Как доказывается тождество силы всемирного тяготения и силы тяжести у поверхности земли кратко

Обновлено: 05.07.2024

Одна из важнейших в природе сил — сила гравитации, или сила тяготения. Она действует на все тела во Вселенной.

Существует миф о том, что Ньютон открыл закон всемирного тяготения после того, как ему на голову упало яблоко. Так это или нет доподлинно неизвестно, но именно Ньютон изучал движение планет вокруг Солнца и открыл математическую формулу для расчета взаимодействия тел определенной массы. Эту формулу мы называем законом всемирного тяготения.

Сила взаимодействия двух тел прямо пропорциональна массе каждого из этих тел и обратно пропорциональной квадрату расстояния между центрами этих тел:

F = G m 1 m 2 R 2 , где G = 6,67 ⋅ 10 − 11 Н ⋅ м 2 кг 2 — гравитационная постоянная, R — расстояние между центрами тел.

3. тело неопределенной формы находится на поверхности шарообразного и однородного тела большого размера и массы (по сравнению с телом неопределенной формы).

Третий закон Ньютона мы используем для расчёта силы тяжести на поверхности Земли или вблизи неё. Поэтому за расстояние между телами берём радиус Земли: \(R=6370\) км.

земляяблоко.jpg

Значение ускорения Земли, обусловленное притяжением со стороны яблока настолько мало, что при расчёте задач его не учитывают.


Гравитация похожа на любовь — тела притягиваются с равными по модулю силами, которые уменьшаются с увеличением расстояния. Правда, силы еще и увеличиваются за счет увеличения массы, но сделаем вид, что все равно похоже.

О чем эта статья:

Гравитационное взаимодействие

Земля — это большой магнит. Причем на самом деле магнит, с настоящим магнитным полем. Но сейчас речь пойдет о другом явлении — явлении притяжения тел к Земле, от прыгающего с дерева котика до летящего мимо астероида. Называется это явление гравитацией.

Возьмем два тела — одно с большой массой, другое с маленькой. Натянем гигантское полотно ткани и положим на него тело с большей массой. После чего положим туда тело с массой поменьше. Мы будем наблюдать примерно такую картину:

Маленькое тело начнет притягиваться к тому, что больше, — это и есть гравитация. По сути, Земля — это большой шарик, а все остальные предметы — маленький (даже если это вовсе не шарики).

Гравитационное взаимодействие универсально. Оно справедливо для всех видов материи. Гравитация проявляется только в притяжении — отталкивание тел гравитация не предусматривает.

Из всех фундаментальных взаимодействий гравитационное — самое слабое. Хотя гравитация действует между всеми элементарными частицами, она настолько слаба, что ее принято не учитывать. Все дело в том, что гравитационное взаимодействие зависит от массы объекта, а у частиц она крайне мала. Эту зависимость впервые сформулировал Исаак Ньютон.

Закон всемирного тяготения

В 1682 году Исаак Ньютон открыл закон всемирного тяготения. Он звучит так: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.

Формула силы тяготения согласно этому закону выглядит так:

Закон всемирного тяготения

F — сила тяготения [Н]

M — масса первого тела (часто планеты) [кг]

m — масса второго тела [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6,67 · 10 −11 м 3 · кг −1 · с −2

Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше примерно в шесть раз.

Закон всемирного тяготения используют, чтобы вычислить силы взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними.

Если мы возьмем два шара, то для них можно использовать этот закон вне зависимости от расстояния между ними. За расстояние R между телами в этом случае принимается расстояние между центрами шаров.

Задачка раз

Две планеты с одинаковыми массами обращаются по круговым орбитам вокруг звезды. У первой из них радиус орбиты вдвое больше, чем у второй. Каково отношение сил притяжения первой и второй планеты к звезде?

Решение

По закону всемирного тяготения сила притяжения планеты к звезде обратно пропорциональна квадрату радиуса орбиты. Таким образом, в силу равенства масс отношение сил притяжения к звезде первой и второй планет обратно пропорционально отношению квадратов радиусов орбит:




По условию, у первой планеты радиус орбиты вдвое больше, чем у второй, то есть R1 = 2R2.




Ответ: отношение сил притяжения первой и второй планет к звезде равно 0,25.

Онлайн-уроки физики в Skysmart не менее увлекательны, чем наши статьи!

Задачка два

У поверхности Луны на космонавта действует сила тяготения 144 Н. Какая сила тяготения действует со стороны Луны на того же космонавта в космическом корабле, движущемся по круговой орбите вокруг Луны на расстоянии трех лунных радиусов от ее центра?

Решение

По закону всемирного тяготения сила притяжения космонавта со стороны Луны обратно пропорциональна квадрату расстояния между ним и центром Луны. У поверхности Луны это расстояние совпадает с радиусом спутника. На космическом корабле, по условию, оно в три раза больше. Таким образом, сила тяготения со стороны Луны, действующая на космонавта на космическом корабле, в 9 раз меньше, чем у поверхности Луны, то есть:

Ответ: на расстоянии трех лунных радиусов от центра сила притяжения космонавта будет равна 16 Н.

Ускорение свободного падения

Чтобы математически верно и красиво прийти к ускорению свободного падения, нам необходимо сначала ввести понятие силы тяжести.

Сила тяжести — сила, с которой Земля притягивает все тела.

Сила тяжести

F — сила тяжести [Н]

m — масса тела [кг]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g = 9,8 м/с 2 , но подробнее об этом чуть позже. 😉

На первый взгляд сила тяжести очень похожа на вес тела. Действительно, в состоянии покоя на поверхности Земли формулы силы тяжести и веса идентичны. Вес тела в состоянии покоя численно равен массе тела, умноженной на ускорение свободного падения, разница состоит лишь в точке приложения силы.

Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.




Также важно понимать, что сила тяжести зависит исключительно от массы и планеты, на которой тело находится. А вес зависит еще и от ускорения, с которым движется тело или опора.

Например, в лифте вес зависит от того, куда и с каким ускорением двигаются его пассажиры. А силе тяжести все равно, куда и что движется — она не зависит от внешних факторов.

На второй взгляд сила тяжести очень похожа на силу тяготения. В обоих случаях мы имеем дело с притяжением — значит, можем сказать, что это одно и то же. Практически.

Мы можем сказать, что это одно и то же, если речь идет о Земле и каком-то предмете, который к ней притягивается. Тогда мы можем даже приравнять эти силы и выразить формулу для ускорения свободного падения:

Приравниваем правые части:

Делим на массу тела левую и правую части:

Это и будет формула ускорения свободного падения. Ускорение свободного падения для каждой планеты уникально.

Закон всемирного тяготения

g — ускорение свободного падения [м/с 2 ]

M — масса планеты [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6,67 · 10 −11 м 3 · кг −1 · с −2

Ускорение свободного падения характеризует то, как быстро увеличивается скорость тела при свободном падении.

Свободное падение — это ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести.

Но разве это не зависит еще и от массы предмета?

Нет, не зависит. На самом деле все тела падают одинаково вне зависимости от массы. Если мы возьмем перо и мяч, то перо, конечно, будет падать медленнее, но не из-за ускорения свободного падения. Просто из-за небольшой массы пера сопротивление воздуха оказывает на него большее воздействие, чем на мяч. А вот если бы мы поместили перо и мяч в вакуум, они бы упали одновременно.

Третий закон Ньютона

Третий закон Ньютона обобщает огромное количество опытов, которые показывают, что силы — результат взаимодействия тел.

Он звучит так: тела действуют друг на друга с силами, равными по модулю и противоположными по направлению.

Если попроще — сила действия равна силе противодействия.

Если вам вдруг придется объяснять физику во дворе, то можно сказать и так: на каждую силу найдется другая сила. 🙈

Третий закон Ньютона

F1 — сила, с которой первое тело действует на второе [Н]

F2 — сила, с которой второе тело действует на первое [Н]

Так вот, для силы тяготения третий закон Ньютона тоже справедлив. С какой силой Земля притягивает тело, с той же силой тело притягивает Землю.

Задачка для практики

Земля притягивает к себе подброшенный мяч с силой 5 Н. С какой силой этот мяч притягивает к себе Землю?

Решение

Согласно третьему закону Ньютона, сила, с которой Земля притягивает мяч, равна силе, с которой мяч притягивает Землю.

Ответ: мяч притягивает Землю с силой 5 Н.

Поначалу это кажется странным, потому что мы ассоциируем силу с перемещением: мол, если сила такая же, то на то же расстояние подвинется Земля. Формально это так, но у мяча масса намного меньше, чем у Земли. И Земля смещается на такое крошечное расстояние, притягиваясь к мячу, что мы его не видим, в отличие от падения мяча.

Если каждый брошенный мяч смещает Землю на какое-то расстояние, пусть даже крошечное, возникает вопрос — как она еще не слетела с орбиты из-за всех этих смещений. Но тут как в перетягивании каната: если его будут тянуть две равные по силе команды, канат никуда не сдвинется. Так же и с нашей планетой.

Два тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними:

\[ F=G\frac<m_1m_2></p>
<p> \]

Описание закона всемирного тяготения

Коэффициент — это гравитационная постоянная. В системе СИ гравитационная постоянная имеет значение:

\[G=6,7\cdot <10></p>
<p>^\ /^2\ >\]

С помощью закона всемирного тяготения также можно рассчитать космические скорости. Например, минимальная скорость, при которой тело, движущееся горизонтально над поверхностью Земли, не упадёт на неё, а будет двигаться по круговой орбите – 7,9 км/с (первая космическая скорость). Для того, чтобы покинуть Землю, т.е. преодолеть ее гравитационное притяжение, тело должно иметь скорость 11,2 км/с, (вторая космическая скорость).

Гравитация является одним из самых удивительных феноменов природы. В отсутствии сил гравитации существование Вселенной было бы невозможно, Вселенная не могла бы даже возникнуть. Гравитация ответственна за многие процессы во Вселенной – ее рождение, существование порядка вместо хаоса. Природа гравитации до сих пор до конца неразгаданна. До настоящего времени никто не смог разработать достойный механизм и модель гравитационного взаимодействия.

Сила тяжести

Частным случаем проявления гравитационных сил является сила тяжести.

\overline<g></p>
<p>Сила тяжести – это сила, действующая на тело со стороны Земли и сообщающая ему ускорение свободного падения :

\[<\overline<F></p>
<p>>_g=m\overline\ \]

Сила тяжести всегда направлена вертикально вниз (по направлению к центру Земли).

Если на тело действует сила тяжести, то тело совершает свободное падение. Вид траектории движения зависит от направления и модуля начальной скорости.

С действием силы тяжести мы сталкиваемся каждый день. Камень, брошенный в горизонтальном направлении, через некоторое время оказывается на земле. Книга, выпущенная из рук, падает вниз. Подпрыгнув, человек не улетает в открытый космос, а опускается вниз, на землю.

Рассматривая свободное падение тела вблизи поверхности Земли как результат гравитационного взаимодействия этого тела с Землей, можно записать:

\[mg=G\frac<mM></p>
<p>\]

откуда ускорение свободного падения:

\[g=G\frac<M></p>
<p>\]

Ускорение свободного падения не зависит от массы тела, а зависит от высоты тела над Землей. Земной шар немного сплюснут у полюсов, поэтому тела, находящиеся около полюсов, расположены немного ближе к центру Земли. В связи с этим ускорение свободного падения зависит от широты местности: на полюсе оно немного больше, чем на экваторе и других широтах (на экваторе м/с" width="6" height="8" />
, на Северном полюсе экваторе м/с" width="6" height="8" />
.

Эта же формула позволяет найти ускорение свободного падения на поверхности любой планеты массой и радиусом .

Примеры решения задач

Задание Радиус Земли км, ускорение свободного падения на поверхности планеты м/с ^<2>
. Используя эти данные, оценить приближенно массу Земли.
Решение Ускорение свободного падения у поверхности Земли:

\[g=G\frac<M></p>
<p>\]

откуда масса Земли:

\[M=\frac<gR^2></p>
<p>\]

R=6,4\cdot <10></p>
<p>В системе Си радиус Земли ^6
м.

Подставив в формулу численные значения физических величин, оценим массу Земли:

\[M=\frac<9,8\cdot <\left(6,4\cdot </p>
<p>^6\right)>^2>^>=6\cdot ^\ kg\]

Задание Спутник Земли движется по круговой орбите на высоте 1000 км от поверхности Земли. С какой скоростью движется спутник? За какое время спутник совершит один полный оборот вокруг Земли?
Решение По второму закону Ньютона, сила, действующая на спутник со стороны Земли, равна произведению массы спутника на ускорение, с которым он движется:


Со стороны земли на спутник действует сила гравитационного притяжения, которая по закону всемирного тяготения равна:

\[F=G\frac<mM></p>
<p>\]

где и массы спутника и Земли соответственно.

Так как спутник находится на некоторой высоте над поверхностью Земли, расстояние от него до центра Земли:

где радиус Земли.

Таким образом, сила гравитационного притяжения в данном случае:

\[F=G\frac<mM></p>
<p><<\left(R+h\right)>^2>\]

Подставив значение гравитационной силы в формулу для второго закона Ньютона и учитывая, что ускорение спутника – это центростремительное ускорение (спутник движется по круговой орбите), получим:

\[G\frac<mM></p>
<p><<\left(R+h\right)>^2>=m\cdot \frac\]

\[G\frac<M></p>
<p>=v^2\]

откуда скорость спутника:

\[v=\sqrt<G\frac<M></p>
<p>\ >\]

\[v=\sqrt<\frac<6,7\cdot </p>
<p>^\cdot 6\cdot ^><6,4\cdot ^6+^6>>=7,4\cdot ^3\ /=7,4\ /\]

Время, за которое спутник совершит один полный оборот вокруг Земли, — это период его обращения по круговой орбите, который равен:

\[T=\frac<2\pi \left(R+h\right)></p>
<p>\]

\[T=\frac<2\pi \cdot \left(6,4\cdot </p>
<p>^6+^6\right)><7,4\cdot ^3>=6283\ c=1,8\ h\]

Всем телам на поверхности Земли сила тяжести сообщает при их свободном падении ускорение g, равное приблизительно 981 см/сек2. Допустим, что сила тяжести изменяется обратно пропорционально квадрату расстояния тела от центра Земли. Тогда, например, Луна, находящаяся от центра Земли на расстоянии в 60 земных радиусов (приблизительно), должна испытывать ускорение g' в 602 раз меньшее, чем ускорение на поверхности Земли, т. е. Из механики известно, что для точки, равномерно движущейся по кругу, центростремительное ускорение w = w2, где w — угловая скорость точки, а r — радиус круга. Принимая орбиту Луны за окружность с приближенным радиусом r = 60 є 6378 км, а период обращения Луны вокруг Земли равным примерно 27,3 средних суток (сидерический месяц), получим центростремительное ускорение орбитального движения Луны Полученные одинаковые числа для g' и w означают, что сила, которая удерживает Луну на ее орбите (сила притяжения), есть не что иное, как сила земной тяжести, ослабленная пропорционально отношению квадратов расстояния Луны от центра Земли и расстояния поверхности Земли от ее центра. На основании этого результата Ньютон и сделал вывод о том, что сила тяжести тождественна с силой взаимного тяготения, действующей между всеми телами Вселенной, и сформулировал свой закон

  • Главная /
  • Обучение /
  • Астрономия /
  • Тождество силы тяготения и силы тяжести

Читайте нас в telegram

Смотрите также

Асафов Алексей Николаевич


Приложение 5 (К cт.117) Метод относительных смещений (метод Деменцова)

Понятие о радиусах кривизны и длинах дуг земного эллипсоида. Локсодромия и ортодромия.

Добавить комментарий

Самое читаемое

Изолирующий дыхательный аппарат ИДА-59М

Устройство ИДА-59М Изолирующий дыхательный аппарат ИДА-59М (рис. 9) предс­тавляет собой автономный дыхательный аппарат регенеративного типа с замкнутым циклом дыхания. Аппарат изолирует органы…

Методика проведения искусственной вентиляции легких и закрытого массажа сердца

При различных несчастных случаях, когда у пострадавшего отсутствуют дыхание и признаки сокращения сердца, необходимо как можно раньше приступить к искусственной вентиляции легких и к закрытому…

RSS поток Podlodka.info

изель-электрическая подводная лодка Б-603 Волхов проекта 636.3

ДЭПЛ "Волхов" провела в Японском море пуск из подводного положения крылатой ракеты "Калибр" по наземной цели

Многоцелевая атомная подводная лодка Братск на транспортном судне Transshelf голландской компании Dосkwise

Атомная подлодка "Братск" признана непригодной к ремонту и восстанавливать ее не будут

Головная многоцелевая атомная подводная лодка усовершенствованного проекта 885М (шифр Ясень-М) Казань

Головную многоцелевую атомную подлодку усовершенствованного проекта 885М (шифр "Ясень-М") "Казань", передадут Военно-Морскому Флоту России осенью 2020 года

Подводные силы Тихоокеанского флота отмечают 115-ую годовщину со дня образования

115 лет подводным силам Тихоокеанского флота

Россия отметила 115-ую годовщину со Дня образования подводных сил Тихоокеанского флота. Во Владивостоке в 1905 году появился первый отряд подлодок "миноносцев"

Подводная лодка проекта 877 Дмитров в море

Экипаж дизель-электрической подводной лодки Балтийского флота "Дмитров" приступил к выполнению учебно-боевых задач и отработке нормативов

Код ОГЭ 1.13. Всемирное тяготение. Закон всемирного тяготения. Сила тяжести. Ускорение свободного падения. Формула для вычисления силы тяжести вблизи поверхности Земли. F = mg. Искусственные спутники Земли.

Закон всемирного тяготения не объясняет причин тяготения, а только устанавливает количественные закономерности.

Закон всемирного тяготения (И. Ньютон, 1667 г.): Тела притягиваются друг к другу с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними: , где F – сила тяготения, m1 и m2 – массы взаимодействующих тел, r – расстояние между телами (центрами масс), G – гравитационная постоянная .

Закон справедлив для: 1) материальных точек; 2) однородных шаров и сфер; 3) концентрических тел.

Физический смысл гравитационной постоянной G: гравитационная постоянная G численно равна модулю силы тяготения, действующей между двумя точечными телами массой по 1 кг каждое, находящимися на расстоянии 1 м друг от друга.

Гравитационная постоянная G очень мала, и гравитационное взаимодействие существенно только при больших массах взаимодействующих тел.


Внимание! Силы притяжения – центральные. В соответствии с третьим законом Ньютона: .


Сила тяжести – частный случай силы всемирного тяготения. Рассмотрим взаимодействие планеты и тела (по сравнению с планетой тело можно считать материальной точкой).

Изображённая на рисунке сила F12 – сила притяжения тела к планете, которая и называется силой тяжести .

Применительно к ней формулу закона всемирного тяготения можно записать так: , где m – масса тела, М – масса планеты, г –расстояние между телом и центром планеты, g – ускорение свободного падения. Тогда для ускорения свободного падения получаем: . Если обозначить через R радиус планеты, а через h –расстояние до тела от поверхности планеты, то


Сила тяжести и ускорение свободного падения направлены к центру масс планеты (перпендикулярно сферической поверхности планеты в данной точке).

Ускорение, сообщаемое телу силой тяжести (ускорение свободного падения), зависит от:

  • массы планеты;
  • радиуса планеты;
  • высоты над поверхностью планеты;
  • географической широты (на Земле на полюсах g ~ 9,83 м/с 2 , на экваторе g ~ 9,79 м/с 2 );
  • наличия полезных ископаемых.

Внимание! Ускорение силы тяжести (свободного падения) не зависит от массы и других параметров тела!
Внимание! При решении задач ускорение силы тяжести (свободного падения) принимается равным 10 м/с 2 .

Читайте также: