Что такое ядерная сила кратко

Обновлено: 05.07.2024

Строение атомного ядра. Ядерные силы

Сразу же после того, как в опытах Чедвика был открыт нейтрон, советский физик Д. Д. Иваненко и немецкий ученый В. Гейзенберг в 1932 г. предложили протонно-нейтронную модель ядра.
Она была подтверждена последующими исследованиями ядерных превращений и в настоящее время является общепризнанной.

Протонно-нейтронная модель ядра

Согласно протоннонейтронной модели ядра состоят из элементарных частиц двух видов — протонов и нейтронов.

Так как в целом атом электрически нейтрален, а заряд протона равен модулю заряда электрона, то число протонов в ядре равно числу электронов в атомной оболочке.
Следовательно, число протонов в ядре равно атомному номеру элемента Z в периодической системе элементов Д. И. Менделеева.

Сумму числа протонов Z и числа нейтронов N в ядре называют массовым числом и обозначают буквой А:

A = Z + N

Массы протона и нейтрона близки друг к другу, и каждая из них примерно равна атомной единице массы.
Масса электронов в атоме много меньше массы его ядра.
Поэтому массовое число ядра равно округленной до целого числа относительной атомной массе элемента.
Массовые числа могут быть определены путем приближенного измерения массы ядер приборами, не обладающими высокой точностью.

Изотопы представляют собой ядра с одним и тем же значением Z, но с различными массовыми числами А, т. е. с различными числами нейтронов N.

Ядерные силы

Так как ядра весьма устойчивы, то протоны и нейтроны должны удерживаться внутри ядра какими-то силами, причем очень большими.
Это не гравитационные силы, которые слишком слабые.
Устойчивость ядра не может быть объяснена также электромагнитными силами, так как между одноименно заряженными протонами действует электрическое отталкивание.
А нейтроны не имеют электрического заряда.

Значит, между ядерными частицами — протонами и нейтронами, их называют нуклонами — действуют особые силы, называемые ядерными силами.

Каковы основные свойства ядерных сил? Ядерные силы примерно в 100 раз превышают электрические (кулоновские) силы.
Это самые мощные силы из всех существующих в природе.
Поэтому взаимодействия ядерных частиц часто называют сильными взаимодействиями.

Сильные взаимодействия проявляются не только во взаимодействиях нуклонов в ядре.
Это особый тип взаимодействий, присущий большинству элементарных частиц наряду с электромагнитными взаимодействиями.

Другая важная особенность ядерных сил — их коротко- действие.
Электромагнитные силы сравнительно медленно ослабевают с увеличением расстояния.
Ядерные силы заметно проявляются лишь на расстояниях, равных размерам ядра (10 -12 —10 -13 см), что показали уже опыты Резерфорда по рассеянию α-частиц атомными ядрами.
Законченная количественная теория ядерных сил пока еще не разработана.
Значительные успехи в ее разработке были достигнуты совсем недавно — в последние 10—15 лет.

Ядра атомов состоят из протонов и нейтронов. Эти частицы удерживаются в ядре ядерными силами.

Изотопы

Изучение явления радиоактивности привело к важному открытию: была выяснена природа атомных ядер.

В результате наблюдения огромного числа радиоактивных превращений постепенно обнаружилось, что существуют вещества, тождественные по своим химическим свойствам, но имеющие совершенно различные радиоактивные свойства (т. е. распадающиеся по-разному).
Их никак не удавалось разделить ни одним из известных химических способов.
На этом основании Содди в 1911 г. высказал предположение о возможности существования элементов с одинаковыми химическими свойствами, но различающихся, в частности, своей радиоактивностью.
Эти элементы нужно помещать в одну и ту же клетку периодической системы Д. И. Менделеева.
Содди назвал их изотопами (т. е. занимающими одинаковые места).

Предположение Содди получило блестящее подтверждение и глубокое толкование год спустя, когда Дж. Дж. Томсон провел точные измерения массы ионов неона методом отклонения их в электрическом и магнитном полях.
Он обнаружил, что неон представляет собой смесь двух видов атомов.
Бо́льшая часть их имеет относительную массу, равную 20.
Но существует незначительная часть атомов с относительной атомной массой 22.
В результате относительная атомная масса смеси была принята равной 20,2.
Атомы, обладающие одними и теми же химическими свойствами, различались массой.

Оба вида атомов неона, естественно, занимают одно и то же место в таблице Д. И. Менделеева и, следовательно, являются изотопами.
Таким образом, изотопы могут различаться не только своими радиоактивными свойствами, но и массой.
Именно поэтому у изотопов заряды атомных ядер одинаковы, а значит, число электронов в оболочках атомов и, следовательно, химические свойства изотопов одинаковы.
Но массы ядер различны.
Причем ядра могут быть как радиоактивными, так и стабильными.
Различие свойств радиоактивных изотопов связано с тем, что их ядра имеют различную массу.

В настоящее время установлено существование изотопов у большинства химических элементов.
Некоторые элементы имеют только нестабильные (т. е. радиоактивные) изотопы.
Изотопы есть у самого тяжелого из существующих в природе элементов — урана (относительные атомные массы 238, 235 и др.) и у самого легкого — водорода (относительные атомные массы 1, 2, 3).

Особенно интересны изотопы водорода, так как они различаются по массе в 2 и 3 раза.
Изотоп с относительной атомной массой 2 называется дейтерием.
Он стабилен (т. е. не радиоактивен) и входит в качестве небольшой примеси (1 : 4500) в обычный водород.
При соединении дейтерия с кислородом образуется так называемая тяжелая вода.
Ее физические свойства заметно отличаются от свойств обычной воды.
При нормальном атмосферном давлении она кипит при 101,2 °С и замерзает при 3,8 °С.

Изотоп водорода с атомной массой 3 называется тритием.
Он β-радиоактивен, и его период полураспада около 12 лет.

Существование изотопов доказывает, что заряд атомного ядра определяет не все свойства атома, а лишь его химические свойства и те физические свойства, которые зависят от периферии электронной оболочки, например размеры атома.
Масса же атома и его радиоактивные свойства не определяются порядковым номером в таблице Д. И. Менделеева.

Примечательно, что при точном измерении относительных атомных масс изотопов выяснилось, что они близки к целым числам.
А вот атомные массы химических элементов иногда сильно отличаются от целых чисел.
Так, относительная атомная масса хлора равна 35,5.
Это значит, что в естественном состоянии химически чистое вещество представляет собой смесь изотопов в различных пропорциях.
Целочисленность (приближенная) относительных атомных масс изотопов очень важна для выяснения строения атомного ядра.

Большинство химических элементов имеют изотопы.
Заряды атомных ядер изотопов одинаковы, но массы ядер различны.

Физика атомного ядра. Физика, учебник для 11 класса - Класс!ная физика

силы, связывающие нуклоны (протоны и нейтроны) в ядре. Я. с.— одно из проявлений сильных взаимодействий. Яд. силы явл. короткодействующими, радиус их действия порядка 10-12 —10-13 см (см. ЯДРО АТОМНОЕ).

Физический энциклопедический словарь. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

- силы взаимодействия между нуклонами; обеспечивают большую величину энергии связи ядер по сравнению с др. системами. Я. с. являются наиб. важным и распространённым примером сильного взаимодействия (СВ). Когда-то эти понятия были синонимами и сам термин "сильное взаимодействие" был введён для подчёркивания огромной величины Я. с. по сравнению с др. известными в природе силами: эл.-магн., слабыми, гравитационными. После открытия p-,r- идр. мезонов, гиперо-нов и др. адронов термин "сильное взаимодействие" стали применять в более широком смысле - как взаимодействие адронов. В 1970-х гг. квантовая хромодинамика (КХД) утвердилась как общепризнанная микроскопич. теория СВ. Согласно этой теории, адроны являются составными частицами, состоящими из кварков и глюонов, а под СВ стали понимать взаимодействие этих фундам. частиц.

С др. стороны, Я. с. как силы взаимодействия между нуклонами включают не только СВ, но и эл.-магн., слабое и гравитац. взаимодействия нуклонов. С точки зрения совр. теории, эл.-магн. и слабое взаимодействия являются проявлениями одного, более фундаментального, электрослабого взаимодействия. Однако при тех пространственно-временных масштабах (~10 -13 см, ~10 -23 с), с к-рыми обычно имеют дело в атомных ядрах, единая природа эл.-магн. и слабых сил практически не проявляется и их можно рассматривать как независимые. Эти взаимодействия, будучи гораздо слабее СВ, в большинстве ядерных процессов малосущественны, но возможны ситуации, когда их роль становится определяющей. Так, эл.-магн. взаимодействие (наиб. существ. часть к-рого - кулоновское отталкивание между протонами), в отличие от СВ, является дальнодействующим. Поэтому обусловленная им положит. кулоновская энергия ядра растёт с увеличением числа частиц А в ядре быстрее, чем отрицат. часть ядерной энергии, обусловленная СВ. В результате тяжёлые ядра становятся при больших А нестабильными - сначала по отношению к делению (см. Деление ядер), а затем и абсолютно нестабильными. Со слабым взаимодействием нуклонов связано такое явление, как несохранение чётности в нуклон-нуклонном рассеянии и в др. ядерных явлениях (см. Несохранение чётности в ядрах). Гравитац. силы, действующие между нуклонами, пренебрежимо малы во всех ядерных явлениях и существенны только в астрофиз. условиях (см. Нейтронные звёзды).

Основой Я. с. является сильное взаимодействие нуклонов. Сильное взаимодействие нуклонов в ядрах отличается от взаимодействия свободных нуклонов, однако последнее является фундаментом, на к-ром строится вся ядерная физика и теория Я. с. Это взаимодействие обладает изотопической инвариантностью. Суть её в том, что взаимодействие между 2 нейтронами, 2 протонами или между протоном и нейтроном в одинаковых квантовых состояниях одинаково. Поэтому можно говорить о взаимодействии между нуклонами, не уточняя, о каких нуклонах идёт речь (см. также Изотопическая инвариантность ядерных сил). Я. с. являются короткодействующими (радиус их действия ~10 -13 см) и обладают свойством насыщения, к-рое заключается в том, что с увеличением числа нуклонов в ядре уд. энергия связи нуклонов остаётся примерно постоянной (рис. 1). Это приводит к возможности существования ядерной материи.

5136-5.jpg

Поскольку нуклоны в ядре движутся, как правило, со сравнительно небольшими скоростями (в 3-4 раза меньше скорости света), то для построения модели СВ нуклонов в ядрах можно пользоваться нерелятивистской теорией и приближённо описывать его потенциалом, к-рый является ф-цией расстояния r между нуклонами. В отличие от кулоновского и гравитац. потенциалов, обратно пропорциональных расстоянию, потенциал Я. с. зависит от r гораздо сложнее. Кроме того, потенциал Я. с. зависит от спинов нуклонов и орбитального момента L относительного движения нуклонов.

5136-6.jpg

5136-8.jpg

Нерелятивистский потенциал Я. с. содержит неск. компонентов: центральный V C , тензорный V T , спин-орбитальный V LS и квадратичный спин-орбитальный потенциал V LL . Наиб. важный из них - центральный - является комбинацией сильного отталкивания на малых расстояниях (т. p NN - константа пион-нуклонного взаимодействия, т p - масса пиона, l= с/m p =1,4 Фм - комптоновская длина волны пиона, a s 1 , s 2 -спиновые Паули матрицы. Как видно из выражений (1), (2), потенциал однопионного обмена экспоненциально спадает на расстоянии порядка комптоновской длины пиона. Др. члены потенциала одно-бозонного обмена имеют такого же типа экспоненц. факторы, но с комптоновскими длинами соответствующих бозонов, к-рые в неск. раз меньше пионной. На таких расстояниях обмен неск. пионами может быть столь же существенным, как и обмен одним тяжёлым мезоном. Это объясняет, почему члены, отвечающие обмену тяжёлыми мезонами, воспринимаются как полуфеноменологические. В то же время вид потенциала Я. с, на больших расстояниях, без сомнения, описывается выражениями (1), (2). Такой асимптотич. вид имеют и все без исключения феноменологич. потенциалы. В настоящее время наиб. точными считают т. н. парижский и боннский потенциалы, к-рые сочетают черты феноменологич. потенциалов с мягким кором и потенциала однобозонного обмена.

Совр. представления о природе СВ, основанные на КХД, поставили задачу расчёта потенциала СВ нуклонов в рамках КХД, но она пока не решена, поскольку не решена и более простая задача о построении теории одного нуклона. Существует неск. кварковых моделей адронов, из к-рых наиб. известна модель мешков в разл. вариантах. Она позволяет качественно понять природу отталкива-тельного кора, оценить его радиус и высоту, но не позволяет рассчитать вид потенциала на больших расстояниях. Под большим вопросом, с точки зрения КХД, оказывается статус мезонов (за исключением p-мезона) в формировании потенциала СВ нуклонов: обмен тяжёлыми мезонами между нуклонами происходит на столь малых расстояниях, что их кварк-глюонная природа становится существенной. Особое место в КХД-теории СВ принадлежит p-мезону. Согласно совр. представлениям, он интерпретируется как коллективное возбуждение вакуума, состоящее из большого числа кварк-антикварковых пар ( голд-стоуновский бозон, связанный со спонтанным нарушением в КХД киральной симметрии). Поэтому в большинстве совр. моделей все остальные адроны считают состоящими из небольшого числа кварков (антикварков, глюонов), а я-мезон вводят дополнительно как независимую частицу. С такой точки зрения понятен статус потенциалов (1), (2) как описывающих "хвост" потенциала взаимодействия нуклонов.

5136-9.jpg

Поскольку ср. расстояние между нуклонами в ядре (1,8 Фм) не сильно превышает радиус действия Я. с., то в ядрах существуют многочастичные (прежде всего, 3-частичные) силы, возникающие из-за обмена кварками и глюонами между неск. нуклонами практически одновременно. В терминах адронов это отвечает таким процессам обмена мезонами между, напр., тремя нуклонами, к-рые нельзя свести к совокупности последовательных парных обменов. Гл. роль в формировании 3-частичных сил играет обмен p-мезонами, причём существ. вклад вносят и процессы виртуального возбуждения D-изобары - первого возбуждённого состояния нуклона. Т. о., пионы и D-изоба-ры являются основными ненуклонными степенями свободы, к-рые важны в ядерных процессах. Многочастичные силы в ядрах сравнительно невелики: их вклад в энергию связи не превышает 10-15%. Однако существуют явления, где они играют осн. роль.

Гл. часть эл.-магн. взаимодействия нуклонов составляет кулоновское отталкивание между протонами. На больших расстояниях оно определяется только зарядами протонов. СВ приводит к тому, что электрич. заряд протона не является точечным, а распределён на расстояниях 1 Фм (среднеквадратичный радиус протона равен 0,8 Фм; см. "Размер" элементарной частицы). Электрич. взаимодействие на малых расстояниях зависит и от распределения заряда внутри протона. Это распределение совр. теория СВ не может надёжно рассчитать, но оно достаточно хорошо известно из эксперим. данных по рассеянию электронов на протонах. Нейтроны в целом электронейтральны, но из-за СВ распределение заряда внутри нейтрона также существует, что приводит к электрич. взаимодействию между двумя нейтронами и между нейтроном и протоном. Магн. взаимодействие между нейтронами такого же порядка, что и между протонами, из-за большой величины аномального магнитного момента, обусловленного СВ. Менее ясна ситуация со слабым взаимодействием нуклонов. Хотя гамильтониан слабого взаимодействия известен хорошо, СВ приводит к перенормировке соответствующих констант взаимодействия (аналог аномального магн. момента) и возникновению формфакторов. Как и в случае эл.-магн. взаимодействия, эффекты слабого взаимодействия не могут быть достоверно рассчитаны, но в этом случае они не известны и экспериментально. Имеющиеся данные о величине эффектов несохранения чётности в 2-нуклонной системе позволяют установить интенсивность этого взаимодействия, но не его структуру. Существует неск. альтернативных моделей слабого взаимодействия нуклонов, к-рые одинаково хорошо описывают 2-нуклонные эксперименты, но приводят к разл. следствиям для атомных ядер.

Лит.: Бор О., Моттельсон Б., Структура атомного ядра, пер. с англ., т. 1-2, М., 1971-77; Калоджеро Ф., Симонов Ю. А., Ядерные силы, насыщение и структура ядер, в сб.: Будущее науки, в. 9, М., 1976. Э. Е. Саперштейн.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Элементарные частицы в ядре удерживаются особыми силами, называемыми ядерными. Кратко рассмотрим особенности этих сил.

Ядерные силы – характеристики кратко

Строение атомного ядра

В опытах Э. Резерфорда в начале XXв было установлено, что весь положительный заряд атома сконцентрирован в весьма малой части атома – в ядре.

Ядерные силы – характеристики кратко

Рис. 1. Планетарная модель атома.

Ядерные силы – характеристики кратко

Рис. 2. Протоны и нейтроны в ядре.

Ядро самого легкого и распространенного элемента в Вселенной – водорода – состоит лишь из одного протона. Но, большинство ядер содержит большее количество протонов, оно равно атомному номеру элемента в таблице Менделеева. Самый тяжелый из стабильных элементов, не подверженных радиоактивному распаду – свинец-208, содержащий 82 протона и 126 нейтронов.

Все протоны заряжены одинаково, и такое большое число протонов, находящихся рядом, должно подвергаться действию больших сил отталкивания. Ядра должны очень быстро распадаться. Однако, в реальности этого не наблюдается. Следовательно, существуют силы, удерживающие протоны внутри ядра. Что это за силы ?

Ядерные силы

Силы электромагнитной природы выталкивают протоны из ядра, и не могут удерживать протоны вместе. Протоны обладают массой, а значит, должны испытывать гравитационное притяжение. Однако, подсчет показывает, что электрическое отталкивание между протонами в .25×10^$ раз превышает силы гравитации.

Ядерные силы – характеристики кратко

Рис. 3. Сильное (ядерное) взаимоедйствие.

Важнейшая характеристика ядерных сил – малый радиус их действия, около $10^ – 10^м$. На больших расстояниях интенсивность ядерного взаимодействия резко убывает. Именно эта особенность и определяет размеры атомных ядер.

Электромагнитное взаимодействие имеет бесконечный радиус действия потому, что его переносчики (фотоны) сами в нем не участвуют, имеют нулевую массу покоя и могут свободно переноситься от одной заряженной частицы к другой. Переносчики же Сильного взаимодействия (глюоны и составленные из них пионы) имеют массу и сами участвуют во взаимодействии, притягиваясь к испустившему их нуклону. В результате они не могут удалиться от нуклона на большие расстояния.

Что мы узнали?

Нуклоны внутри ядер удерживаются ядерными силами, которые в 100 раз сильнее кулоновских. Это взаимодействие особой природы, самое сильное из известных, поэтому оно называется Сильным. Его особенность – малый радиус действия, не превышающий размера атомного ядра.

силы, связывающие нуклоны (протоны и нейтроны) в ядре. Я. с.— одно из проявлений сильных взаимодействий. Яд. силы явл. короткодействующими, радиус их действия порядка 10-12 —10-13 см (см. ЯДРО АТОМНОЕ).

Физический энциклопедический словарь. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

- силы взаимодействия между нуклонами; обеспечивают большую величину энергии связи ядер по сравнению с др. системами. Я. с. являются наиб. важным и распространённым примером сильного взаимодействия (СВ). Когда-то эти понятия были синонимами и сам термин "сильное взаимодействие" был введён для подчёркивания огромной величины Я. с. по сравнению с др. известными в природе силами: эл.-магн., слабыми, гравитационными. После открытия p-,r- идр. мезонов, гиперо-нов и др. адронов термин "сильное взаимодействие" стали применять в более широком смысле - как взаимодействие адронов. В 1970-х гг.квантовая хромодинамика (КХД) утвердилась как общепризнанная микроскопич. теория СВ. Согласно этой теории, адроны являются составными частицами, состоящими из кварков и глюонов, а под СВ стали понимать взаимодействие этих фундам. частиц.

С др. стороны, Я. с. как силы взаимодействия между нуклонами включают не только СВ, но и эл.-магн., слабое и гравитац. взаимодействия нуклонов. С точки зрения совр. теории, эл.-магн. и слабое взаимодействия являются проявлениями одного, более фундаментального, электрослабого взаимодействия. Однако при тех пространственно-временных масштабах (~10 -13 см, ~10 -23 с), с к-рыми обычно имеют дело в атомных ядрах, единая природа эл.-магн. и слабых сил практически не проявляется и их можно рассматривать как независимые. Эти взаимодействия, будучи гораздо слабее СВ, в большинстве ядерных процессов малосущественны, но возможны ситуации, когда их роль становится определяющей. Так, эл.-магн. взаимодействие (наиб. существ. часть к-рого - кулоновское отталкивание между протонами), в отличие от СВ, является дальнодействующим. Поэтому обусловленная им положит. кулоновская энергия ядра растёт с увеличением числа частиц А в ядре быстрее, чем отрицат. часть ядерной энергии, обусловленная СВ. В результате тяжёлые ядра становятся при больших А нестабильными - сначала по отношению к делению (см. Деление ядер), а затем и абсолютно нестабильными. Со слабым взаимодействием нуклонов связано такое явление, как несохранение чётности в нуклон-нуклонном рассеянии и в др. ядерных явлениях (см. Несохранение чётности в ядрах). Гравитац. силы, действующие между нуклонами, пренебрежимо малы во всех ядерных явлениях и существенны только в астрофиз. условиях (см. Нейтронные звёзды).

Основой Я. с. является сильное взаимодействие нуклонов. Сильное взаимодействие нуклонов в ядрах отличается от взаимодействия свободных нуклонов, однако последнее является фундаментом, на к-ром строится вся ядерная физика и теория Я. с. Это взаимодействие обладает изотопической инвариантностью. Суть её в том, что взаимодействие между 2 нейтронами, 2 протонами или между протоном и нейтроном в одинаковых квантовых состояниях одинаково. Поэтому можно говорить о взаимодействии между нуклонами, не уточняя, о каких нуклонах идёт речь (см. также Изотопическая инвариантность ядерных сил). Я. с. являются короткодействующими (радиус их действия ~10 -13 см) и обладают свойством насыщения, к-рое заключается в том, что с увеличением числа нуклонов в ядре уд. энергия связи нуклонов остаётся примерно постоянной (рис. 1). Это приводит к возможности существования ядерной материи.

Поскольку нуклоны в ядре движутся, как правило, со сравнительно небольшими скоростями (в 3-4 раза меньше скорости света), то для построения модели СВ нуклонов в ядрах можно пользоваться нерелятивистской теорией и приближённо описывать его потенциалом, к-рый является ф-цией расстояния r между нуклонами. В отличие от кулоновского и гравитац. потенциалов, обратно пропорциональных расстоянию, потенциал Я. с. зависит от r гораздо сложнее. Кроме того, потенциал Я. с. зависит от спинов нуклонов и орбитального момента L относительного движения нуклонов.

Нерелятивистский потенциал Я. с. содержит неск. компонентов: центральный VC, тензорный VT, спин-орбитальный VLS и квадратичный спин-орбитальный потенциал VLL. Наиб. важный из них - центральный - является комбинацией сильного отталкивания на малых расстояниях (т. Ядерная материя). Существуют модели СВ нуклонов с бесконечным ("жёстким") кором (напр., феноменологич. потенциал Хамады - Джонстона), а также более реалистич. модели с конечным ("мягким") кором (напр., потенциал Рейда, рис. 2). С кон. 1950-х гг. было предпринято множество попыток построения потенциала Я. с. на основе полевой теории мезон-нуклонного взаимодействия. Очевидные трудности такой теории связаны с большой силой взаимодействия и неприменимостью теории возмущений и основанных на ней методов. Весьма популярен полуфеноменологич. потенциал "однобозонно-го обмена", основанный на представлениях мезоннуклонной полевой теории, но использующий простейшую модель од-номезонного обмена. При этом оказалось, что для описания притяжения на промежуточных расстояниях необходимо помимо известных мезоновp, р, w. вводить также обмен несуществующим s-мезоном, к-рый интерпретируют как эфф. учёт обмена двумя p-мезонами. Константы мезон-нуклонного взаимодействия рассматривались как феноменологич. параметры, к-рые подбирались так, чтобы потенциал описывал эксперим. фазы нуклон-нуклонного рассеяния. За короткодействующее отталкивание оказались ответственными w- и r-мезоны, а за дальнодействующее притяжение - пи-мезон. Член однопи-онного обмена вносит вклад в центральный и тензорный потенциалы:

где fp NN - константа пион-нуклонного взаимодействия, тp- масса пиона, l= с/mp=1,4 Фм - комптоновская длина волны пиона, a s1, s2 -спиновые Паули матрицы. Как видно из выражений (1), (2), потенциал однопионного обмена экспоненциально спадает на расстоянии порядка комптоновской длины пиона. Др. члены потенциала одно-бозонного обмена имеют такого же типа экспоненц. факторы, но с комптоновскими длинами соответствующих бозонов, к-рые в неск. раз меньше пионной. На таких расстояниях обмен неск. пионами может быть столь же существенным, как и обмен одним тяжёлым мезоном. Это объясняет, почему члены, отвечающие обмену тяжёлыми мезонами, воспринимаются как полуфеноменологические. В то же время вид потенциала Я. с, на больших расстояниях, без сомнения, описывается выражениями (1), (2). Такой асимптотич. вид имеют и все без исключения феноменологич. потенциалы. В настоящее время наиб. точными считают т. н. парижский и боннский потенциалы, к-рые сочетают черты феноменологич. потенциалов с мягким кором и потенциала однобозонного обмена.

Совр. представления о природе СВ, основанные на КХД, поставили задачу расчёта потенциала СВ нуклонов в рамках КХД, но она пока не решена, поскольку не решена и более простая задача о построении теории одного нуклона. Существует неск. кварковых моделей адронов, из к-рых наиб. известна модель мешков в разл. вариантах. Она позволяет качественно понять природу отталкива-тельного кора, оценить его радиус и высоту, но не позволяет рассчитать вид потенциала на больших расстояниях. Под большим вопросом, с точки зрения КХД, оказывается статус мезонов (за исключением p-мезона) в формировании потенциала СВ нуклонов: обмен тяжёлыми мезонами между нуклонами происходит на столь малых расстояниях, что их кварк-глюонная природа становится существенной. Особое место в КХД-теории СВ принадлежит p-мезону. Согласно совр. представлениям, он интерпретируется как коллективное возбуждение вакуума, состоящее из большого числа кварк-антикварковых пар ( голд-стоуновский бозон, связанный со спонтанным нарушением в КХД киральной симметрии). Поэтому в большинстве совр. моделей все остальные адроны считают состоящими из небольшого числа кварков (антикварков, глюонов), а я-мезон вводят дополнительно как независимую частицу. С такой точки зрения понятен статус потенциалов (1), (2) как описывающих "хвост" потенциала взаимодействия нуклонов.

Поскольку ср. расстояние между нуклонами в ядре (1,8 Фм) не сильно превышает радиус действия Я. с., то в ядрах существуют многочастичные (прежде всего, 3-частичные) силы, возникающие из-за обмена кварками и глюонами между неск. нуклонами практически одновременно. В терминах адронов это отвечает таким процессам обмена мезонами между, напр., тремя нуклонами, к-рые нельзя свести к совокупности последовательных парных обменов. Гл. роль в формировании 3-частичных сил играет обмен p-мезонами, причём существ. вклад вносят и процессы виртуального возбуждения D-изобары - первого возбуждённого состояния нуклона. Т. о., пионы и D-изоба-ры являются основными ненуклонными степенями свободы, к-рые важны в ядерных процессах. Многочастичные силы в ядрах сравнительно невелики: их вклад в энергию связи не превышает 10-15%. Однако существуют явления, где они играют осн. роль.

Гл. часть эл.-магн. взаимодействия нуклонов составляет кулоновское отталкивание между протонами. На больших расстояниях оно определяется только зарядами протонов. СВ приводит к тому, что электрич. заряд протона не является точечным, а распределён на расстояниях 1 Фм (среднеквадратичный радиус протона равен 0,8 Фм; см. "Размер" элементарной частицы). Электрич. взаимодействие на малых расстояниях зависит и от распределения заряда внутри протона. Это распределение совр. теория СВ не может надёжно рассчитать, но оно достаточно хорошо известно из эксперим. данных по рассеянию электронов на протонах. Нейтроны в целом электронейтральны, но из-за СВ распределение заряда внутри нейтрона также существует, что приводит к электрич. взаимодействию между двумя нейтронами и между нейтроном и протоном. Магн. взаимодействие между нейтронами такого же порядка, что и между протонами, из-за большой величины аномального магнитного момента, обусловленного СВ. Менее ясна ситуация со слабым взаимодействием нуклонов. Хотя гамильтониан слабого взаимодействия известен хорошо, СВ приводит к перенормировке соответствующих констант взаимодействия (аналог аномального магн. момента) и возникновению формфакторов. Как и в случае эл.-магн. взаимодействия, эффекты слабого взаимодействия не могут быть достоверно рассчитаны, но в этом случае они не известны и экспериментально. Имеющиеся данные о величине эффектов несохранения чётности в 2-нуклонной системе позволяют установить интенсивность этого взаимодействия, но не его структуру. Существует неск. альтернативных моделей слабого взаимодействия нуклонов, к-рые одинаково хорошо описывают 2-нуклонные эксперименты, но приводят к разл. следствиям для атомных ядер.

Лит.: Бор О., Моттельсон Б., Структура атомного ядра, пер. с англ., т. 1-2, М., 1971-77; Калоджеро Ф., Симонов Ю. А., Ядерные силы, насыщение и структура ядер, в сб.: Будущее науки, в. 9, М., 1976. Э. Е. Саперштейн.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Читайте также: