Для чего нужна оболочка в клетке кратко и понятно

Обновлено: 03.07.2024

Клеточная оболочка ( цитоплазматическая оболочка ) – это поверхностный аппарат клетки, который выполняет важные функции, а потому имеет свои особенности.

Клеточная оболочка (цитоплазматическая оболочка) – это поверхностный аппарат клетки, который выполняет важные функции, а потому имеет свои особенности.

Внешняя мембрана лейкоцитов и одноклеточных организмов способствует проникновению в клетку частиц различных веществ. Фагоцитоз – это проникновение в клетку твердых частиц через мембрану. Проникновение ионов и мелких молекул жидких веществ в клетку называется пиноцитоз. Именно наружная мембрана клетки ответственна за обмен веществ между клеткой и внешней средой.

Митохондрии и пластиды имеют двойную мембрану, строение которой мы рассмотрим ниже.

Строение и функции наружного и внутреннего слоя клеточной оболочки

Наружный слой (химический состав и функции)

Внутренний слой – плазматическая мембрана

Растительная клетка

Состоит из клетчатки. Клетчатка является каркасом клетки, выполняет защитную функцию.

Два слоя белка, между которыми находится липидный слой.

Отделяет внутр.среду клетки от внешней.

Животная клетка

Гликокаликс – тонкий и эластичный наружный слой, состоящий из белков и полисахаридов. Выполняет функцию зашиты.

Два слоя белка, между которыми находится липидный слой.

Особое строение плазматической мембраны регулирует проникновение и вывод молекул и ионов веществ в клетку и из нее – во внешнюю среду.

Вакуоли, лизосомы, комплекс Гольджи и эндоплазматическая сеть имеют одинарную мембрану.

Клетки человека

Каково строение клетки человека и что нам о нем известно? Ученые сумели рассмотреть эту крохотную деталь нашего организма во всех подробностях и хорошо представляют, как она работает и что умеет. Познакомимся с удивительной жизнью клеток, триллионы которых образуют организм человека.

Строение клетки человека

Клетка человека представляет собой элементарную живую систему, основную структурную и функциональную единицу организма, которая может самообновляться, саморегулироваться и самовоспроизводиться.

Организм человека содержит десятки триллионов клеток, которые вместе образуют ткани и органы. Известны разные виды клеток человека: мозг, сердце и печень, например, состоят из специфических клеток.

Но все же общее строение клеток очень похоже, и именно на нем остановимся подробнее. Из чего состоит клетка? Структура клетки человека представлена компонентами.

Цитоплазматическая мембрана

Рассматривать строение клетки начинают с мембраны, так как она ее основа. Об этом компоненте клеток известно следующее:

  1. Это своеобразный конструктор, который, во-первых, ограждает всю клетку, а во-вторых, заключает в себе ядро и все мембранные органоиды (маленькие органы клетки).
  2. Мембраны образуют двойной липидный (жировой) слой. На их внешней стороне находятся особенные молекулы белка — рецепторы, которые взаимодействуют с другими клетками и веществами.
  3. Все мембраны обладают избирательной проницаемостью, то есть одни вещества они могут пропускать внутрь, а другие — нет.

Мембрана выполняет защитную функцию, регулирует обмен веществ между клеткой и окружающей средой, а также поддерживает ее форму.

Цитоплазма клетки человека

Это жидкая среда клетки, в которой находятся все органоиды и разнообразные включения. Основной ее компонент — вода. Это среда для протекания всех химических процессов. Также цитоплазма объединяет всю клетку в единое целое и служит полем для взаимосвязи всех компонентов.

Органоиды

Каждая из этих мельчайших деталей наделена важной функцией и бесперебойно ее выполняет.

Строение клетки человека

Органоиды клетки человека: Freepick

Главный органоид — это ядро. Оно состоит из:

  • ядерной мембраны;
  • ядрышка;
  • кариоплазмы;
  • хромосом.

С помощью мембраны ядро отделено от цитоплазмы. Внутри оно наполнено ядерным соком (кариоплазмой). Ядрышко необходимо для процесса синтеза белка. Самая сокровенная часть ядра — это хромосомы, ДНК с записью всей наследственной информации.

Стоит отметить, что количество хромосом разное у каждого вида и никак не связано со сложностью его организации. Так, человеческая клетка содержит 46 хромосом, клетка шимпанзе — 48, собаки — 78.

Клеточное ядро сохраняет наследственную информацию о клетке, передает ее дочерним клеткам во время деления, реализовывает наследственную информацию путем синтеза белков, которые характерны для данной клетки.

Кроме ядра, клетка организма содержит:

  1. Эндоплазматическую сеть (ЭПС). Эта система каналов пронизывает цитоплазму и нужна для обмена белков и жиров.
  2. Аппарат Гольджи, который располагается вокруг ядра в виде плоских цистерн. Этот органоид передает, сортирует и накапливает белки, липиды и полисахариды, а также образует лизосомы.
  3. Лизосомы — маленькие пузырьки, наполненные пищеварительными ферментами, которые выполняют функции защиты и переваривания белков, жиров и углеводов.
  4. Митохондрии занимаются синтезом АТФ — вещества, из которого организм получает энергию.
  5. Рибосомы необходимы для синтеза белка.
  6. Клеточный центр — густая цитоплазма с центриолями (комплексом микротрубочек), которая участвует в делении клеток.

В отдельных группах клеток присутствуют органоиды специального назначения. К ним относятся:

  • жгутики в мужских половых клетках, благодаря которым они двигаются;
  • миофибриллы в мышечных клетках, которые отвечают за процессы сокращения мышц;
  • нейрофибриллы в нервных клетках, которые передают нервные импульсы;
  • фоторецепторы в клетках глаз.

Также клетки могут постоянно или временно содержать ряд включений:

  • пигменты, окрашивающие клетки (коричневый пигмент меланин вырабатывается в коже на солнце, чтобы защитить ее, а мы видим этот процесс как образование загара);
  • трофические включения, в которых запасается энергия;
  • секреторные включения встречаются в клетках, которые выделяют гормоны;
  • экскреторные включения. К этой группе относится пот в потовых железах.

Все это умещается в 3–4 микрометре (мкм) — таков средний размер человеческой клетки!

Клетка человека: свойства

Прежде чем рассмотреть функции клетки и ее свойства, обратим внимание на состав клетки человека.

Состав клетки человека

Разобраться в свойствах клетки поможет знание ее состава:

  1. В клетках находятся соединения кислорода (О), серы (S), фосфора (Р), углерода (С), калия (К), хлора (Сl), водорода (Н), железа (Fe), натрия (Na), азота (N), кальция (Са), магния (Mg).
  2. Основной компонент — вода. В ней растворяются и переносятся питательные вещества, а также идут все реакции. Вода выводит из клеток вредные продукты обмена. Она регулирует температуру тела и составляет до 85% клеточного состава.
  3. Углеводы поставляют энергию для всех внутриклеточных процессов.
  4. Жиры нужны для образования мембран, а при нехватке углеводов становятся энергетическим ресурсом.
  5. Из белков построены все органоиды клетки, а также часть мембраны.
  6. Нуклеиновая кислота ДНК хранит и передает генетическую информацию, а РНК участвуют в синтезе белков.
  7. АТФ служит источником энергии.

Свойства

Клетки человека наделены следующими свойствами:

  1. Они способны самовоспроизводится путем деления.
  2. Могут изменяться в процессе существования.
  3. Клетки постоянно поддерживают обмен веществ с внешней средой и другими клетками организма.
  4. Способны использовать энергию, аккумулированную в химических веществах (углеводах, жирах, АТФ).
  5. Клетки реагируют на внешние и внутренние раздражители.
  6. Адаптируются к условиям внешней среды.

Процесс деления клеток человека

Процесс деления клеток человека: Freepick

Размножение

Одно из важнейших и ключевых свойств всех клеток — их способность к делению, благодаря которой организм растет, а старые клетки заменяются новыми.

Размножаются клетки в организме человека непрямым делением. В результате у дочерней клетки сохраняется хромосомный набор, идентичный материнскому. Именно хромосомы содержат всю информацию о наследственных свойствах данного организма и передают ее.

Процесс размножения состоит из нескольких стадий:

  1. На этапе подготовки к размножению происходит удвоение числа хромосом. Клетка активно запасается энергией и веществами, которые необходимы для деления.
  2. В первой фазе начинается деление. Центриоли в клеточном центре расходятся в клетке в разные стороны. Происходит утолщение и укорачивание хромосом, растворение ядерной оболочки. Клеточный центр превращается в веретено деления.
  3. На второй стадии удвоенные хромосомы располагаются в центре клетки. К каждой из них от центриолей протягиваются плотные нити.
  4. Далее эти нити сжимаются, притягивая хромосомы к двум противоположным частям клетки. Они расходятся пополам.
  5. В конце происходит деление всего содержимого клетки и цитоплазмы. Хромосомы вновь становятся длинными и неразличимыми, вокруг них образуется оболочка ядра. Тело клетки образует перетяжку, которая углубляясь, разделяет ее пополам, и две дочерние клетки продолжают отдельную жизнь.

Таково базовое строение клетки человека. Это совершенно крохотный и удивительный микромир, который богат органоидами и различными веществами. В нем происходят сложнейшие процессы, благодаря которым мы живем.

Узнавайте обо всем первыми

Подпишитесь и узнавайте о свежих новостях Казахстана, фото, видео и других эксклюзивах.

Каждая клетка – вне зависимости от того, животная она, или же растительная, окружена оболочкой, которая выполняет ряд определенных функций, без которых ее жизнедеятельность не представляется возможной. В функциональном плане есть различия между разными типами клеточных оболочек (стенок), однако основные принципы едины. Давайте же их рассмотрим подробнее.

Что делает оболочка в клетке – перечень функций

  • В первую очередь необходимо отметить, что без клеточной оболочки невозможно было бы поддержание формы – в таком виде существуют только лишь внутриклеточные паразиты (хламидии, микоплазмы и риккетсии)
  • На клеточной оболочке находятся пептидогликаны -рецепторы, которые воспринимают биохимические сигналы и передают их внутрь клетки, запуская, таким образом, каскады биохимических реакций;
  • Клеточная оболочка выполняет важную защитную функцию – она предотвращает попадание внутрь клетки вредных веществ и токсических химических соединений;
  • Из этой органеллы формируются цитоплазматические мостики, которые связывают клетку с другими клетками, благодаря чему возможно формирование ткани.

Это общие свойства, которые имеет любая клеточная оболочка – вне зависимости от того, какому организму принадлежит клетка (бактерии, грибу, растению или животному). Однако между оболочками клеток всех этих представителей живого мира есть и некоторые различия, которые будут рассмотрены ниже.

Особенности строения оболочки животной клетки

  • Основным ее отличием является мягкая структура, благодаря чему обеспечивается способность к амебоидному передвижению (она есть далеко не у всех животных клеток);
  • Оболочка представлена гликокаликсом, которые выполняет все функции клеточной мембраны;
  • Отличается строение билипидной мембраны и пептидогликанов рецепторов.

Отличия оболочек клеток растений, грибов и бактерий

В каждом случае клеточная оболочка имеет дополнительную защиту – в случае с растениями это целлюлоза, у грибов – хитин, а у бактерий – муреин. Именно благодаря этому качеству, клетки перечисленных организмов более устойчивы к действиям неблагоприятных факторов.

Оболочка клетки, или цитоплазматическая мембрана - особый "щит" клетки. Она защищает её от внешнего воздействия и не допускает проникновения в клетку ненужных или вредных веществ. Оболочка клетки состоит из трёх элементов - двойного слоя липидов (жиров), крупных белков и углеводов. Билипидный слой не даёт клетке раствориться, а также сохраняет форму клетки и не позволяет вытечь внутренностям клетки. Белки являются своеобразными порами клетки, благодаря им клетка имеет свойство избирательной полупроницаемости - только подходящие белку по размеру элементы могут войти внутрь клетки, в ином случае действует один из двух процессов - пиноцитоз или фагоцитоз - захватывание капель жидкости или твёрдых частичек (соответственно) и проникновение их внутрь. Особые углеводы, входящие в состав мембраны, позволяют клетке "чувствовать" и "осязать", т.е. выполняют сенсорную функцию.

Клетка является основной структурной и функциональной единицей живых организмов, осуществляющей рост, развитие, обмен веществ и энергии, хранящей и реализующей генетическую информацию. Размеры клеток достаточно широко варьируют, у человека, например, от нескольких микрометров (малые лимфоциты – 7 мкм) до 100 мкм (яйцеклетка). В среднем диаметр животных клеток равен приблизительно 20 а растительных – 40 мкм. Состоит эукариотическая клетка из трех основных частей – клеточной оболочки, цитоплазмы и ядра.

Клеточная оболочка состоит из двух слоев – плазмалеммы и наружного слоя. Плазмалемма прилегает к цитоплазме и ограничивает содержимое эукариотической клетки. Над мембраной формируется наружный слой, в животной клетке он тонкий и называется гликокаликсом (образован гликопротеинами, гликолипидами, липопротеинами), в растительной клетке – толстый, называется клеточной стенкой (образован целлюлозой), в грибной клеточная стенка образована хитином, в прокариотической клетке – муреином.

Строение мембран. Все биологические мембраны имеют общие структурные особенности и свойства. В настоящее время общепринята жидкостно-мозаичная модель строения мембраны. Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. Фосфолипиды – триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты. участок молекулы, в котором находится остаток фосфорной кислоты, называют гидрофильной головкой, участки, в которых находятся остатки жирных кислот – гидрофобными хвостами. В мембране фосфолипиды располагаются строго упорядоченно: гидрофобные хвосты молекул обращены друг к другу, а гидрофильные головки – наружу, к воде. Помимо липидов в состав мембраны входят белки (в среднем ≈60%). Они определяют большинство специфических функций мембраны (транспорт определенных молекул, катализ реакций, получение и преобразование сигналов из окружающей среды и др.).

Различают периферические белки (расположены на наружной или внутренней поверхности липидного бислоя), полуинтегральные белки (погружены в липидный бислой на различную глубину) и интегральные, или трансмембранные белки (пронизывают мембрану насквозь, контактируя при этом и с наружной, и с внутренней средой клетки). Интегральные белки в ряде случаев называют каналообразующими или канальными, так как их можно рассматривать как гидрофильные каналы, по которым в клетку проходят полярные молекулы (липидный компонент мембраны их бы не пропустил).

В состав мембраны могут входить углеводы (до 10%). Углеводный компонент мембран представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды). В основном углеводы располагаются на наружной поверхности мембраны. Углеводы обеспечивают рецепторные функции мембраны. В животных клетках гликопротеины, липопротеины и гликолипиды образуют надмембранный комплекс – гликокаликс, имеющий толщину несколько десятков нанометров. В нем располагаются многие рецепторы клетки, с его помощью происходит адгезия клеток.

Молекулы белков, углеводов и липидов подвижны, способны перемещаться в плоскости мембраны. Толщина плазматической мембраны – примерно 7,5 нм.

Важнейшее свойство мембран – избирательная проницаемость, то есть мембраны хорошо проницаемы для одних вещества или молекул и плохо проницаемы (или совсем непроницаемы) для других. Это свойство регуляции обмена веществ между клеткой и внешней средой. Процесс прохождения веществ через клеточную мембрану называют транспортом веществ. Различают пассивный транспорт – процесс прохождения веществ, идущий без затрат энергии и активный транспорт–процесс прохождения веществ, идущий с затратами энергии.

При пассивном транспорте вещества перемещаются из области с более высокой концентрацией в область с более низкой, то есть по градиенту концентрации. В любом растворе имеются молекулы растворителя и растворенного вещества. Процесс перемещения молекул растворенного вещества называют диффузией, перемещения молекул растворителя – осмосом. Если молекула заряжена, то на ее транспорт влияет и электрический градиент - разность зарядов. Наружная сторона мембраны заряжена положительно, внутренняя – отрицательно, что влияет на движение через мембрану катионов и анионов. Поэтому часто говорят об электрохимическом градиенте, объединяя оба градиента вместе. Скорость транспорта зависит от величины градиента.

Различают несколько видов пассивного транспорта: простую диффузию, диффузию через белковые каналы и облегченную диффузию. Простая диффузия – диффузия веществ непосредственно через липидный бислой (диффузия молекул жирорастворимых веществ, кислорода, углекислого газа, воды).Ионы Na + , K + , Ca 2+ , Cl - проходят через мембрану через каналообразующие белки – это диффузия через мембранные каналы. Облегченная диффузия – транспорт веществ с помощью специальных транспортных белков, каждый из которых отвечает за перемещение определенных молекул или групп родственных молекул (глюкоза, аминокислоты, нуклеотиды).

Транспорт молекул растворителя – воды (во всех биологических системах растворителем является именно вода) называется осмосом. Классическим примером осмоса (движения молекул воды через мембрану) являются явления плазмолиза и деплазмолиза. При добавлении 10% раствора поваренной соли к препарату кожицы лука наблюдается плазмолиз ионы Na + и Сl - вызывают выход воды из протопласта клетки и отставание протопласта от клеточной стенки. При удалении раствора соли и добавлении воды идет обратный процесс – деплазмолиз.

Необходимость активного транспорта возникает тогда, когда необходимо обеспечить перенос через мембрану молекул против электрохимического градиента. Этот транспорт осуществляется особыми белками-переносчиками, деятельность которых требует затрат энергии. Источником энергии служат молекулы АТФ. Примером активного транспорта является работа Na + /К + -насоса (натрий-калиевого насоса), фагоцитоз и пиноцитоз.

Эндоцитоз – процесс поглощения клеткой крупных частиц и макромолекул. Различают два типа эндоцитоза: фагоцитоз–захват и поглощение крупных частиц (клеток, частей клеток, макромолекул) и пиноцитоз – захват и поглощение жидкого материала (раствор, коллоидный раствор, суспензия). Явление фагоцитоза открыто И.И.Мечниковым в 1882 г. При эндоцитозе плазматическая мембрана образует впячивание, края ее сливаются, и происходит отшнуровывание в цитоплазму структур, отграниченных от цитоплазмы одиночной мембраной. К фагоцитозу способны многие простейшие, некоторые лейкоциты. Пиноцитоз наблюдается в эпителиальных клетках кишечника, в эндотелии кровеносных капилляров.

Экзоцитоз – процесс обратный эндоцитозу: выведение различных веществ из клетки. При экзоцитозе мембрана пузырька сливается с наружной цитоплазматической мембраной, содержимое везикулы выводится за пределы клетки, а ее мембрана включается в состав наружной цитоплазматической мембраны. Таким способом из клеток желез внутренней секреции выводятся гормоны, у простейших – непереваренные остатки пищи.

Цитоплазма – обязательная часть клетки, заключенная между плазматической мембраной и ядром, подразделяется на гиалоплазму (основное вещество цитоплазмы), органоиды (постоянные компоненты цитоплазмы) и включения (временные компоненты цитоплазмы). Химический состав цитоплазмы – основу составляет вода (60-90% всей массы цитоплазмы), различные органические и неорганические соединения. Цитоплазма имеет щелочную реакцию. Характерная особенность цитоплазмы эукариотической клетки – постоянное движение (циклоз). Оно обнаруживается, прежде всего, по перемещению органоидов клетки, например хлоропластов. Если движение цитоплазмы прекращается, клетка погибает, так как, только находясь в постоянном движении, она может выполнять свои функции.

Гиалоплазма (цитозоль) представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор. Именно в ней протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов. В зависимости от преобладания в гиалоплазме жидкой части или крупных молекул, различают две формы гиалоплазмы: золь – более жидкая гиалоплазма и гель – более густая гиалоплазма. Между ними возможны взаимопереходы: гель превращается в золь и наоборот. Цитоплазма объединяет все компоненты клетки в единую систему, среда для прохождения многих биохимических и физиологических процессов, среда для существования и функционирования органоидов.

Клетка является основной структурной и функциональной единицей живых организмов, осуществляющей рост, развитие, обмен веществ и энергии, хранящей и реализующей генетическую информацию. Размеры клеток достаточно широко варьируют, у человека, например, от нескольких микрометров (малые лимфоциты – 7 мкм) до 100 мкм (яйцеклетка). В среднем диаметр животных клеток равен приблизительно 20 а растительных – 40 мкм. Состоит эукариотическая клетка из трех основных частей – клеточной оболочки, цитоплазмы и ядра.

Клеточная оболочка состоит из двух слоев – плазмалеммы и наружного слоя. Плазмалемма прилегает к цитоплазме и ограничивает содержимое эукариотической клетки. Над мембраной формируется наружный слой, в животной клетке он тонкий и называется гликокаликсом (образован гликопротеинами, гликолипидами, липопротеинами), в растительной клетке – толстый, называется клеточной стенкой (образован целлюлозой), в грибной клеточная стенка образована хитином, в прокариотической клетке – муреином.

Строение мембран. Все биологические мембраны имеют общие структурные особенности и свойства. В настоящее время общепринята жидкостно-мозаичная модель строения мембраны. Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. Фосфолипиды – триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты. участок молекулы, в котором находится остаток фосфорной кислоты, называют гидрофильной головкой, участки, в которых находятся остатки жирных кислот – гидрофобными хвостами. В мембране фосфолипиды располагаются строго упорядоченно: гидрофобные хвосты молекул обращены друг к другу, а гидрофильные головки – наружу, к воде. Помимо липидов в состав мембраны входят белки (в среднем ≈60%). Они определяют большинство специфических функций мембраны (транспорт определенных молекул, катализ реакций, получение и преобразование сигналов из окружающей среды и др.).

Различают периферические белки (расположены на наружной или внутренней поверхности липидного бислоя), полуинтегральные белки (погружены в липидный бислой на различную глубину) и интегральные, или трансмембранные белки (пронизывают мембрану насквозь, контактируя при этом и с наружной, и с внутренней средой клетки). Интегральные белки в ряде случаев называют каналообразующими или канальными, так как их можно рассматривать как гидрофильные каналы, по которым в клетку проходят полярные молекулы (липидный компонент мембраны их бы не пропустил).

В состав мембраны могут входить углеводы (до 10%). Углеводный компонент мембран представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды). В основном углеводы располагаются на наружной поверхности мембраны. Углеводы обеспечивают рецепторные функции мембраны. В животных клетках гликопротеины, липопротеины и гликолипиды образуют надмембранный комплекс – гликокаликс, имеющий толщину несколько десятков нанометров. В нем располагаются многие рецепторы клетки, с его помощью происходит адгезия клеток.

Молекулы белков, углеводов и липидов подвижны, способны перемещаться в плоскости мембраны. Толщина плазматической мембраны – примерно 7,5 нм.

Важнейшее свойство мембран – избирательная проницаемость, то есть мембраны хорошо проницаемы для одних вещества или молекул и плохо проницаемы (или совсем непроницаемы) для других. Это свойство регуляции обмена веществ между клеткой и внешней средой. Процесс прохождения веществ через клеточную мембрану называют транспортом веществ. Различают пассивный транспорт – процесс прохождения веществ, идущий без затрат энергии и активный транспорт–процесс прохождения веществ, идущий с затратами энергии.

При пассивном транспорте вещества перемещаются из области с более высокой концентрацией в область с более низкой, то есть по градиенту концентрации. В любом растворе имеются молекулы растворителя и растворенного вещества. Процесс перемещения молекул растворенного вещества называют диффузией, перемещения молекул растворителя – осмосом. Если молекула заряжена, то на ее транспорт влияет и электрический градиент - разность зарядов. Наружная сторона мембраны заряжена положительно, внутренняя – отрицательно, что влияет на движение через мембрану катионов и анионов. Поэтому часто говорят об электрохимическом градиенте, объединяя оба градиента вместе. Скорость транспорта зависит от величины градиента.

Различают несколько видов пассивного транспорта: простую диффузию, диффузию через белковые каналы и облегченную диффузию. Простая диффузия – диффузия веществ непосредственно через липидный бислой (диффузия молекул жирорастворимых веществ, кислорода, углекислого газа, воды).Ионы Na + , K + , Ca 2+ , Cl - проходят через мембрану через каналообразующие белки – это диффузия через мембранные каналы. Облегченная диффузия – транспорт веществ с помощью специальных транспортных белков, каждый из которых отвечает за перемещение определенных молекул или групп родственных молекул (глюкоза, аминокислоты, нуклеотиды).

Транспорт молекул растворителя – воды (во всех биологических системах растворителем является именно вода) называется осмосом. Классическим примером осмоса (движения молекул воды через мембрану) являются явления плазмолиза и деплазмолиза. При добавлении 10% раствора поваренной соли к препарату кожицы лука наблюдается плазмолиз ионы Na + и Сl - вызывают выход воды из протопласта клетки и отставание протопласта от клеточной стенки. При удалении раствора соли и добавлении воды идет обратный процесс – деплазмолиз.

Необходимость активного транспорта возникает тогда, когда необходимо обеспечить перенос через мембрану молекул против электрохимического градиента. Этот транспорт осуществляется особыми белками-переносчиками, деятельность которых требует затрат энергии. Источником энергии служат молекулы АТФ. Примером активного транспорта является работа Na + /К + -насоса (натрий-калиевого насоса), фагоцитоз и пиноцитоз.

Эндоцитоз – процесс поглощения клеткой крупных частиц и макромолекул. Различают два типа эндоцитоза: фагоцитоз–захват и поглощение крупных частиц (клеток, частей клеток, макромолекул) и пиноцитоз – захват и поглощение жидкого материала (раствор, коллоидный раствор, суспензия). Явление фагоцитоза открыто И.И.Мечниковым в 1882 г. При эндоцитозе плазматическая мембрана образует впячивание, края ее сливаются, и происходит отшнуровывание в цитоплазму структур, отграниченных от цитоплазмы одиночной мембраной. К фагоцитозу способны многие простейшие, некоторые лейкоциты. Пиноцитоз наблюдается в эпителиальных клетках кишечника, в эндотелии кровеносных капилляров.

Экзоцитоз – процесс обратный эндоцитозу: выведение различных веществ из клетки. При экзоцитозе мембрана пузырька сливается с наружной цитоплазматической мембраной, содержимое везикулы выводится за пределы клетки, а ее мембрана включается в состав наружной цитоплазматической мембраны. Таким способом из клеток желез внутренней секреции выводятся гормоны, у простейших – непереваренные остатки пищи.

Цитоплазма – обязательная часть клетки, заключенная между плазматической мембраной и ядром, подразделяется на гиалоплазму (основное вещество цитоплазмы), органоиды (постоянные компоненты цитоплазмы) и включения (временные компоненты цитоплазмы). Химический состав цитоплазмы – основу составляет вода (60-90% всей массы цитоплазмы), различные органические и неорганические соединения. Цитоплазма имеет щелочную реакцию. Характерная особенность цитоплазмы эукариотической клетки – постоянное движение (циклоз). Оно обнаруживается, прежде всего, по перемещению органоидов клетки, например хлоропластов. Если движение цитоплазмы прекращается, клетка погибает, так как, только находясь в постоянном движении, она может выполнять свои функции.

Гиалоплазма (цитозоль) представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор. Именно в ней протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов. В зависимости от преобладания в гиалоплазме жидкой части или крупных молекул, различают две формы гиалоплазмы: золь – более жидкая гиалоплазма и гель – более густая гиалоплазма. Между ними возможны взаимопереходы: гель превращается в золь и наоборот. Цитоплазма объединяет все компоненты клетки в единую систему, среда для прохождения многих биохимических и физиологических процессов, среда для существования и функционирования органоидов.

Читайте также: