Как используется химическая энергия при органическом синтезе кратко

Обновлено: 02.07.2024

Л.И. Бондалетова
Промышленная экология
Учебное пособие / Том. политехн. ун-т. — Томск, 2002. — 168 с.

1.3. Химико-технологическая система

1.3.3. Энергетические ресурсы химико-технологической системы

1.3.3.1. Энергия в химическом производстве

В химическом производстве осуществляются процессы, связанные либо с выделением, либо с затратой, либо со взаимными превращениями энергии. Энергия затрачивается не только непосредственно на проведение химических реакций, но и на транспортировку материалов, дробление, фильтрацию, сжатие газов и т. д.

Энергоемкость производства — расход энергии на получение единицы продукта – один из важнейших показателей эффективности производства. Имеются производства, отличающиеся высокой энергоемкостью, и производства с относительно небольшим потреблением энергии. Так, на производство 1 т алюминия необходимо 18 000-20 000 кВт×ч энергии, а на производство минеральных удобрений (суперфосфата) – 2-10 кВт×ч. Энергию выражают в различных единицах: кДж, кВт . ч, в том числе в единицах условного топлива (1 кг твердого топлива или 1 м 3 газообразного с теплотой сгорания 29,3 МДж).

Несмотря на наличие производств, потребляющих небольшие количества энергии на тонну продукции, крупные масштабы современных химических комбинатов и заводов обусловливают возрастающую потребность во всех видах энергии.

Виды энергии

Наиболее широкое практическое применение в промышленности имеют электрическая, ядерная, тепловая, химическая и др. виды энергии. Вид применяемой энергии зависит от технологического процесса.

Электрическая энергия ‑ наиболее универсальный вид энергии. Источником ее является энергия воды на ГЭС и превращение тепловой энергии, полученной в результате сгорания топлива (ТЭЦ) или в результате ядерных реакций (АЭС), в механическую, а затем механической в электрическую. Электроэнергия на химических предприятиях используется для осуществления электрохимических (электролиз растворов и расплавов), электротермических (плавление, нагревание, синтезы при высоких температурах и т. д.), электромагнитных процессов. В промышленности нашли применение процессы, связанные с использованием электростатических явлений (осаждение пылей и туманов, электрокрекинг углеводородов и др.), электронноионные явления, применяемые для контроля и автоматизации химических производств. Особенно широко в химической промышленности используется превращение электрической энергии в механическую, которая необходима главным образом для физических операций ‑ дробления, измельчения, смешения, центрифугирования, работы вентиляторов, компрессоров, насосов и пр.

Тепловая энергия в химической промышленности применяется, во-первых, для осуществления разнообразнейших физических процессов, не сопровождающихся химическими реакциями ‑ нагрева, плавления, сушки, выпарки, дистилляции и т. п. Кроме этого, большое количество тепловой энергии затрачивается на нагрев реагентов для проведения эндотермических химико-технологических процессов.

Внутриядерная энергия, выделяемая при различных превращениях атомных ядер или при синтезе ядер водорода в ядра гелия, используется для производства электрической энергии на атомных электростанциях. Большое распространение получают радиационно-химические процессы, в которых радиоактивные излучения используются для осуществления химических реакций.

Химическая энергия, выделяющаяся в результате экзотермических химических реакций, служит ценным источником тепла для обогрева реагентов, используемых для проведения реакции. Химическая энергия применяется в гальванических элементах и аккумуляторах, где она преобразуется в электрическую.

Световая энергия используется для осуществления различных фотохимических реакций: синтеза хлористого водорода из элементов, галоидирования органических соединений и других процессов. Фотоэлектрические явления, в которых происходит превращение световой энергии в электрическую, нашли применение для автоматического контроля и управления технологическими процессами.

Источники энергии, используемой на промышленных предприятиях, могут быть различными. Они могут оцениваться по характеру энергетических ресурсов, энергетической ценности, запасам.

По характеру энергетические ресурсы делятся на невозобновляемые и возобновляемые. К невозобновляемым источникам энергии относятся уголь, нефть, сланцы, природный газ, которые после их использования не могут быть воспроизведены. Гидроэнергия, растительное топливо, энергия ветра, солнечная энергия относятся к непрерывно возобновляемым источникам энергии.

Энергетическая ценность отдельных источников энергии определяется количеством энергии, которое можно получить при их использовании. Для топлив, например, энергетическая ценность характеризуется количеством квт×ч, получаемых при полном использовании теплоты сгорания одного килограмма или кубического метра данного топлива, например энергетическая ценность каменного угля составляет 8,0 кВт×ч/кг, а природного газа – 10,6 кВт×ч/м 3 .

Практическое использование энергетических ресурсов определяется прежде всего запасами, а также их географическим положением, доступностью использования, возможностью трансформации энергии и передачи ее на расстояния и рядом других факторов.

Размещение химических предприятий, отличающихся большими масштабами потребления энергии, зависит от наличия дешевого топлива и электрической энергии. В этой связи следует отметить роль местных видов топлива, которые, как правило, обходятся дешевле дальнепривозных. Однако в некоторых случаях использование транспортируемого на дальние расстояния по трубопроводам газа более рентабельно, чем использование местных топлив.

1.3.3.2. Рациональное использование энергии

В химических производствах, потребляющих большие количества энергии, энергетические затраты влияют на технико-экономические показатели процессов. Критерием экономичного использования энергии является коэффициент использования энергии.

Коэффициентом использования энергии называется отношение количества энергии, которое теоретически требуется затратить на получение весовой (или объемной) единицы продукта, к количеству практически затраченной энергии. Во многих производствах эти коэффициенты очень низки, что свидетельствует о непроизводительном расходовании энергии. Ограниченность энергетических ресурсов, в ряде случаев высокая стоимость энергии ставят задачу экономного и рационального ее использования.

На химических предприятиях из всех видов потребляемой энергии первое место принадлежит тепловой энергии.

Степень использования тепла в химико-технологическом процессе выражается тепловым коэффициентом полезного действия, под которым понимается отношение количества тепла, использованного непосредственно на осуществление основных химических реакций, к общему количеству затраченного тепла. Тепловой КПД является частным случаем коэффициента использования энергии. К сожалению, в химических процессах большое количество тепла теряется с удаляемыми из аппаратов продуктами реакции, отходящими газами и в окружающую среду.

Тепло продуктов реакции или отходящих газов (вторичные энергетические ресурсы) можно использовать для предварительного нагрева материалов, поступающих в реакционный аппарат. Тепловые потери в окружающую среду уменьшают, во-первых, тепловой изоляцией аппаратуры и, во-вторых, конструктивное оформление и габариты аппаратуры выбирают так, чтобы иметь минимальную поверхность теплоотдачи в окружающую среду.

При рациональном использовании тепловой энергии экономятся огромные количества топлива. Следует подчеркнуть, что нельзя рассматривать топливо в современных условиях только как источник тепловой энергии. Уголь, торф, сланцы, нефть, природные газы являются ценнейшим и важнейшим сырьем химической промышленности. Задача заключается в комплексном энерго-химическом использовании топлива и как сырья для химической промышленности, и как источника получения энергии. Таким образом, решение проблем рационального использования энергии, уменьшения потерь тепла в окружающую среду и использование так называемых вторичных ресурсов имеет большое значение.

1.3.3.3. Вторичные энергетические ресурсы

Вторичные энергетические ресурсы (ВЭР) ‑ это энергия различных видов, покидающая технологический процесс или установку, использование которой не является обязательным для осуществления основного технологического процесса.

В настоящее время особенно велики потери теплоты на электростанциях, в металлургической, химической, нефтедобывающей и нефтеперерабатывающей промышленности, в сельском хозяйстве. Теплота уносится также с вентиляционным воздухом, с канализационными и бытовыми стоками. Согласно расчетам, из 1,7 млрд т у. т., расходуемого в стране за год, полезно используется примерно 700 млн т. Утилизация ВЭР позволит получить большую экономию топлива и существенно уменьшить капитальные затраты на создание соответствующих энергоснабжающих установок, так как при одинаковом эффекте затраты на улучшение использования энергоресурсов в 1,5-2 раза ниже затрат на добычу топлива. Рациональное и возможно более полное использование вторичных энергоресурсов дает большую экономию материальных, денежных и трудовых затрат, обеспечивает снижение выбросов вредных веществ, в том числе и тепловых.

ВЭР разделяются на три основные группы: избыточного давления, горючие и тепловые.

ВЭР избыточного давления ‑ это потенциальная энергия покидающих установку газов, воды, пара с повышенным давлением, которая может быть еще использована перед выбросом в атмосферу. Основное направление использования таких ВЭР ‑ силовое (для получения электрической или механической энергии).

Горючие ВЭР ‑ это горючие газы и отходы одного производства, которые могут быть применены непосредственно в виде топлива на других производствах. К ним можно отнести: щепки, опилки, стружку (в деревообрабатывающей промышленности); твердые и жидкие топливные отходы химической и нефтеперерабатывающей промышленности; доменный газ (в металлургической промышленности). Главная трудность использования горючих ВЭР ‑ примеси, которые могут загрязнять окружающую среду, вызывать коррозию котельной аппаратуры, осаждаться на поверхности водогрейных труб.

Тепловые ВЭР ‑ это физическая теплота отходящих газов основной и побочной продукции производства; золы и шлака, горячей воды и пара; рабочих тел систем охлаждения технологических установок. Тепловые ВЭР используют для получения тепла, непосредственно передавая его соответствующим теплоносителям (подогревают потоки, вырабатывают пар). В зависимости от температуры их подразделяют на высоко- и низкопотенциальные.

Высокопотенциальные тепловые ВЭР (с температурой выше 120 °С) используют для выработки пара в котлах-утилизаторах.

Низкопотенциальные тепловые ВЭР (с температурой 50-120 °С) используют в основном для работы энергетических установок (подогрев воды для котельных установок). Основные трудности их использования — большие капитальные затраты из-за малой движущей силы (температурной) для передачи тепла и загрязнения примесями. Эффективным является использование низкопотенциальных тепловых ВЭР для получения искусственного холода в абсорбционных холодильных машинах.

Основные понятия
Химическая энергия веществ — это их потенциал и способность изменяться в
процессе каких-либо взаимодействий друг с другом или преобразовываться в
этом процессе в другие вещества.
Взрыв — это процесс почти мгновенного освобождения большого количества
энергии в ограниченном объёме.
Органический синтез — это соединение молекул более простых органических
веществ и превращение их в сложные структуры, которые никогда не
существовали в природе.

Пояснения:
Наиболее известное проявление химической энергии — это её превращение в тепловую, или горение. Горение используется, например, в газовых плитах.
Если реакция горения происходит очень быстро, такое явление называют
взрывом. Существуют специальные взрывчатые вещества, с которыми
работают специалисты-взрывники. Взрывы используются при добыче полезных ископаемых, при сносе зданий, в военном деле, при тушении торфяных
пожаров.
Химическое фрезерование — это воздействие на металл химическими
веществами. Оно позволяет придать металлу нужную форму в тех случаях,
когда детали имеют сложную форму, и их практически невозможно обтачивать фрезой. Химическое фрезерование используется в самолётостроении, в
строительстве, в производстве печатных плат для электронных устройств.
Органический синтез — это соединение молекул более простых органических
веществ и превращение их в более сложные структуры. Так получают
полиэтилен, пластмассы, каучуки и многие другие вещества.

Литература:
Технология. 8 класс : учеб. для общеобразоват. организаций / [В. М. Казакевич, Г. В. Пичугина, Г. Ю. Семенова и др.]; под ред. В. М. Казакевича. — М.:
Просвещение, 2017.

Химическая энергия — потенциал вещества трансформироваться в химической реакции или трансформировать другие вещества.

Создание или разрушение химических связей происходит с выделением (экзотермическая реакция) или поглощением (эндотермическая реакция) энергии.

В популярной литературе под термином химическая энергия чаще всего подразумевают энергию, которую вещество или смесь веществ выделила в результате экзотермической реакции.

Химическая энергия известна каждому современному человеку и широко используется во всех сферах деятельности. Один из примеров использования химической энергии: при пропускании тока через медный корпус выделится чистая медь. Наиболее распространенными устройствами, использующими химическую энергию являются: камин, печь, горн, домна, факел, газовая горелка, пуля, снаряд, ракета, самолет, автомобиль. Химическая энергия применяется в производстве медикаментов, пластика, синтетических материалов, и т.п.

Источники химической энергии

Наиболее применяемыми источниками химической энергии являются:

  • нефтяные месторождения (нефть и ее производные),
  • газоконденсатные месторождения (природный газ),
  • угольные бассейны (каменный уголь),
  • болота (торф),
  • леса (древесина),
  • поля (зеленые растения),
  • луга (солома),
  • моря (водоросли), и т.п.

Человек не использует химическую энергию непосредственно (разве что к такому использованию можно отнести некоторые химические реакции).

Обычно химическая энергия, выделившаяся в результате разрыва высокоэнергетических и образования низкоэнергетических химических связей, выделяется в окружающую среду в виде тепловой энергии. Химическую энергию можно назвать наиболее распространенной и широко используемой с древности и до наших дней. Любой процесс, связанный с горением, имеет в своей основе энергию химического взаимодействия органического (реже минерального) вещества и кислорода.

Органи́ческий си́нтез — раздел органической химии и технологии, изучающий различные аспекты (способы, методики, идентификация, аппаратура и др.) получения органических соединений, материалов и изделий, а также сам процесс получения веществ.

Цель органического синтеза - получение веществ с ценными физическими, химическими и биологическими свойствами или проверка предсказаний теории. Современный органический синтез многогранен и позволяет получать практически любые органические молекулы.

Исследованием органического синтеза занимаются многочисленные институты, в т.ч. Институт органического синтеза УрО РАН (ИОС, Екатеринбург), созданный Постановлением Российской Академии Наук в 1993 году.

Содержание

Начало органического синтеза


Синтез Вёлера. Схематическое изображение изомеризации цианата аммония как примера образования органического вещества из неорганического

В качестве самостоятельной дисциплины начал оформляться после знаменитого синтеза карбамида (мочевины) из типичного неорганического вещества (цианата аммония), осуществленного немецким химиком Фридрихом Вёлером (Wöhler, Friedrich, 1800—1882) в 1828 г.. [1] Этот синтез положил конец спору с учеными-виталистами, полагавшими, что органические вещества могут продуцироваться только за счет жизненной силы биологических организмов.

Развитие органического синтеза

Мощный импульс развитию получил после формулирования русским химиком Бутлеровым А. М.(1828—1885) основ структурной теории строения органических молекул, которая позволила планомерно синтезировать органические молекулы заданного строения.

Дальнейшее развитие органического синтеза происходит параллельно с развитием науки органическая химия. Успехи теорий строения атомов и молекул, химической связи, квантовая химия, кинетика и др. способствовали развитию методов синтеза. С другой стороны, ряд сложных синтезов как известных в природе веществ (уксусная кислота, индиго, аспирин и др.), так и не имеющих своих аналогов (полиэдраны, многие элементоорганические соединения, синтетические антибиотики и др.), оказал влияние на смежные разделы науки (химия биологически активных веществ, фармакология, физика и химия твердого тела и др.), показав самостоятельность и высокую ценность этого направления органической химии.

Выход органического синтеза за рамки лабораторий произошёл после развития химической технологии и признания промышленной значимости продуктов: карбоновых кислот, полимеров, растворителей, красителей и др. — веществ, объём производства которых характеризуется числами со многими нулями.

Направления органического синтеза

Стремительный рост числа синтезов привел к оформлению отдельных его самостоятельных направлений, характеризующихся специфическими признаками: сырьевой базой (нефтесинтез), приемами (кислотный катализ), физическим воздействием (плазмосинтез), природой продуктов (металлоорганический синтез), назначением продуктов (синтез биологически активных веществ), сложностью (тонкий органический синтез) или, наоборот, простотой ("клик"-синтез), фазовым состоянием среды (газо-, жидко- и твердофазный синтезы), температурой (криосинтез, термолиз) и т. д..

Информационное обеспечение

Необходимость ориентироваться в огромном числе синтетических методик привела к созданию развитых информационных систем для их поиска и описания, предложения реактивов и синтетической аппаратуры.

Методика органического синтеза

Реализация органического синтеза включает следующие научные, организационные и технологические этапы: задание структуры целевой молекулы, рассмотрение возможных схем синтеза, подбор продуктов, аппаратуры, проведение химических реакций, выделение промежуточных и целевых продуктов, их анализ и очистку, модифицирование, принятие мер безопасности, экологический контроль, экономический анализ и др..

Окончательный выбор метода синтеза происходит после всестороннего комплексного анализа этих этапов и их оптимизации.

Реакции органического синтеза

Ниже приводится далеко не исчерпывающий список реакций органического синтеза, классифицированных по признаку изменения химического класса синтезируемой молекулы: