Что такое зеркало в микроскопе определение кратко

Обновлено: 04.07.2024

Лупа – простейший увеличительный прибор, состоящий из увеличительного стекла, которое для удобства работы вставлено в оправу с ручкой.

Световой микроскоп – сложный оптический прибор для рассматривания предметов с увеличением в десятки, сотни и тысячи раз.

Обязательная и дополнительная литература по теме

  1. Биология. 5–6 классы. Пасечник В. В., Суматохин С. В., Калинова Г. С. и др. / Под ред. Пасечника В. В. М.: Просвещение, 2019
  2. Биология. 6 класс. Теремов А. В., Славина Н. В. М.: Бином, 2019.
  3. Биология. 5 класс. Мансурова С. Е., Рохлов В. С., Мишняева Е. Ю. М.: Бином, 2019.
  4. Биология. 5 класс. Суматохин С. В., Радионов В. Н. М.: Бином, 2014.
  5. Биология. 6 класс. Беркинблит М. Б., Глаголев С. М., Малеева Ю. В., Чуб В. В. М.: Бином, 2014.
  6. Биология. 6 класс. Трайтак Д. И., Трайтак Н. Д. М.: Мнемозина, 2012.
  7. Биология. 6 класс. Ловягин С. Н., Вахрушев А. А., Раутиан А. С. М.: Баласс, 2013.

Теоретический материал для самостоятельного изучения

Живые организмы состоят из клеток. Некоторые клетки можно увидеть, а размеры других настолько малы, что их практически не возможно рассмотреть без использования увеличительных приборов. Метод наблюдения требует усилить человеческий глаз для того, чтобы детально рассмотреть внутреннее и внешнее строение живых организмов.

Для изучения строения клеток используют увеличительные приборы.

Лупа – простейший увеличительный прибор. Лупа состоит из увеличительного стекла, которое для удобства работы вставлено в оправу с ручкой. Лупы бывают ручные и штативные.

Ручная лупа может увеличивать рассматриваемый объект от 2 до 20 раз.

Штативная лупа увеличивает объект в 10–20 раз.

С помощью лупы можно рассмотреть форму достаточно крупных клеток, но изучить их строение невозможно.

Световой микроскоп (от греч. макрос – малый и скопео – смотрю) – оптический прибор для рассматривания в увеличенном виде небольших, не различимых простым глазом предметов.

Световой микроскоп состоит из трубки, или тубуса (от лат. тубус – трубка). В верхней части тубуса находится окуляр (от лат. окулус – глаз). Он состоит из оправы и двух увеличительных стёкол. На нижнем конце тубуса находится объектив (от лат. объектум – предмет), состоящий из оправы и нескольких увеличительных стёкол. Тубус прикреплён к штативу и поднимается и опускается с помощью винтов. На штативе находится также предметный столик, в центре которого имеется отверстие и под ним зеркало. Рассматриваемый на предметном стекле объект помещается на предметный столик и закрепляется на нём с помощью зажимов.

Главный принцип работы светового микроскопа заключается в том, что лучи света проходят через прозрачный (или полупрозрачный) объект исследования, который находится на предметном столике, и попадают на систему линз объектива и окуляра, увеличивающих изображение. Современные световые микроскопы способны увеличивать изображение до 3600 раз.

Чтобы узнать, насколько увеличивается изображение при использовании микроскопа, надо умножить число, указанное на окуляре, на число, указанное на используемом объективе.

Разбор типового тренировочного задания:

Тип задания: Установление соответствий между элементами двух множеств

Предметный столик на самом микроскопе служит для того, чтобы под окуляр микроскопа можно было положить рассматриваемый предмет ( например капелька крови или часть листа расстения) . А зеркало, которое обычно рассполагается под предметным столиком, служит для подачи луча света под рассматриваемый предмет, т. е. улучшает освещенность предмета, что позволяет, как следует увидеть рассматриваемый предмет.

Предметный столик на самом микроскопе служит для того, чтобы под окуляр микроскопа можно было положить рассматриваемый предмет ( например капелька крови или часть листа расстения) . А зеркало, которое обычно рассполагается под предметным столиком, служит для подачи луча света под рассматриваемый предмет, т. е. улучшает освещенность предмета, что позволяет, как следует увидеть рассматриваемый предмет.

Цель работы: изучить устройство светового биологического микроскопа и освоить правила работы с ним. Ознакомиться с различными видами микроскопии.

Материалы, реактивы, оборудование: микроскоп; бактериологические петли; предметные стекла.

1.1. Устройство микроскопа

Микроскоп (от греч. micros - малый и scopio - смотрю) - это оптический прибор, состоящий из двух частей: механической (подсобной) и оптической (главной).

1. Оптическая часть: окуляр, объектив, конденсор Аббе, осветительный прибор (зеркальце).

2. Механическая часть: штатив, основание, предметный столик, тубусодержатель, макровинт, микровинт (рис. 1).

Рис. 1. Устройство микроскопа: 1 - основание; 2 - осветитель; 3 - светофильтр; 4 - конденсор Аббе; 5 - предметный столик; 6 - объективы; 7 - револьверная головка;

8 - монокулярная насадка; 9 - окуляр; 10 - штатив; 11 - измерительный нониус; 12 - ограничительный винт; 13 - держатель препарата; 14 - ручка грубой настройки;

15 - ручка точной настройки; 16 - рукоятка перемещения конденсора


Механическая часть микроскопа.

Штатив имеет основание в виде подковы и колонку (тубусодержатель) в форме дуги. К нему примыкают коробка механизмов, система зубчатых колес для регуляции положения тубуса. Система приводится в движение вращением макрометрического и микрометрического винтов.

Макрометрический винт (кремальера, зубчатка, макровинт) служит для предварительной ориентировочной установки изображения рассматриваемого объекта.

Микрометрический винт (микровинт) используют для последующей четкой установки на фокус. При полном повороте микровинта труба передвигается на 0,1 мм (100 мкм).

При вращении винтов по часовой стрелке труба опускается по направлению к препарату, при вращении против часовой стрелки - поднимается от препарата.

Предметный столик служит для размещения на нем препарата с объектом исследования. Предметный столик вращается и перемещается во взаимно перпендикулярных плоскостях с помощью винтов. В центре столика находится круглое отверстие для освещения препарата снизу лучами света, направляемыми зеркалом микроскопа. В столик вмонтированы два зажима (клеммы) - пружинящие металлические пластинки, предназначенные для закрепления препарата.

Если необходимо исследовать поверхность препарата, не допуская пропусков (что важно при подсчете), или же если во время работы требуется повторное исследование какого-либо определенного участка на препарате, на предметный столик помещают препаратоводитель. На нем имеется система линеек - нониусов, с помощью которых можно присвоить координаты любой точке исследуемого объекта. Для этого при установке препаратоводителя следует совместить центр вращения столика и оптическую ось системы микроскопа с центрировочной пластинкой препаратоводителя (отсюда предметный столик с препаратоводителем называют иногда крестообразным).

Тубус (труба) - оправа, в которую заключены элементы оптической системы микроскопа. К нижней части тубуса прикрепляется револьвер (объективодержатель) с гнездами для объективов. Современные модели микроскопов имеют наклонный тубус с дугообразным тубусодержателем, что обеспечивает горизонтальное положение предметного столика.

Оптическая часть микроскопа состоит из основного оптического узла (объектив и окуляр) и вспомогательной осветительной системы (зеркало и конденсор). Все части оптической системы строго центрированы относительно друг друга.

Во многих современных микроскопах зеркало и конденсор заменены вмонтированным в прибор регулируемым источником света.

Осветительная система находится под предметным столиком. Зеркало отражает падающий на него свет в конденсор. Одна сторона зеркала плоская, другая - вогнутая. При работе с конденсором необходимо пользоваться только плоским зеркалом. Вогнутое зеркало применяют при работе без конденсора с объективами малых увеличений. Конденсор (от лат. con-denso - уплотняю, сгущаю), состоящий из 2-3 короткофокусных линз, собирает лучи, идущие от зеркала, и направляет их на объект. Конденсор необходим прежде всего при работе с иммерсионной системой. Линзы конденсора вмонтированы в металлическую оправу, соединенную с зубчатым механизмом, позволяющим перемещать конденсор вверх и вниз специальным винтом. Для регулировки интенсивности освещения в конденсоре есть ирисовая (лепестковая) диафрагма, состоящая из стальных серповидных пластинок.

Окрашенные препараты лучше рассматривать при почти полностью открытой диафрагме, неокрашенные - при уменьшенном отверстии диафрагмы.

Под конденсором располагается кольцевидный держатель для светофильтров (обычно к микроскопу прилагаются синее и белое матовые стекла). При работе с искусственным источником света светофильтры создают впечатление диезного освещения, что делает микроскопирование менее утомительным для глаз.

Объектив (от лат. objectum - предмет) - наиболее важная часть микроскопа. Это многолинзовая короткофокусная система, от качества которой зависит в основном изображение объекта. Наружная линза, обращенная плоской стороной к препарату, называется фронтальной. Именно она обеспечивает увеличение. Остальные линзы в системе объектива выполняют преимущественно функции коррекции оптических недостатков, возникающих при исследовании объектов.

Один из таких недостатков - явление сферической аберрации. Оно связано со свойством линз неравномерно преломлять периферические и центральные лучи. Первые обычно преломляются в большей степени, чем вторые, и поэтому пересекаются на более близком расстоянии к линзе. В результате изображение точки приобретает вид расплывчатого пятна.

Хроматическая аберрация возникает при прохождении через линзу пучка лучей с различной длиной волны. Преломляясь по- разному, лучи пересекаются не в одной точке. Сине-фиолетовые лучи с короткой длиной волны преломляются сильнее, чем красные с большей длиной волны. Вследствие этого у бесцветного объекта появляется окраска.

К объективам, устраняющим сферическую и частично хроматическую аберрацию, относятся ахроматы. Они содержат до 6 линз и коррегируют первичный спектр (желто-зеленую часть спектра), не устраняя вторичного спектра. Изображение, получаемое с помощью ахроматов, не окрашено, но края его имеют красный или синеватый ореол. В современных ахроматах этот недостаток практически неуловим. Лучший материал для линз ахроматов - флинтгласы - старые сорта стекла с высоким содержанием окиси свинца.

Объективы, устраняющие хроматическую аберрацию и для вторичного спектра, называют апохроматами. В их составе может быть от 1 до 12 линз. Линзы апохроматов для лучей коррекции вторичного спектра делают из плавикового пата, каменной соли, квасцов и других материалов. Апохроматы дают возможность устранить окрашивание объекта и получить одинаково резкое изображение от лучей разного цвета. Максимального эффекта при работе с апохроматами можно достичь только при их сочетании с компенсационными окулярами, возмещающими оптические недостатки объективов. В компенсационных окулярах хроматическая ошибка противоположна хроматической ошибке объектива, и в результате хроматическая аберрация микроскопа оказывается почти полностью компенсированной.

Планахроматы - разновидность апохроматов, имеющих плоское поле зрения. Объективы-планахроматы полностью устраняют искривление поля зрения, обуславливающее неравномерность фокусировки объекта (при кривизне поля зрения фокусируется только часть поля). Планахроматы и планапохроматы используют при микрофотографии.

Объективы бывают сухие и погружные (иммерсионные). При работе с сухими объективами между фронтальной линзой объектива и объектом исследования находится воздух. Оптический расчет иммерсионных объективов предусматривает их работу при погружении фронтальной линзы объектива в жидкую однородную среду. При работе с сухим объективом вследствие разницы между показателями преломления стекла (1,52) и воздуха (1,0) часть световых лучей отклоняется и не попадает в глаз наблюдателя (рис. 2).

Рис. 2. Ход лучей в сухой и иммерсионной системах: I-V- лучи света


При работе с иммерсионным объективом необходимо поместить между покровным стеклом и линзами объектива кедровое масло, показатель преломления которого близок к показателю преломления стекла (табл. 1).

Вскоре Роберт Гук усовершенствовал прибор. Он добавил приспособление для освещения препарата и вторую линзу. Микроскоп стал увеличивать изображение в \(30\) раз.

shutterstock_1698119965 (1).jpg


Превосходным мастером в изготовлении микроскопов был голландец Антони ван Левенгук . Он производил линзы с увеличением в \(200\)–\(270\) раз и закреплял их на специальном штативе, чтобы изучаемый объект находился под линзой и на определённом расстоянии от неё.

shutterstock_1820567564.jpg

1 (4).jpg

В тубусе находится окуляр и объективы . В окуляр рассматривают изучаемые объекты, а объектив направлен на объект.

Для освещения микропрепарата используется источник света — зеркало или лампа. Для регулировки освещённости используют диафрагму .

Для того, чтобы увеличить изображение, в микроскопах есть \(2\) линзы. Одна линза располагается в объективе, а другая — в окуляре.

Читайте также: