идеально, они также производят немного дыма (аэрозоль) в яркой, желтой части пламени.

На протяжении всего процесса фитиль поглощает воск и горит, чтобы произвести свет и тепловую энергию.

3. Электрические тостеры

Тип теплопередачи: тепловое излучение

Электрический тостер забирает электрическую энергию и очень эффективно преобразует ее в тепло. Он состоит из рядов тонких проволок (нитей), которые расположены достаточно широко друг от друга, чтобы поджарить всю поверхность хлеба.

Когда электричество течет по проводу, энергия передается от одного конца к другому. Эта энергия переносится электронами. На протяжении всего процесса электроны сталкиваются друг с другом и с атомами в металлической проволоке, выделяя тепло. Чем больше электрический ток и чем тоньше провод, тем больше происходит столкновений и выделяется больше тепла.

2. Современные системы отопления дома

Тип теплопередачи: Конвекция

Два распространенных типа отопительных систем, установленных в зданиях, - это системы отопления теплым воздухом и горячей водой. Первая использует тепловую энергию для нагрева воздуха, а затем циркулирует по системе воздуховодов и регистров. Теплый воздух выдувается из воздуховодов и циркулирует по помещениям, вытесняя холодный воздух.

Второй использует тепловую энергию для нагрева воды, а затем прокачивает ее по всему зданию в системе труб и радиаторов. Горячий радиатор излучает тепловую энергию в окружающий воздух. Затем теплый воздух движется по помещениям конвекционными потоками.

1. Процессоры и другие электрические компоненты

Тип теплопередачи: Конвекция и Проводимость

Процессор, графический процессор и система на чипе рассеивают энергию в виде тепла за счет сопротивления в электронных схемах. Графические процессоры в ноутбуках/настольных компьютерах потребляют и рассеивают значительно больше энергии, чем мобильные процессоры из-за их более высокой сложности и скорости.

Для поддержания оптимальной температуры микропроцессоров используются различные типы систем охлаждения. Например, обычная настольная система охлаждения ЦП предназначена для рассеивания до 90 Вт тепла без превышения максимальной температуры соединения для ЦП настольного компьютера.

Тепловая энергия – форма энергии, связанная с движением атомов, молекул или других частиц, из которых состоит тело. Теплота, как и работа является не видом энергии, а только способом её передачи.

Тепловую энергию, получаемую из природных источников или добываемых горючих материалов, называют – первичной тепловой энергией.

Вторичной тепловой энергией – называют такую энергию, которая появляется в результате деятельности людей.

Основная и дополнительная литература по теме урока

  1. Технология. 5 класс: учеб. пособие для общеобразовательных организаций / В. М. Казакевич, Г. В. Пичугина, Г. Ю. Семенова и др.; под ред. В. М. Казакевича. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Все тела состоят из атомов и молекул. Эти частицы находятся в непрерывном беспорядочном движении. Хаотичное движение атомов и молекул выражает то, что данное тело обладает тепловой энергией.

Чем больше скорость атомов и молекул какого-то тела, тем большей тепловой энергией оно обладает.

Первобытные люди добывали огонь трением или высекали его ударами кусков кремния друг о друга. Тем самым они увеличивали скорость движения атомов и молекул до такой величины, что древесина или мох воспламенялись.

В процессе увеличения скорости движения атомов и молекул выделяется тепловая энергия. Эта энергия требуется для обогрева жилищ в холодное время года. Тепловая энергия нужна для приготовления пищи. С помощью этой энергии производится многое из того, в чём нуждаются люди: выплавляют из руды металлы, обжигают посуду из глины, режут и сваривают металлы и пластмассы.

Тепловая энергия бывает природной естественной и вторичной.

Природными естественными источниками тепловой энергии для людей является солнце и нагретые недра Земли. Солнце передаёт энергию своим видимым и невидимым излучением. Разогретые недра Земли выбрасывают на поверхность очень горячую магму, раскалённые газы, кипящие струи воды.

Чаще всего тепловую энергию люди получают в результате сжигания различных видов топлива: древесины, торфа, угля, газа, нефти, нефтепродуктов.

Полученную таким образом тепловую энергию используют для отопления, выпаривания, расплавления, нагревания и других технологических процессов.

Тепловую энергию, получаемую от сжигания всех этих энергетических ресурсов, называют первичной тепловой энергией и она является основной в энергетике всех стран мира.

Вторичной тепловой энергией называют такую энергию, которая появляется в результате деятельности людей. Это нагретые вентиляционные выбросы из домов, тоннелей метро, производственных зданий, тепловых электростанций. Это горящие городские отходы. Вторичную тепловую энергию несут отработавшие горячие пар, вода, газы от промышленных производств, например тепловых электростанций, работающих доменных и мартеновских печей.

Начиная с 50-х годов XX века в качестве источника тепловой энергии используют ядерную энергию. Ядра атомов металла урана при определённых условиях распадаются с выделением очень большого количества тепловой энергии.

Например, при сгорании 1 грамма древесины удаётся получить столько энергии, сколько необходимо для горения лампочки мощностью 100 Ватт в течение 1 минуты. Количества энергии, получаемого при сгорании 1 грамма каменного угля, достаточно для горения лампочки мощностью 100 Ватт в течение 2 минут. А при распаде ядер урана массой 1 грамм уранового топлива выделяется такое количество, которого хватило бы для освещения в течение 1 часа домов и улиц города с шестьюдесятью тысячами жителей. Реакцией деления ядер урана люди научились управлять. В нашей стране и во многих других странах построены атомные электростанции.

Недра Земли таят в себе просто невероятное количество сокровищ в виде полезных ископаемых. Наряду с нефтью, газом, углем, всевозможными металлами и драгоценными камнями имеется еще и геотермальная энергия. Это тепло самой планеты, которое можно использовать очень выгодно.

Что это такое – геотермальная энергия

В некоторых местах Земли это несметное богатство находится достаточно близко от поверхности – так, что геотермальную энергию можно извлечь, это производится тепловыми насосами, по трубам, проложенным под землей. Ее используют для многих целей.

Виды геотермальной энергии

В зависимости от того, что является источниками геотермальной энергии, она подразделяется на виды:

  1. Петротермальная. Источник – горные породы. Чаще применяют энергию из неглубоких, до 1 км, скважин. Принцип действия – скважинные теплообменники работают на жидкостях с низкой температурой кипения (таких, как фреон). Он циркулирует по контуру – горячий отдает тепло, затем насосом возвращается.
  2. Гидротермальная энергия. Источник – подземные воды. Глубоко под землей воды нагреваются до высоких температур. В некоторых районах такую жидкость можно вывести на поверхность скважинами. Принцип работы прост – горячая вода поднимается вверх, охлажденная по другой трубе возвращается для нагрева. Там, где такие воды залегают близко к поверхности, можно наблюдать гейзеры – их тоже используют во благо человека.

Особенности геотермальной энергии

Понимая, что такое геотермальная энергия, человечество стремится получить от нее максимум пользы. Это – энергетика будущего, ведь запасы нефти и газа когда-то будут исчерпаны (и не каждая страна обладает такими природными ресурсами). Ядерная и топливная энергетики несут негатив среде обитания человека и природе в целом.

Геотермальная энергия практически неисчерпаема, и есть везде, только нужно вложить силы и средства, чтобы применять ее для отопления, водоснабжения, выработки электроэнергии, прочего.

Плюсы и минусы геотермальной энергии зависят от вложенных средств на ее добычу. Основные достоинства:

  • такая энергия восстановима, поэтому бесконечна;
  • источники не становятся причиной загрязнения среды;
  • на нее не влияют погодные условия или какие-то другие внешние факторы;
  • может обеспечить какие угодно цели – водоснабжение, отопление, электроснабжение;
  • отсутствует парниковый эффект;
  • станции компактны.

Среди недостатков – такие факторы:

  • в составе пара могут быть вредные примеси, которые небезопасны для окружающей среды;
  • после того, как глубинная вода использована, ее нужно утилизировать особенным образом – сливать обратно в глубину или в океан;
  • возможность усиления сейсмической нестабильности;
  • из-за того, что строительство станции обходится дорого – энергия тоже увеличивается в цене.

Сферы применения геотермальной энергии

Уже в XIX столетии были успешные попытки применения геотермальной энергии, принцип работы которой позволил использовать теплую воду из Тосканских источников в отоплении. Затем там же была открыта электрическая станция на водяном паре. Сейчас такой источник актуален для 80 стран, энергию планеты используют:

  • в сельском хозяйстве — для обогрева теплиц, для полива, для гидропоники, для искусственных водоемов при выращивании мальков;
  • в промышленности, жилищно-коммунальном хозяйстве – для выработки электроэнергии, для отопления.

Энергию можно получить несколькими способами:

  • напрямую – пар по трубам поступает к турбинам, соединенным с электрогенераторами;
  • с предварительной обработкой — пар сначала проходит процесс очищения, только потом подается в трубы;
  • бинарная – источником служит жидкость с низкой температурой кипения;
  • смешанная – похожая на прямую, но с удалением из воды газов, растворенных в ней.

Геотермальная энергетика

Геотермальная энергетика – это перспектива, которая в будущем принесет фантастические плоды. Ученые предполагают, что в будущем это направление будет давать шестую часть всей мировой энергии.

Плюсы и минусы геотермальной энергетики доказывают ее перспективность. Выгода от этого направления такова:

Кто не мечтает хотя бы раз в жизни найти клад. И мало кто подозревает, что драгоценные ресурсы находятся прямо у нас под ногами. Мы владеем величайшим богатством – геотермальной энергией.

Геотермальная энергия – тепло, исходящее из земли, это естественный, возобновляемый ресурс для производства электричества. Тепло Земли по объемам неисчерпаемо, оно в миллионы раз превышает все энергетические ресурсы вместе взятые.

Даже 1% энергии Земли заменяет не одну сотню электрических станций. Осталось только научиться использовать ее.

Геотермальная энергия – одна из самых перспективных в мире.

Геотермальные источники энергии

Геотермальная энергетика не изобретена человеком. Тепловой энергией наделен сам земной шар с момента возникновения планеты.

Нередко нагретые от природы подземные водоемы располагаются очень близко к поверхности. В таком случае геотермальное тепло визуально определяется невооруженным глазом. Это извергающаяся лава вулканов, геотермальные источники – гейзеры.

Преимущества геотермальной энергии в том, что запасы такого тепла в 10 раз превышают запасы органических ископаемых, основного топлива планеты.

Особенности использования геотермальной энергии

В теории неисчерпаемых ресурсов энергии планеты хватит на нужды человеческой цивилизации. Но на практике мы встречаем проблемы с добычей и переработкой геотермальной энергии. Так первоначальные вложения составляют от 200 до 5000 долларов на 1КВт мощности.

Плюсом считается бесплатный теплоноситель. Для сравнения на ТЭС и АЭС затраты на энергопотребление составляют от 50 до 80%.

Плюсы геотермальной энергии Недостатки геотермальной энергии
Неисчерпаемость источника Требуется бурить скважины глубиной до нескольких километров. Не во всех регионах это целесообразно.
Автономность в любое время года, суток, при любых погодно-климатических условиях и других факторах внешней среды Большие теплопотери при добыче и транспортировке.
Эффективность. Коэффициент использования установленной мощности (КИУМ) – 80% Легкость добычи в районах вулканических извержений и гейзерных месторождениях, где горячая вода залегает на поверхности.
Не требуются большие площади, как при строительстве гидроэлектростанций. Присутствие токсических и радиоактивных примесей.
Не загрязняют атмосферу. Невозможность сбросов отработанных отходов в наземные водоемы.
Низкое водопотребление по сравнение с ГЭС и ТЭС, АЭС. 20 л на 1 Квт. В других – до 1000 л. Обратная закачка воды – технически сложна и энергозатратна.
Разработка и техническая эксплуатация скважин провоцируют землетрясения.
Тепло-, шумо- и химическое воздействие на окружающую среду. Накопление твердых опасных отходов.

Геотермальная энергетика: откуда берется энергия?

Применение геотермальной энергии отталкивается от исходной температуры. Теплоноситель, нагретый естественным образом до +30 – +1000С пригоден для отопления без дополнительной трансформации. Вода, пар высокой температуры применяются для выработки электричества.

Принцип работы термальной электростанции похож на устройство ТЭС. Рабочим элементом в обоих случаях служит нагретый пар. А вот методы нагрева различаются. На теплоэлектростанциях воду в пар превращают, используя для нагрева уголь, мазут или природный газ. Термальные установки и теплоноситель берут уже готовым.

Петротермальная энергетика

Верхние слои почвы прогреваются или промерзают естественным образом под воздействием солнечного тепла или при его отсутствии. Играют роль и другие внешние факторы.

Чуть глубже температура держится на одном уровне независимо от солнечной активности. Это ощущали многие, кто спускался в пещеры или подземелья.

Основную роль начинает играть раскаленное земное ядро. Геотермальная энергетика основана на увеличении температуры Земли по мере погружения внутрь. Температура в среднем увеличивается на 2,5 0С каждые 100 метров. В горнодобывающих шахтах жарко, температура держится в пределах 300С.

  • на глубине 5 км t=1250C;
  • 10 км t=2500C;
  • 100 км t=15000C;
  • 400 км t=16000C;
  • 600 км (ядро земли) t=50000C.
Суть петротермальной энергетики:

Чтобы получить тепло из недр земли бурят две скважины. В одну закачивают воду. Под воздействием температуры она испаряется, пар перетекает во вторую скважину, из которой извлекается уже в виде электроэнергии.

При кажущейся простоте геотермальная энергетика остро ставит проблему рентабельности. Сложность заключается в подъеме глубинного тепла на поверхность и использовании отработанной воды.

Гидротермальная энергетика

Иногда проблему добычи геотермальной энергии решает сама природа. Нагретые вода или пар – естественный теплоноситель – выходят на поверхность или залегают на небольшой глубине. При этом их температура хоть не на много, но выше окружающего воздуха.

Это и есть геотермальная энергия. Она пригодна для отопления, но встречается в природе реже чем петротермальная, которая присутствует везде, но добывать ее гораздо труднее.

Ресурсы гидротермальной энергии в 100 раз ниже. Соответственно, 35 и 3500 триллионов тонн топлива.

Сферы применения

Эксплуатация геотермальной энергии началась еще в XIX веке. Первым был опыт итальянцев, живущих в провинции Тоскана, которые использовали теплую воду источников для отопления. С ее же помощью работали установки бурения новых скважин.

Тосканская вода богата бором и при выпаривании превращалась в борную кислоту, бойлеры работали на тепле собственных вод. В начале XX века (1904 год) тосканцы пошли дальше и запустили электростанцию, работающую на водяном паре. Пример итальянцев стал важным опытом для США, Японии, Исландии.

Сельское хозяйство и садоводство

Геотермальная энергия используется в сельском хозяйстве, в здравоохранении и быту в 80 странах мира.

Первое, для чего применяли и применяют термальную воду, это обогрев теплиц и оранжерей, что дает возможность получать урожай овощей, фруктов и цветов даже зимой. Теплая вода пригодилась и при поливе.

Перспективным направлением у сельхозпроизводителей считается выращивание сельскохозяйственных культур на гидропонике. Некоторые рыбхозяйства используют подогретую воду в искусственных водоемах, для разведения мальков и рыбы.

Эти технологии распространены в Израиле, Кении, Греции, Мексике.

Промышленность и ЖКХ

Больше века назад горячий термальный пар уже был основой для выработки электричества. С тех пор он служит промышленности и коммунальному хозяйству.

В Исландии 80% жилья отапливаются термальной водой.

Разработано три схемы производства электричества:

  1. Прямая, использующая водяной пар.
    Самая простая: применяется там, где есть прямой доступ к геотермальным парам.
  2. Непрямая, использует не пар, а воду.
    Она подается в испаритель, преобразуется в пар техническим методом и направляется в турбогенератор.

Вода требует дополнительной очистки, потому что содержит агрессивные соединения, способные разрушить рабочие механизмы. Отработанный, но еще не остывший пар пригоден для нужд отопления.

  1. Смешанная (бинарная).
    Вода заменяет топливо, которое подогревает другую жидкость с более высокой теплоотдачей. Она приводит в действие турбину.

Бинарная система на основе геотермальной энергии

Используют гидротепловую энергетику США, Россия, Япония, Новая Зеландия, Турция и другие страны.

Геотермальные системы отопления для дома

Для отопления жилья пригоден носитель тепла, нагретый до +50 – 600С, таким требованием соответствует геотермальная энергия. Города с населением в несколько десятков тысяч человек могут отапливаться теплом земных недр. В качестве примера: отопление города Лабинск Краснодарского края работает на естественном земном топливе.

Использование Геотермальной энергетики в ЖКХ

Не нужно тратить силы и время на подогрев воды и строить котельную. Теплоноситель берут напрямую из гейзерного источника. Эта же вода подходит и для горячего водоснабжения. В первом и во втором случае она проходит необходимую предварительную техническую и химическую очистку.

Полученная энергия обходится вдвое-втрое дешевле. Появились установки для частных домов. Стоят они дороже, чем традиционные топливные котлы, но в процессе эксплуатации оправдывают затраты.

геотермальная энергия в отоплении дома

Крупнейшие производители геотермальной энергии

В использовании геотермальная энергия по объемам уступает другим разрабатываемым восполняемым энергетическим ресурсам. Но там, где иные полезные ископаемые отсутствуют или нет возможности их использовать, при поддержке государственных программ она получила основное развитие.

Геотермальная энергетика распространена в странах Юго-Восточной Азии, Восточной Африки и Центральной Америки.

Однако страны, использующие геотермальную энергию, есть в разных частях света.

  • В Европе – Исландия, Италия, Франция, Литва.
  • В Америке – США, Мексика, Никарагуа, Коста-Рика.
  • В Азии – Япония, Китай, Филиппины, Индонезия, Таджикистан.
  • В Африке – Кения.
  • В Австралии – Новая Зеландия.

Энергию горячих источников дают вулканизированные территории Земли. Это Камчатка и Курилы, Японские и Филиппинские острова, горные системы Кордильер и Анд.

Крупнейший на сегодня страна-производитель, которая обладает запасами геотермальной энергии, это Соединенные Штаты Америки. В Штатах построено 77 ГеоТЭС. За короткое время с момента разработок и начала эксплуатации страна стала экспортером энергии и самих технологий.

В Филиппинах треть электроэнергетики подземная. 3 позиция в мире принадлежит Мексике.

Освоение перспективных технологий в этом разделе энергетичекой отрасли связывают с Исландией. На ее территории почти 3 десятка действующих и потухших вулканов, что и обуславливает специализацию энергопроизводства.

Геотермальная энергия в Исландии составляет 25-30% от производимой. Энергетика страны пользуется горячими гейзерными источниками, которые здесь представлены в изобилии. Так главный город государства Рейкьявик обслуживается электростанцией такого принципа действия, а всего их в государстве пять.

Исландия – эталон экологического устройства жизни на планете, так как основную часть энергии берет из Земли, а в остальном использует возобновляемую энергию воды.

Кроме этого прирученное тепло земли помогло Исландии за короткое время из экономически отсталой страны превратиться в стабильное процветающее государство.

Перспективы освоения геотермальных ресурсов в России

Геотермальную энергетику в России использовали с середины прошлого века. Первая паровая геотермальная электростанция заработала еще в 1967 году на Камчатке (Паратунская ГеоТЭС). Камчатка для России – передовой край подобных разработок. 40% электроэнергии, производимой на Камчатке, это результат преобразования подземного тепла. Ее потенциал оценен в 5000 МВт.

Использование геотермальной энергии в России промышленным способом практикуют на 20 месторождениях. Всего их разведано 56.

Самые известные территории месторождений:

  • Камчатка;
  • Ставропольский край;
  • Краснодарский край;
  • Дагестанская республика;
  • Карачаево-Черкесская республика.

Большие запасы открыты на Кавказе: Ингушетия, Чечня, Осетия, Кабардино-Балкария, Закавказье. В Кавказском регионе используется тепловая энергия подземных вод. На Камчатке строятся геоэлектростанции.

В России тепло земных недр имеет серьезную конкуренцию – месторождения нефти, газа, каменного угля, а также лесные угодья.

Геотермальные электростанции прекрасная альтернатива традиционным методам получения энергии.

Геотермальная энергия имеет прямую географическую зависимость и концентрируется в зонах с тектоническими трещинами горных массивов и сейсмической активностью. Поэтому в общей массе энергетики ее доля составляет всего лишь 1%, а в некоторых регионах повышается до 25-30%.

Технологически производство геотермальной энергии намного проще, чем выработка ветряной и солнечной электроэнергии. Дальше она будет распространяться и расти, так как имеет высокие показатели доступности и экологичности. Это при том, что альтернативные источники традиционной энергии неуклонно дорожают, рано или поздно будут исчерпаны и просто не останется иного выхода.

Геотермальные электростанции: плюсы и минусы выработки электроэнергии ГеоТЭС

Альтернативная энергетика и экология: виды и пути развития

Нетрадиционные и возобновляемые источники энергии

Тепловое загрязнение окружающей среды: источники и последствия

Достоинства и недостатки солнечной энергетики

Закон о скважинах на воду в частном доме и на даче 2022

Принцип работы волновых электростанций

Системы утилизации тепла дымовых и отходящих газов

Что такое гидроэнергия, ее источники, плюсы и минусы

Плюсы и минусы приливных электростанций

Альтернативная энергетика своими руками для дома

Основные источники загрязнения воды

геотермальная энергия занимает значительное место.

Геотермальная энергия переводится как тепло Земли.
Их строят в районах где наблюдается высокая и устойчивая сейсмическая активность, где природное тепло расположено на относительно небольшой глубине

Источник Кусацу

В последнее время не возобновляемые источники электрической энергии всё больше теряют свои позиции. Традиционный метод получения энергии от сжигания угля перестаёт быть самым эффективным, так как напрямую ведёт к экологическим нарушениям среды обитания человека.

На первый план выходят возобновляемые источники энергии, к которым относятся геотермальные источники, позволяющие получать электрическую или тепловую энергию из недр Земли.

Носители энергии земных недр

Геоэнергетика

О том, что температура увеличивается с глубиной, известно ещё из школьного курса географии. Внутри планеты законсервировано огромное количество тепла, используя которое человечество сможет избежать экологической катастрофы. Уже созданы технологии, при помощи которых можно просто использовать тепловую энергию, а можно получать из неё электричество. Для этого нужно лишь построить геотермальную электростанцию.

Носителями энергии земных недр являются петротермальные и гидротермальные источники. Первые несут в себе тепло горных пород, а вторые представляют собой горячие подземные воды, извергающиеся на поверхность под высоким давлением. Несмотря на то что горячие горные породы более распространены, забирать у них тепло сложно. Для этого нужно применять технологии с закачиванием воды на большую глубину. А вот горячие водные источники самостоятельно несут из недр тепловую энергию.

Геотермическая энергетика: преимущества и недостатки

К преимуществам способа получения геотермальной энергии относятся:

  • отсутствие зависимости от внешних условий – температуры воздуха, времени суток, сезонных изменений;
  • неизменность эффективности геотермальной электростанции, связанная с постоянством температуры носителя;
  • высокий коэффициент полезного действия геотермальной электростанции.

Однако имеются и недостатки:

  • увеличение расходов на эксплуатацию электростанции за счёт закачки термальных вод обратно в грунт (являются ядовитыми, что исключает поверхностные сбросы отработанной воды);
  • небольшое количество пригодных к использованию термальных источников.

Несмотря на минусы, количество полученной геотермальной энергии ежегодно возрастает, а в таких странах, как Исландия и Филиппины, составляет долю от общего количества, равную 30%.

Использование тепла, накопленного в земных глубинах

Источники энергии

Диапазон применения геотермальной энергии зависит от температуры источника: при низких и средних температурах носителя полученное тепло используется для работы систем отопления, а при высоких – для получения электрической энергии.

Пока нет возможности использовать гидротермальные источники для получения электрической энергии для промышленных нужд. Большой популярностью пользуются тепловые насосы, которые устанавливаются в коттеджах и обеспечивают в них автономное теплоснабжение. Это перспективное направление в альтернативной электроэнергетике, позволяющее эффективно использовать возобновляемые источники без ущерба окружающей среде.

Мировой и российский опыт использования энергии термальных источников


Жители районов, где распространены термальные воды, используют их тепло не только для теплоснабжения жилых домов. Там горячая природная вода служит носителем тепла для обогрева теплиц, в которых в круглогодичном режиме выращиваются овощи.

В тех странах, где активно используют тепло земных недр в своей хозяйственной деятельности, стоимость электрической энергии самая низкая. А в Исландии за счёт геотермальной энергетики экономятся запасы каменного угля, имеющиеся в стране в большом дефиците.

На территории России регионами, активно использующими источники геотермальной энергии, является Камчатка, Курильские острова, Северный Кавказ, Западная Сибирь. Там с помощью природной горячей воды отапливают дома, теплицы, фермы для домашних животных, осуществляют полив сельскохозяйственных культур. Многие источники используют в качестве лечебных баз для санаториев и пансионатов.

ТОП-5 известных курортов с термальными водами

Гидротермальные источники, богатые полезными минеральными веществами, пользуются популярностью во всём мире. Самыми известными являются:

Читайте также: