Характеристика изменений пульса и кровяного давления при мышечной деятельности кратко

Обновлено: 05.07.2024

Сердце и кровеносные сосуды – основная транспортная система человеческого организма. Строение и функции сердечно-сосудистой системы, регуляция ее работы. Сердечный цикл. Методы исследования сердечно-сосудистой системы. Тренировка сердца.

Сердечно-сосудистая система обеспечивает все процессы метаболизма в организме человека и является компонентом различных функциональных систем, определяющих гомеостаз. Основой кровообращения является сердечная деятельность.

Наше сердце всегда первым откликается на потребности организма: будь то физические нагрузки, подъем в горы, воздействие эмоций или других факторов. Так, при средней продолжительности жизни человека в 70 лет оно сокращается свыше 2,5 миллиардов раз. За это время перекачивается огромное количество крови, для перевозки которой потребовался бы состав из 4 000 000 вагонов. И эта работа выполняется органом, масса которого 250 г (у женщин) и немногим больше 300 г (у мужчин).

У людей, занимающихся спортом, сердце в состоянии напряжения может работать с частотой свыше 200 сокращений в минуту и при этом обладать удивительной выносливостью. В это время увеличивается сила и скорость сокращений сердца, а через его сосуды проходит крови в 4-5 раз больше, чем в состоянии покоя . Мышца сердца при этом не испытывает дефицита питательных веществ и кислорода. Однако нетренированным людям стоит только немного пробежаться, как у них появляется сердцебиение и одышка. Почему это происходит? Давайте попробуем разобраться и решить для себя: действительно ли так важны для нашего организма занятия спортом.

Рассмотрим кратко строение сердечно-сосудистой системы и ее функции.

Сосуды, отводящие кровь от сердца, называют артериями, а доставляющие ее к сердцу – венами. Сердечно-сосудистая система обеспечивает движение крови по артериям и венам и осуществляет кровоснабжение всех органов и тканей, доставляя к ним кислород и питательные вещества и выводя продукты обмена. Она относится к системам замкнутого типа, то есть артерии и вены в ней соединены между собой капиллярами. Кровь никогда не покидает сосуды и сердце, только плазма частично просачивается сквозь стенки капилляров и омывает ткани, а затем возвращается в кровяное русло.

Строение и работа сердца человека. Сердце – полый симметричный мышечный орган размером примерно с кулак человека, которому оно принадлежит. Сердце разделено на правую и левую части, каждая из которых имеет две камеры: верхнюю (предсердие) для сбора крови и нижнюю (желудочек) с впускным и выпускным клапанами для предотвращения обратного тока крови. Стенки и перегородки сердца представляют собой мышечную ткань сложного слоистого строения, называемую миокардом.

Сердце обладает уникальным свойством самовозбуждения, то есть импульсы к сокращению зарождаются в нем самом.

Если извлечь у животного сердце и подключить к нему аппарат искусственного кровообращения, оно будет продолжать сокращаться, будучи лишенным каких бы то ни было нервных связей. Это свойство автоматизма обеспечивает проводящая система сердца, расположенная в толще миокарда. Она способна генерировать собственные и проводить поступающие из нервной системы электрические импульсы, вызывающие возбуждение и сокращение миокарда. Участок сердца в стенке правого предсердия, где возникают импульсы, вызывающие ритмические сокращения сердца, называют водителем ритма. Тем не менее, сердце связано с центральной нервной системой нервными волокнами, оно иннервируется более чем двадцатью нервами. Казалось бы, зачем они, если сердце может сокращаться самостоятельно?

Регуляция работы сердца. Нервы выполняют функцию регуляции сердечной деятельности, которая служит еще одним примером поддержания постоянства внутренней среды (гомеостаза).

Сердечная деятельность регулируется нервной системой – одни нервы увеличивают частоту и силу сердечных сокращений, а другие – уменьшают.

Импульсы по этим нервам поступают на водитель ритма, заставляя его работать сильнее или слабее. Если перерезать оба нерва, сердце все равно будет сокращаться, но с постоянной скоростью, так как перестанет приспосабливаться к потребностям организма. Эти нервы, усиливающие или ослабляющие сердечную деятельность, составляют часть вегетативной (или автономной) нервной системы, которая регулирует непроизвольные функции организма. Примером такой регуляции является реакция на внезапный испуг – вы чувствуете, что сердце “замирает”. Это приспособительная реакция ухода от опасности.

Коротко рассмотрим, как происходит регуляция сердечной деятельности в организме (рисунок 1.5.6).

Рисунок 1.5.6. Гомеостатическая регуляция сердечной деятельности

Нервные центры, регулирующие деятельность сердца, находятся в продолговатом мозге. В эти центры поступают импульсы, сигнализирующие о потребностях тех или иных органов в притоке крови. В ответ на эти импульсы продолговатый мозг посылает сердцу сигналы: усилить или ослабить сердечную деятельность. Потребность органов в притоке крови регистрируется двумя типами рецепторов – рецепторами растяжения (барорецепторами) и хеморецепторами. Барорецепторы реагируют на изменение кровяного давления – повышение давления стимулирует эти рецепторы и заставляет посылать в нервный центр импульсы, активирующие тормозящий центр. При понижении давления, наоборот, активируется усиливающий центр, сила и частота сердечных сокращений увеличиваются и кровяное давление повышается. Хеморецепторы “чувствуют” изменения концентрации кислорода и углекислого газа в крови. Например, при резком увеличении концентрации углекислого газа или понижении концентрации кислорода эти рецепторы тотчас же сигнализируют об этом, заставляя нервный центр стимулировать сердечную деятельность. Сердце начинает работать более интенсивно, количество крови, протекающей через легкие, увеличивается и газообмен улучшается. Таким образом, перед нами пример саморегулирующейся системы.

Но не только нервная система влияет на работу сердца. На функции сердца влияют и гормоны, выделяемые в кровь надпочечниками. Например, адреналин усиливает сердцебиение, другой гормон, ацетилхолин, наоборот, угнетает сердечную деятельность.

Теперь, наверное, вам не составит труда понять, почему, если резко встать из лежачего положения, может даже наступить кратковременная потеря сознания. В вертикальном положении кровь, питающая мозг, движется против силы тяжести, поэтому сердце вынуждено приспосабливаться к этой нагрузке. В лежачем положении голова ненамного выше сердца, и такой нагрузки не требуется, поэтому барорецепторы дают сигналы ослабить частоту и силу сердечных сокращений. Если же неожиданно встать, то барорецепторы не успевают сразу отреагировать, и на какой-то момент произойдет отток крови от мозга и, как следствие, головокружение, а то и помутнение сознания. Как только по команде барорецепторов темп сердечных сокращений ускорится, кровоснабжение мозга окажется нормальным, и неприятные ощущения исчезнут.

Сердечный цикл. Работа сердца совершается циклически. Перед началом цикла предсердия и желудочки находятся в расслабленном состоянии (так называемая фаза общего расслабления сердца) и наполнены кровью. Началом цикла считают момент возбуждения в водителе ритма, в результате которого начинают сокращаться предсердия, и в желудочки попадает дополнительное количество крови. Затем предсердия расслабляются, а желудочки начинают сокращаться, выталкивая кровь в отводящие сосуды (легочную артерию, несущую кровь в легкие, и аорту, доставляющую кровь в остальные органы). Фаза сокращения желудочков с изгнанием из них крови называется систолой сердца. После периода изгнания желудочки расслабляются, и наступает фаза общего расслабления – диастола сердца.

С каждым сокращением сердца у взрослого человека (в состоянии покоя) в аорту и легочный ствол выбрасывается 50-70 мл крови, в минуту – 4-5 л. При большом физическом напряжении минутный объем может достигать 30-40 л.

Во время диастолы полости желудочков и предсердий вновь заполняются кровью, одновременно происходит восстановление энергетических ресурсов в клетках миокарда за счет сложных биохимических процессов, в том числе за счет синтеза аденозинтрифосфата. Затем цикл повторяется. Этот процесс фиксируется при измерении артериального давления – верхний предел, регистрируемый в систоле, называют систолическим, а нижний (в диастоле) – диастолическим давлением. Измерение артериального давления (АД) является одним из методов, позволяющим контролировать работу и функционирование сердечно-сосудистой системы.

Одним из первых, кто детально проанализировал показатели АД, был немецкий физиолог К. Людвиг. Он вводил канюлю в сонную артерию собаки и регистрировал АД с помощью ртутного манометра, с которым была соединена канюля. В манометр погружался поплавок, который соединялся с прибором, регистрирующим колебания различной амплитуды.

В настоящее время АД измеряют бескровным методом с помощью специального прибора – тонометра, что позволяет определить следующие показатели:

1. Минимальное, или диастолическое АД – это та наименьшая величина, которой достигает давление в плечевой артерии к концу диастолы. Минимальное давление зависит от степени проходимости или величины оттока крови через систему капилляров, частоты сердечных сокращений. У молодого здорового человека минимальное давление составляет – 80 мм рт.ст.

2. Максимальное, или систолическое АД – это давление, выражающее весь запас потенциальной и кинетической энергии, которым обладает движущаяся масса крови на данном участке сосудистого русла. В норме у здоровых людей максимальное давление составляет 120 мм рт.ст.

В медицинской практике для определения работы и состояния сердечно-сосудистой системы используют различные методы исследования сердечно-сосудистой системы, информативность, клиническая значимость и клиническая доступность которых весьма различны. В настоящее время ведущее место в клинической практике занимают такие методы как электрокардиография, эхокардиография, рентгенокардиография (более подробно о которых рассказано в разделе 2.1.2) и многие другие. Подобные исследования проводятся специалистами с помощью различных приборов в лечебных учреждениях.

Сердце – это мышечный насос, основная функция которого – сократительная – заключается в непрерывном круговом перемещении крови по всему организму. Кислород доставляется от легких к тканям, а углекислый газ, являющийся одним из “шлаков”, – к легким, где кровь снова обогащается кислородом. Кроме того, с кровью во все клетки организма доставляются питательные вещества, а из них уносятся другие “шлаки”, которые с помощью органов выделения (например почки) удаляются из организма, как зола из печки хорошим хозяином.

От сердца кровь движется по артериям, артериолам и капиллярам. Самая крупная артерия – аорта, она идет непосредственно от сердца (от левого желудочка), самые мелкие сосуды – капилляры, через стенки которых и происходит обмен веществ между кровью и тканями. Кровь, насыщенная углекислым газом и отходами обмена веществ, собирается в венулах и далее по венам, освобождаясь от шлаков в органах выделения, движется обратно к сердцу, которое выталкивает ее в легкие для освобождения от углекислого газа и обогащения кислородом. Обогащенная кислородом кровь из легких по легочным венам поступает в левое предсердие, перекачивается левым желудочком в аорту, и начинается новый цикл кругового перемещения крови.

Коронарные артерии и вены снабжают саму сердечную мышцу (миокард) кислородом и питательными веществами. Это питание для сердца, которое выполняет такую важную и большую работу.

Малый круг начинается в правом желудочке и заканчивается в левом предсердии. Он служит для питания сердца, обогащения крови кислородом. Большой круг (от левого желудочка до правого предсердия) отвечает за кровоснабжение всего тела, кроме легких.

Стенки кровеносных сосудов очень эластичны и способны растягиваться и сужаться в зависимости от давления крови в них. Мышечные элементы стенки кровеносных сосудов всегда находятся в определенном напряжении, которое называют тонусом. Тонус сосудов, а также сила и частота сердечных сокращений обеспечивают в кровяном русле давление, необходимое для доставки крови во все участки тела. Этот тонус, так же как интенсивность сердечной деятельности, поддерживается с помощью вегетативной нервной системы. В зависимости от потребностей организма парасимпатический отдел, где основным посредником (медиатором) является ацетилхолин, расширяет кровеносные сосуды и замедляет сокращения сердца, а симпатический (посредник – норадреналин) – наоборот, суживает сосуды и ускоряет работу сердца.

Тренировка сердца. Теперь попробуем разобраться, почему у нетренированного человека при незначительной физической нагрузке появляются признаки “кислородного голодания”: сердцебиение, одышка и другие. К примеру, во время бега, тяжелой физической работы потребность организма в кислороде возрастает примерно в 8 раз. А это означает, что сердце должно перекачивать в 8 раз больше крови, чем обычно.

Знаете ли вы, что.
Ученые подсчитали, что за сутки сердце расходует количество энергии, достаточное для поднятия груза в 900 кг на высоту 14 м (!)

У человека, ведущего малоподвижный образ жизни, учащение сердечных сокращений не приводит к увеличению кровоснабжения сердца, как это требуется организму. В этом случае мышца сердца и скелетные мышцы получают недостаточное количество кислорода, работают в условиях кислородного голодания, в результате накапливаются вредные продукты обмена веществ, что приводит к более быстрому износу сердечной мышцы. Нетренированное сердце со слабой сердечной мышцей не может долго работать с повышенной нагрузкой. Оно быстро устает, причем кровоснабжение сначала ненадолго усиливается, а затем ухудшается. Поэтому человек должен с детства заботиться о своем сердце и тренировать его.

Подробная информация о препаратах, применяемых при болезнях сердечно-сосудистой системы представлена в главе 3.5.

Исследование сердечных сокращений. Влияние интенсивности физических нагрузок на частоту сердечных сокращений. Рост глубины и частоты дыхания при мышечной работе. Оценка состояния сердечно–сосудистой и дыхательной систем. Работа максимальной мощности.

Рубрика Медицина
Вид курсовая работа
Язык русский
Дата добавления 27.05.2015
Размер файла 85,0 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Национальный государственный Университет физической культуры, спорта и здоровья имени П.Ф. Лесгафта, Санкт-Петербург

Кафедра физиологии

Курсовая работа

Селиверстова Валентина Викторовна

Глава 1. Обзор литературы

1.1 Исследования частоты сердечных сокращений

1.2 Частота дыхания

1.3 Артериальное давление

3. Глава 2. Цель, задачи, методы и организация исследования

2.2 Цель и задачи исследования

2.3 Методы исследования

2.4 Методика исследования

2.5 Организация исследования

Глава 3. Результаты исследования

3.1 Работа максимальной мощности

3.2 Работа субмаксимальной мощности

Актуальность проблемы. Современный спорт, тренировка, направленная на достижение высоких результатов, требует от спортсмена большого напряжения всех физиологических резервов организма, физических и психических возможностей. Занятия спортом подразумевают выполнение физических нагрузок различной направленности, интенсивности и продолжительности. В определённый период выполнения работы начинается процесс утомления, когда снижаются функциональные возможности организма наряду с развитием торможения в центральной нервной системе. После прекращения физических упражнений в организме происходят изменения, повышающие функциональные возможности систем - восстановление. Эффективность системы спортивной подготовки определяет рост результатов спортсменов и их успехи в соревновательной деятельности. Поэтому важна оптимальная организация тренировочного процесса. А оценка состояния сердечно-сосудистой и дыхательной систем, выявление их изменений под влиянием физических нагрузок одна из важнейших задач врачебно - педагогического контроля на тренировках.

Глава 1. Обзор литературы

сердечный сосудистый сокращение работа

Физические нагрузки вызывают перестройки различных функций организма, особенности и степень которых зависят от мощности и характера двигательной деятельности.

В состоянии покоя деятельность различных функций отрегулирована соответственно невысокому уровню кислородного запаса и энергосбережения. При переходе к рабочему уровню необходима перестройка функций различных органов и систем на более высокий уровень активности и новое межсистемное согласование на рабочем уровне.

1.1 Исследования частоты сердечных сокращений

Частота сердечных сокращений (ЧСС) является одним из важных критериев функционального состояния сердца. Сердечно - сосудистая система, участвуя в доставке кислорода работающим тканям, претерпевает заметные рабочие изменения. Увеличивается систолический объём крови ( при больших нагрузках у спортсменов до 150 - 200 мл.), нарастает ЧСС ( до 180 уд./мин. и более), растёт минутный объём крови ( у тренированных спортсменов до 35 л./мин. и более). Происходит перераспределение крови в пользу работающих органов.

Частота сердцебиения в состоянии покоя зависит от возраста, пола, размеров тела, образа жизни человека. У большинства взрослых здоровых людей эта величина составляет 60--70 уд/мин. У женщин она несколько больше, чем у мужчин, у детей больше, чем у взрослых.

У физически активных людей в состоянии покоя частота сердцебиения, как правило, меньше, чем у людей, ведущих малоподвижный образ жизни.

Частота сердечных сокращений меньше 60 уд/мин называется брадикардией. У спортсменов это явление может быть выражено очень резко. У многих из них в состоянии покоя сердце сокращается около 40 раз в 1 мин.

Частота сердцебиения зависит от положения тела; в положении стоя она больше, чем в положениях сидя и лежа.

На частоту сердечных сокращений влияют психические факторы. При эмоциональном возбуждении (страхе, гневе, у спортсменов - при ожидании старта) она увеличивается.

Мышечная деятельность вызывает учащение сердцебиения. При напряженной мышечной деятельности оно увеличивается до 160-- 190 уд/мин. а во многих случаях даже до 200--220 уд/мин. При работе, вызывающей учащение сердечных сокращений до 130--180 уд/мин, существует линейная зависимость между этим показателем и мощностью работы. При большем учащении сердечных сокращений эта зависимостъ нарушается (В.В. Васильева 1984).

У спортсменов ЧСС в покое ниже, чем у нетренированных людей и составляет 50--55 ударов в минуту. У спортсменов экстра-класса (лыжники-гонщики, велогонщики, марафонцы-бегуны и др.) ЧСС составляет 30--35 уд/мин. Физическая нагрузка приводит к увеличению ЧСС, необходимой для обеспечения возрастания минутного объема сердца, причем существует ряд закономерностей, позволяющих использовать этот показатель как один из важнейших при проведении нагрузочных тестов. Отмечается линейная зависимость между ЧСС и интенсивностью работы в пределах 50--90% переносимости максимальных нагрузок (рис. 1), однако есть индивидуальные различия, связанные с полом, возрастом, физической подготовленностью обследуемого, условиями окружающей среды и др. При легкой физической нагрузке ЧСС сначала значительно увеличивается, затем постепенно снижается до уровня, который сохраняется в течение всего периода стабильной работы.

Рис.1. Влияние интенсивности физических нагрузок на ЧСС: I -- легкая нагрузка; II-- средняя; III -- тяжелая нагрузка (по L. Brouda, 1960)

При более интенсивных и длительных нагрузках имеется тенденция к увеличению ЧСС, причем при максимальной работе она нарастает до предельно достижимой. Эта величина зависит от тренированности, возраста, пола обследуемого и других факторов. В 20 лет максимальная ЧСС -- около 200 уд/мин, к 64 годам опускаются примерно до 160 уд/мин в связи с общим возрастным снижением биологических функций человека. ЧСС увеличивается пропорционально величине мышечной работы. Обычно при уровне нагрузки 1000 кг/мин ЧСС достигает 160-170 уд/мин, по мере дальнейшего повышения нагрузки сердечные сокращения ускоряются более умеренно, и постепенно достигают максимальной величины -- 170--200 уд/мин. Дальнейшее повышение нагрузки уже не сопровождается увеличением ЧСС.

Многие авторы отмечают тесную зависимость ЧСС от интенсивности бега. Например, В.В.Васильева, Р.П.Грачева, Л.Б.Ельшина, И.М.Козлов, Э.Б.Коссовская. В их работе приведены исследования ЧСС на дистанциях 400, 800, 5000, 1500, 10000 м со спортсменами в условиях тренировочных занятий. В этих исследованиях у них получились следующие результаты:

Бег на 400 м вызывает учащение пульса до 180-198 ударов. Учащение происходит постепенно и достигает максимума на последних секундах бега, непосредственно перед финишем.

В беге на 800 м достигает к концу дистанции 192 уд/мин. За I мин. восстановления сердце сокращается 180 раз, за 2 мин. - 170 раз, за 3 мин. - 146 раз и т.д. Полного восстановления за 10 минут наблюдений не произошло.

В беге на 1500 м ЧСС уже в первую минуту бега достигает 170 ударов. В дальнейшем происходит некоторое увеличение ритма: за последние 10 сек. бега сердце сократилось 34 раза, т.е. 204 удара. На первой минуте восстановления происходит резкое урежение пульса, но в дальнейшем он продолжает удерживаться на высоких показателях.

В беге на 5000 м уже на первых минутах отмечается крупное нарастание ЧСС. В дальнейшем устанавливается на уровне 171-174 уд/мин. Лишь на последней минуте работы пульс достигает 177 уд/мин., а на последних 10 сек. он равен 31, что соответствует 186 уд/мин. Восстановление продолжается более 10 мин.

1.2 Частота дыхания

Дыхание значительно увеличивается при мышечной работе - растёт глубина дыхания (до 2-3 л.) и частота дыхания (до 40-60 вдохов в мин.). Минутный объём дыхания при этом может увеличиваться до 150-200л/мин. Однако большое потребление кислорода дыхательными мышцами (до 1л/мин.) делает нецелесообразными предельное напряжение вешнего дыхания. Большой информативностью о потенциальных возможностях аппарата обладает показатель ЖЕЛ (жизненная емкость легких) - максимальный объем воздуха, который человек может выдохнуть после глубокого вдоха. Средними показателями для юношей в возрасте 16-18 лет являются величины в пределах 4000-4500 см3, а для девушек этого же возраста 3000-3500 см3. У физкультурников и спортсменов эти показатели достигают 6000 и даже 7000 см3(гребцы, пловцы, лыжники).

Научные данные о значительном расширении диапазона функциональных возможностей дыхательной системы в процессе физической тренировки стали появляться вместе с "взрывом" публикаций по физиологии спорта в конце 50-х - начале 60-х годов. Поскольку предельное напряжение дыхательной функции, также как и всех остальных, входящих в систему кислородного транспорта, происходит на уровне максимального потребления кислорода (МПК), то изучение резервов осуществляется при предельных физических нагрузках. Так, при выполнении физических нагрузок, относящихся к зонам субмаксимальной и большой мощности минутный объем дыхания (МОД) у взрослых нетренированных мужчин обычно не превышает 90-120 л/мин, в то время как у спортсменов он может достигать 160-170 и даже 250 л/мин. Вентиляционные возможности легких характеризуются величиной максимальной вентиляции легких (МВЛ, называемой также "пределом вентиляции", "максимальным респираторным дебитом", "пределом дыхания"), определение которой широко распространено в клинической и спортивной медицине.

Частота дыхания существенно зависит от возраста, состояния здоровья, уровня физической тренированности, величины выполняемой нагрузки. Взрослый человек делает в минуту 12-18 дыханий, дети младшего школьного возраста - от 18 до 25. У регулярно тренирующихся людей частота дыхания снижается (а сила дыхательных мышц увеличивается), составляя у спортсменов 7 - 15 в минуту. При выполнении физической нагрузки частота дыхания возрастает в зависимости от мощности и может достигать 60 в минуту. Для подсчёта частоты дыхания нужно положить ладонь так, чтобы она захватывала нижнюю часть грудной клетки и верхнюю часть живота, дышать равномерно. Время измеряется по секундомеру. Проконтролировать деятельность системы дыхания и оценить её функциональное состояние можно с помощью проб с задержкой дыхания.

С.Н.Добронравов в работе "Адаптационные изменения сердечной деятельности и внешнего дыхания у спортсменов при нагрузке большой интенсивности" исследовал оценку участия сердечной и дыхательной функции в процессе адаптации тренированного организма к мышечной работе высокой интенсивности у мастеров и кандидатов в мастера спорта. На основании полученных данных автор делает выводы: "реакция тренированного организма на физическую работу большой интенсивности первоначально проявляется в учащении сердечный сокращений, быстро достигающим оптимального уровня, после чего прирост ЧСС замедляется. Одновременно, но несколько по-иному изменяется и внешнее дыхание. Вначале частота дыхания возрастает медленнее, чем ЧСС, но глубина дыхания сразу же увеличивается. В дальнейшем, после того как ЧСС достигает оптимального уровня, частота дыхания повышается быстрее, чем ЧСС, и за счет учащения и дальнейшего углубления дыхания интенсивно увеличивается легочная вентиляция. В процессе адаптации тренированного организма к большой физической нагрузке начальные изменения кровообращения более интенсивны, чем динамика дыхания. Интенсивное нарастание показателей дыхания лишь к моменту, когда ЧСС достигает 170 -180 уд/мин. В процессе адаптации тренированного организма к большой мышечной нагрузке компенсаторные возможности сердечной деятельности используются более чем дыхательной" (1973, № 8).

Авторы работы "Влияние произвольного изменения частоты и глубины дыхания на гомеостатические критерии у спортсменов при мышечной работе" сообщают, что "что по мере увеличения мощности работы в пробах о естественный дыханием у спортсменов возрастала частота дыхания, вентиляция легких, величина потребления кислорода и выделения углекислого газа. При работе небольшой мощности установлено высокое насыщение артериальной крови кислородом.

Эти данные позволяют утверждать, что эффективность внешнего дыхания у спортсменов при выполнении циклической мышечной работы обуславливается следующими основными факторами:

1. Необходимость достижения такой величины альвеолярной вентиляции, которая обеспечивает в артериальной крови давление кислорода не ниже 75 мм рт. ст., что обеспечивает насыщение крови кислородом на уровне 95%.

2. Экономичным функционированием аппарата внешнего дыхания, что обеспечивает высокий к.п.д. дыхательных мышц. Это во многом достигается оптимальным соотношением частоты и глубины дыхания, а также элементов грудного и брюшного дыхания.

3. Оптимальным кратным соотношением числа дыханий и двигательных циклов. Данный фактор не всеми авторами рассматривается как значимый. Так Михайлов В.В., Козлов А.Б., Апсит С. О. утверждают, что "во время бега, ходьбы и езды на велосипеде . нет жесткой связи между темпами движения и дыхания. Здесь могут быть различные сочетания. При этом наличие или отсутствие кратных соотношений существенно не влияет на эффективность работы".

1.3 Артериальное давление

Кровообращение представляет собой физиологические процессы, обеспечивающие непрерывное движение крови в организме благодаря деятельности сердца и сосудов. Давление в кровеносной сосудистой системе - это сила, обусловливающая движение крови по сосудам. Величина кровяного давления является одной из важнейших констант, характеризующих функциональное состояние организма. Давление определяется работой сердца и тонусом артериальных сосудов и способно изменяться в зависимости от фаз сердечного цикла.

Кровеносная и дыхательная системы совместно выполняют одну из важнейших функций -- осуществляют обмен кислородом и углекислотой между тканями тела и атмосферным воздухом.

Дыхательная система обеспечивает насыщение крови кислородом и выведение из нее углекислого газа. Кровеносная система обеспечивает контакт обогащенной кислородом крови с тканями тела. Кислород поступает в ткани, а в кровь из тканей переходит в углекислый газ -- один из продуктов распада в процессе жизнедеятельности клеток. В легких кровь освобождается от углекислого газа и вновь насыщается кислородом.

Следовательно, эти системы являются звеньями одной цепи. Их деятельность строго координирована. Если, например, при физической работе повышается частота дыхания, то, соответственно, возрастает ЧСС. Таким же образом синхронно изменяются и другие показатели работоспособности сердечнососудистой и дыхательной систем.

Глава 2. Цель, задачи, методы и организация исследования

Предполагалось, что артериальное давление и частота сердечных сокращений и частота дыхания зависят от мощности выполненной работы.

2.2 Цель и задачи исследования

Целью работы являлось установление зависимости ЧСС и ЧД от мощности выполненной работы. В соответствии с целью были поставлены следующие задачи:

1. Изучить теорию и практику изменения параметров ЧСС, ЧД и АД от мощности выполняемой работы.

2. Проследить за изменениями параметров ЧСС и АД на первых минутах восстановления.

3. Проследить за взаимосвязью ЧСС и АД в процессе работы.

2.3 Методы исследования

1.Анализ научно-методической литературы по проблематике работы.

2.Проводились замеры ЧСС, ЧД в покое, за 10 с. до начала работы, и на каждой нечетной минуте в период восстановления (1-ой, 2-ой и 5-ой мин.).

3. Проводились замеры АД. Оценка изменений АД.

2.4 Методика исследования

1. анализ и обобщение литературных источников.

3. тестирование показателей.

2.5 Организация исследования

1-й этап: на данном этапе был сделан выбор тематики предстоящей курсовой работы; выбрано исследование, которое будет проводиться; сформулирована цель и задачи исследования. Также был сделан теоретический анализ и обобщение данных литературных источников. И в итоге выведена гипотеза предстоящего исследования.

2-й этап: проведено педагогическое исследование.

Эксперимент был проведен 22 апреля 2015 года. В эксперименте приняло участие 4 девушки возрастом от 18 до 20 лет. До и после нагрузки подсчитывались ЧСС и частота дыхания на двух видах дистанций - короткие и длинные. Подсчет пульса на коротких дистанциях производился при выполнении бега на 100 метров, а на длинных при выполнении бега на 400 метров. Скорость бега не была предельной. Пульс и давление замерялось только до и после бега на 5 мин. восстановления, на дистанции было просто невозможно.

Подсчет пульса производился пальпаторно: пульс по лучевой и сонной артериям. Давление измерялось по методу Короткова.

До начала бега и после выполнения бега пульс на всех дистанциях измерялся по лучевой артерии за 1 минуту.

ЧД определялась визуально, подсчитывалось число вдохов-выдохов за 1 минуту.

3-й этап: Обработка полученных результатов эксперимента. Были сделаны выводы по полученным результатам и оформлена курсовая работа.

Глава 3. Результаты исследования

3.1 Работа максимальной мощности

К максимальной мощности относится динамическая циклическая работа длительностью не более 20-30 с: легкоатлетический бег на 60, 100, 200 м; плавание 50 м; велогонка на 500 м. Длительность работы, например, в беге на 100 м меньше времени кругооборота крови. В связи с малым временем работы функциональные сдвиги в организме невелики, причём некоторые из них увеличиваются после финиша. Частота сердечных сокращений после финиша доходит до 150-170 и более ударов в минуту, артериальное давление повышается до 150-180 мм. рт. ст. Расчетный (на 1 мин) кислородный запрос достигает 40 и более литров.

Бег на дистанцию 100 метров.

До начала бега пульс был в пределах 70 -80 уд/мин., частота дыхания от 15 до 24 вдохов - выдохов/мин. По окончании дистанции наблюдалось резкое повышение ЧСС в среднем до 160 уд./мин., а также повышается ЧД до 45- 55 вдохов - выдохов/мин. После 1-ой минуты восстановления показатели ЧСС и ЧД резко падают, на последующих минутах восстановление идет более плавно. К 5-ой минуте отдыха практически все испытуемые восстановили первоначальный уровень ЧСС и ЧД.

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Министерство сельского хозяйства Российской Федерации

Государственный Аграрный Университет

Кафедра Физической Культуры РЕФЕРАТ

курс, группа БМЛ-11

Изменение пульса и кровеносного давления при работе

Влияние физических нагрузок (К.Купер)

Снижение частоты сердечных сокращений в покое

Факторы, влияющие на изменение кровяного давления

Ритм сердечной деятельности

Оптимальные условия для работы сердца

давление мышечный нагрузка сердце

Введение Пульс - толчкообразные колебания стенок артерий, связанные с сердечными циклами. В более широком смысле под пульсом понимают любые изменения в сосудистой системе, связанные с деятельностью сердца, поэтому в клинике различают артериальный, венозный и капиллярный пульс.

Кровяное давление - давление, которое кровь оказывает на стенки кровеносных сосудов, или, по-другому говоря, превышение давления жидкости в кровеносной системе над атмосферным, один из важных признаков жизни.

Наиболее часто под этим понятием подразумевают артериальное давление. Кроме него, выделяют следующие виды кровяного давления: внутрисердечное, капиллярное, венозное. При каждом ударе сердца кровяное давление колеблется между наименьшим (диастолическим) и наибольшим (систолическим).

Изменение пульса и кровеносного давления при работе В покое минутный объем сердца колеблется в пределах 3,5-5,5 л, при мышечной работе он достигает 30-40 л. Между величиной минутного объема сердца, мощностью мышечной работы и потреблением кислорода существует линейная зависимость, однако только в том случае, когда имеется устойчивое состояние потребления кислорода.

Увеличение минутного объема сердца происходит за счет учащения сокращений и увеличения ударного (систолического) объема сердца. Систолический объем сердца в покое колеблется в пределах 60-80 мл; при работе же он может увеличиваться вдвое и более, что зависит от функционального состояния сердца, условий наполнения его кровью, тренировки. У хорошо тренированного человека систолический объем может при умеренной частоте пульса достигать высоких величин (до 200 мл).

Во время работы происходят дальнейшие изменения деятельности сердечно-сосудистой системы.

Изменение артериального давления (АД) при физической нагрузке

В условиях нормальной регуляции кровообращения физическое напряжение вызывает значительное повышение систолического АД, повышение диастолического АД при этом бывает относительно небольшим.

Так, повышение АД при значительной физической нагрузке до 230/110 мм рт.ст. можно считать физиологическим.

Принято считать значение АД, равное 200/100 мм рт.ст., при нагрузке 100 Вт верхней границей физиологически допустимого давления. При нагрузке 75 Вт АД в норме не должно превышать значения 180/95 мм рт.ст.

Характеристика нагрузки при велоэргометрии

Нормальная динамика артериального давления (АД) при физической нагрузке:

Видео методики измерения артериального давления

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Читайте также: