Докажите что осевая симметрия является движением кратко

Обновлено: 06.07.2024

На прошлом занятии вы познакомились с одним из видов движения — центральной симметрией.

Вспомним, что центральная симметрия — это такое отображение пространства на себя, при котором любая точка К переходит в симметричную ей точку К1, относительно центра симметрии точки В.

Отображение пространства на себя, при котором любая точка К переходит в симметричную ей точку К1 относительно оси а называется осевой симметрией с осью а.

1. Введём декартову (прямоугольную) систему координат Оxyz так, чтобы ось Оz совпала с осью симметрии.

2.Найдем связь между точками М (x;y;z) и M1 (x1;y1;z1), которые симметричны относительно оси Оz .Если точка М не принадлежит оси Оz, то данная ось:

а) проходит через середину отрезка МM1;

б) перпендикулярна отрезку ММ1.

Из первого условия по формулам для координат середины отрезка имеем:

Из второго условия можно сделать вывод, о том, что z=z1.

Данные формулы будут верны и в случае, если точка М принадлежит оси Оz.

3. Рассмотрим любые две точки: А — с координатами (x1;y1;z1) и В — с координатами (x2;y2;z2) и докажем, что расстояние между точками А1 и В1, которые им симметричны, равно АВ.

Точки А1 и В1 имеют координаты

А1 (-x1;-y1;z1) и В1 (-x2;-y2;z2).

По формуле расстояний между двумя точками, найдём:

Очевидно, что длина отрезка АВ равна длине отрезка A1B1, то есть расстояние между точками сохранено.

Таким образом, мы доказали, что осевая симметрия является движением.

Рассмотрим решение задач, применяя полученные знания.

Доказать, что при осевой симметрии прямая, образующая с осью симметрии угол , отображается на прямую, так же образующую с осью симметрии угол

1. Так как ось симметрии а и прямая l не параллельны, то а пересекается с l в некоторой точке А.

Выберем любую точку N на прямой l.

Построим отрезок NE перпендикулярно к оси симметрии а.

Затем продолжим отрезок NE за точку Е на расстояние EF=NE.

Соединим точки F и А.

2. Рассмотрим прямоугольные треугольники AEF и AEN.

EF=NE (по построению), АЕ — общий катет.

Таким образом, прямоугольные треугольники AEF и AEN равны.

Из равенства данных треугольников следует равенство углов EAN и EAF, а это и есть угол .

Итак, мы доказали, что при осевой симметрии прямая, образующая с осью симметрии угол , отображается на прямую, также образующую с осью симметрии угол

Известно, ABCDA1B1C1D1 — куб, длина ребра АВ равна а. Точка D отображается в точку D2 при осевой симметрии относительно прямой В1 D1. Найти ВD2.

1.Отрезок DD1 перпендикулярен плоскости A1C1D1 верхнего основания куба.

По определению осевой симметрии отрезки DD1 и D1D2 равны. Значит DD2=2а

2.Из прямоугольного треугольника ABD найдём гипотенузу BD по теореме Пифагора:

3.Так как треугольник BDD2 так же прямоугольный, то по теореме Пифагора найдем длину искомого отрезка ВD2:

Симметрия – это свойство геометрических фигур отражаться. Симметрия относительно точки называется центральной. Осевая симметрия – это симметрия относительно прямой.

Если точка A и точка B симметричны относительно прямой n, то прямая называется осью симметрии n и проходит через середину отрезка AB. Обозначение осевой симметрии – Sn, таким образом симметрия точек A и B обозначается так:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Другое название осевой симметрии – вращательная – применяется в естественных науках. Данное понятие означает отражение предметов касательно поворотов вокруг прямой.

Свойства осевой симметрии

  1. Осевая симметрия переводит прямую в прямую, луч – в луч, отрезок – в отрезок, плоскость в плоскость.
  2. Неподвижными являются: ось симметрии и все точки на ней, все прямые и плоскости, перпендикулярные оси симметрии.
  3. Обратное преобразование осевой симметрии есть та же осевая симметрия.
  4. Осевая симметрия – это поворот относительно оси симметрии на 180°.

Теорема и доказательство

Осевая симметрия – это движение, то есть при преобразовании осевой симметрии расстояние между точками сохраняется.

Если отрезок MN симметричен отрезку M1N1 относительно прямой a, то MN = M1N1.

Чтобы доказать, что MN = M1N1, сделаем дополнительные построения:

  • P – это точка пересечения MM1 и прямой a;
  • Q – это точка пересечения NN1 и прямой a;
  • построим отрезок MK, перпендикулярный NN1;
  • тогда точка K отразится в точку K1.

Докажем, что прямоугольные треугольники MNK и M1N1K1 равны. Стороны MN и M1N1 являются гипотенузами данных треугольников, поэтому, нужно доказать равенство катетов.

МК = М1К1 , так как перпендикулярны к параллельным прямым.

Точка N отобразилась в точку N1, значит:

Итак, треугольники равны по двум катетам, следовательно, их гипотенузы равны, то есть MN = M1N1, что и требовалось доказать.

Фигуры, обладающие симметрией

Осевой симметрией обладает угол, а биссектриса является осью симметрии.

Из произвольной точки одной стороны угла опустим перпендикуляр к биссектрисе и продлим его до другой стороны угла:

Угол обладающий симметрией

Рассмотрим Δ KAO и Δ MAO:

  • AO – общая сторона
  • Из свойства биссектрисы: ∠ MAO = ∠KAO
  • Треугольники KAO и MAO прямоугольные,

Отсюда следует, что KO = OM, поэтому точки K и M симметричны касательно биссектрисы угла.

Следовательно, равнобедренный треугольник тоже симметричен относительно биссектрисы, проведенной к основанию.

Равносторонний треугольник имеет три оси симметрии – биссектрисы, медианы, высоты каждого угла:

Равносторонний треугольник

У прямоугольника две оси симметрии. Каждая из них проходит через середины противоположных сторон.

Прямоугольник

Ромб обладает двумя осями симметрии – это прямые, содержащие его диагонали.

Ромб

Квадрат имеет 4 оси симметрии, так как он одновременно и ромб, и прямоугольник.

Квадрат

У окружности бесконечное множество осей симметрии – это все прямые, проведенные через центр круга.

Симметрия в повседневной жизни

Симметрия стала частью жизни человека уже в древние времена. Орнаменты с признаками зеркального отражения встречаются на античных зданиях, древнегреческих вазах. Свойство пропорционального расположения заимствовано в науку из природы.

Зеркальное отражение часто встречается в живой и неживой природе. Этой характеристикой обладают снежинки. В растительном мире одинаково расположены противоположные элементы растений: большинство листьев зеркально отражаются сравнительно среднего стебля. В животном мире законы симметрии проявляются в наличии у животных правой и левой сторон. Большинство представителей фауны обладает парными частями тела: уши, лапы, глаза, крылья, рога. Ярким образцом зеркальной симметрии считается бабочка. Прямая, условно проведенная вдоль туловища насекомого по центру, является осью симметрии.

Поскольку человек – это часть природы, в своем творчестве он использует принцип симметрии. В искусстве свойство отражения применяется для создания красоты и гармонии. В архитектуре пропорциональность выполняет практическую функцию – придает зданиям устойчивость и надежность. В предметах быта можно встретить одинаковость в расположении частей узоров на коврах, принтов на ткани, рисунков обоев.

Стремление к созданию симметричного, предположительно, связано с притяжением Земли – гравитацией. Человек интуитивно считает симметрию формулой устойчивости. Принцип зеркального отражения играет важную роль в человеческой жизни. Тяга к гармонии и красоте побуждает человечество придерживаться правил пропорциональности.

Если две фигуры совместить (наложить) друг с другом посредством движения, то эти фигуры одинаковы, равны.

Одно из таких движений — осевая симметрия . Каждой точке в плоскости по определённому закону ставится в соответствие другая точка той же плоскости.

Закон таков:
1. из точки \(M\) проводится перпендикуляр к оси симметрии (прямой) , и получается точка \(P\) — точка пересечения перпендикуляра с осью.

Simetrija_ass_punkti.jpg
Simetrija_ass.jpg

Итак, любой точке \(M\) плоскости ставится в соответствие единственная точка M 1 плоскости.
Осевая симметрия является частным случаем так называемого отображения плоскости на себя.
Чтобы отобразить фигуры в симметрии относительно прямой, достаточно отобразить соответственные вершины.

Другим частным случаем отображения плоскости на себя является центральная симметрия .
Точка плоскости \(M\) переходит в точку плоскости M 1 по следующему закону:
1. из точки \(M\) проводится прямая, соединяющая точку с центром симметрии (точкой \(O\)) .

M 1 ставится в соответствие точке \(M\).
Чтобы отобразить фигуры в симметрии относительно точки, достаточно отобразить соответственные вершины.

Оба представленных примера отображений обладают следующими свойствами:
1. каждый отрезок данной длины перейдёт в отрезок той же длины, т. е. расстояние между любыми точками сохраняются.
2. Луч переходит в луч, прямая — в прямую.
3. При движении фигура отображается в равную ей фигуру.
4. Движение обратимо. Отображение, обратное движению, является движением.
5. Композиция двух движений также является движением.

В данной статье мы будем рассматривать понятие осевой симметрии в трехмерном пространстве. Случай осевой симметрии на плоскость был рассмотрен нами в другой статье.

Понятие движения

Перед тем, как ввести понятие движения в пространстве, надо ввести определение отображения пространства на себя.

Отображением пространства на себя будем называть такое соответствие любой точке данного пространства какой-либо точке этого же пространства, в котором участвуют все точки из этого пространства.

Введем теперь, непосредственно, определение движения.

Движением пространства будем называть отображением пространства на себя, которое сохраняется расстояния между соответствующими точками.

Пример – рисунок 1.

Введем теперь несколько теорем, связанных с понятием движения без доказательства.

При движении отрезок будет отображаться на ему же равный отрезок.

При движении треугольник будет отображаться на равный ему же треугольник.

При движении пирамида будет отображаться на равную ей пирамиду.

Осевая симметрия

Перед тем, как определить понятие осевой симметрии, введем понятие симметричности точки относительно какой-либо оси.

Готовые работы на аналогичную тему

Точки $X$ и $X_1$ будем называть симметричными относительно какой-либо оси $a$, если прямая $(XX_1)$ будет перпендикулярна оси $a$ и при этом ось $a$ будет делить отрезок $[XX_1]$ пополам (рис. 2).

Осевой симметрией фигуры относительно оси будем называть отображение, при котором получается фигура, составленная из точек, симметричных относительно этой оси каждой точке начальной фигуры.

Введем следующую теорему:

Осевая симметрия – движение.

Пусть нам даны две точки $Z$ и $Z'$ – симметричные относительно оси $l$. Построит систему координат $O_$, где ось $Oz$ – это прямая $l$. Пусть точка $Z$ в этой системе координат имеет координаты $(α,β,γ)$, а точка $Z'$ имеет координаты $(α',β',γ')$. Так как эти точки симметричны относительно оси $Oz$, то эта ось будет делить отрезок $[ZZ']$ пополам, то есть

Так как ось $Oz$ совпадает с нашей осью симметрии, то $γ=γ'$.

Возьмем две произвольные точки $X$ и $Y$ с координатами $(α_1,β_1,γ_1)$ и $(α_2,β_2,γ_2)$, соответственно. Расстояние между ними равно

По формулам выше, получим, что симметричные им точки $X'$ и $Y'$ имеют координаты $(-α_1,-β_1,γ_1)$ и $(-α_2,-β_2,γ_2)$, соответственно. Расстояние между ними равно

То есть осевая симметрия сохраняет расстояния, что и доказывает нашу теорему.

С понятием осевой симметрии также связано понятие симметричной фигуры:

Фигуру будем называть симметричной относительно какой-то своей оси, если при такой осевой симметрии фигура перейдет в себя (рис. 3).

Пример задачи

Постройте осевую симметрию тетраэдра, относительно оси $l$, изображенных на рисунке 4.

Для построения такой осевой симметрии сначала проведем через все точки тетраэдра прямые, каждая из которых будет перпендикулярна к оси $l$ (рис. 5).

Далее, для построения будем использовать определение 3. Точка $A$ перейдет в такую точку $A'$, которая будет принадлежать прямой $a$. Точка $B$ перейдет в такую точку $B'$, которая будет принадлежать прямой $b$. Точка $C$ перейдет в такую точку $C'$, которая будет принадлежать прямой $c$. Аналогично, и точка $D$ перейдет в такую точку $D'$, которая будет принадлежать прямой $k$. Причем, при этом первоначальная ось $l$ делит отрезки $[AA']$, $[BB']$, $[CC']$, $[DD']$ пополам.

Читайте также: