Что такое угловой размер светила в астрономии кратко

Обновлено: 04.07.2024

Угловой размер в астрономии это угол в градусах или в других единицах под которым видны небесные тела, например, Солнце с Земли виден под углом 0,5 градусов или 30 угловых минут. Угловая скорость это угол на который отклонятся небесное тело за единицу времени, например, для наблюдателей с Земли Солнце совершает один оборот за 24 часа, или вращается с угловой скоростью 360/24=15 градусов в час.

Угловой размер (иногда также угол зрения) — это угол между прямыми линиями, соединяющими диаметрально противоположные крайние точки измеряемого (наблюдаемого) объекта и глаз наблюдателя. Под угловым размером может также пониматься не плоский угол, под которым виден объект, а телесный угол. Если отрезок длиной D перпендикулярен линии наблюдения (более того, она является серединным его перпендикуляром) и находится на расстоянии L от наблюдателя

Угловой размер - угол между лучами, направленными на крайние точки объекта (небесного тела).

Угловая скорость - скорость изменения угла между направлением на конечную и начальную точку траектории движения, т. е. производная угла по времени dф/dt/

  • Угловой размер (иногда также угол зрения) — это угол между прямыми линиями, соединяющими диаметрально противоположные крайние точки измеряемого (наблюдаемого) объекта и глаз наблюдателя.

Связанные понятия

Астрономи́ческая едини́ца (русское обозначение: а.е.; международное: с 2012 года — au; ранее использовалось обозначение ua) — исторически сложившаяся единица измерения расстояний в астрономии. Исходно принималась равной большой полуоси орбиты Земли, которая в астрономии считается средним расстоянием от Земли до Солнца:126.

Абсолютная звёздная величина — физическая величина, характеризующая светимость астрономического объекта. Для разных типов объектов используются разные определения абсолютной величины.

Поверхностная гравитация (англ. surface gravity) — ускорение свободного падения, испытываемое на поверхности астрономического или иного объекта. Поверхностную гравитацию можно рассматривать как ускорение вследствие притяжения, испытываемое гипотетической пробной частицей, находящейся вблизи поверхности объекта и обладающей пренебрежимо малой массой, чтобы не вносить возмущения.

Ма́сса Земли́ (в астрономии обозначается M⊕, где ⊕ — символ Земли) — масса планеты Земля, в астрономии используется как внесистемная единица массы. 1 M⊕ = (5,9722 ± 0,0006) × 1024 кг.

Упоминания в литературе

На рис. 4 приведен профиль линии ОН, излучаемый этим источником. Как видим, он состоит из большого количества узких ярких линий. Каждой линии соответствует определенная скорость движения по лучу зрения излучающего эту линию облака. Величина этой скорости определяется эффектом Доплера. Различие скоростей (по лучу зрения) между различными облаками достигает – 10 км/с. Упомянутые выше интерферометрические наблюдения показали, что облака, излучающие каждую линию, пространственно не совпадают. Картина получается такая: внутри области размером приблизительно 1,5 секунды дуги движутся с разными скоростями около 10 компактных облаков. Каждое облако излучает одну определенную (по частоте) линию. Угловые размеры облаков очень малы, порядка нескольких тысячных секунды дуги. Так как расстояние до туманности W3 известно (около 2000 пк), то угловые размеры легко могут быть переведены в линейные. Оказывается, что линейные размеры области, в которой движутся облака, порядка 10-2 пк, а размеры каждого облака всего лишь на порядок величины больше расстояния от Земли до Солнца.

? острота зрения – способность глаза различать мелкие детали предметов. Размеры предметов выражаются в угловых величинах, которые связаны с линейными размерами по формуле tg α/2 = h/2L, где α – угловой размер объекта, h – линейный размер, L – расстояние от глаза до объекта.

• острота зрения – способность глаза различать мелкие детали предметов. Размеры предметов выражаются в угловых величинах, которые связаны с линейными размерами по формуле tg α/2 = h/2L, где α – угловой размер объекта, h – линейный размер, L – расстояние от глаза до объекта. У людей с нормальным зрением пространственный порог остроты зрения равен одной угловой минуте; минимально допустимые размеры элементов отображения, предъявляемые человеку, должны быть на уровне оперативного порога и составлять не менее 15 угловых минут. Однако это справедливо только для предметов простой формы. Для сложных предметов, опознание которых ведется по внешним и внутренним признакам, оптимальные условия будут в том случае, если их размеры составляют не менее 30–40 угловых минут;

Видимая площадь созвездия определяется телесным углом, который оно занимает на небе. Обычно эту площадь указывают в квадратных градусах. Для неастрономов такая единица непривычна. Чтобы сделать ее наглядной, нужно вытянуть вперед руку с поднятым указательным пальцем: его ноготь как раз покроет на небе площадку примерно в 1 квадратный градус (линейный размер ногтя 1 см х 1 см, а его расстояние от глаза составляет около 57 см, поэтому угловой размер ногтя – примерно 1°х1°). Диски Луны или Солнца занимают на небе площадь около 0,2 кв. градуса, а площадь всей небесной сферы составляет около 41 253 кв. градусов. Именно такую площадь покрывают в сумме все 88 созвездий; они целиком занимают небо, свободных мест между ними нет. В среднем на одно созвездие приходится площадь около 470 кв. градусов, или 2344 лунных дисков. Но площади реальных созвездий сильно различаются. Самое большое из них, Гидра, не отличается популярностью даже среди любителей астрономии, хотя его площадь на небе почти в 20 раз больше, чем самого маленького, но широко известного созвездия Южный Крест. Популярность созвездия определяется не его площадью, а количеством в нем ярких звезд и интересных объектов. Впрочем, даже на маленькой территории Южного Креста легко разместились бы около трех сотен полных лунных дисков!

Первоначально координаты трека анализируются независимо друг от друга. Каждый временной ряд аппроксимируется кусочной ступенчатой функцией (Lemire, 2007), разбивающей последовательность на интервалы, в пределах которых координата не изменяется или изменяется незначительно. Пересечения полученных интервалов во времени определяют положения фиксаций на треке (рисунок 3). Восстановление положения фиксаций на экране монитора проводится с помощью отображающей функции по координатам, полученным из усреднения измерений на выделенных временных интервалах. Угловое изменение направления взора между двумя последовательными фиксациями определяет амплитуду саккады. В случае, когда амплитуда не превышает 1,4°, две последовательные фиксации объединяются в одну. Выбор данного критерия многократно обсуждался в литературе (Velichkovsky et al., 2005) и может быть обусловлен целями эксперимента, а также анатомо-физиологическими свойствами сетчатки. Так, известно, что угловой размер фовеа глаза человека составляет около 2°. Примером причины выбора иного амплитудного критерия, обусловленного целями эксперимента, может быть, например, необходимость оценки стабильности фиксации взора на одной точке длительное время. В этом случае критичными могут быть также микросаккады и дрейф. Отметим также, что в программе предусмотрена возможность опциональной настройки данного критерия.

Угловые размеры освещенных участков рассматриваемого объекта при крайних настройках осветителя составляют 35' и 1,7°.

Связанные понятия (продолжение)

В этот список ближайших к Земле звёзд, отсортированный в порядке увеличения расстояния, вошли звёзды, расположенные в радиусе 5 пк (16,308 св. года) от Земли. Включая Солнце, в настоящее время известны 57 звёздных систем, которые могут находиться в пределах этого расстояния. Эти системы содержат в общей сложности 64 звезды и 13 коричневых карликов.

Вспыхивающие звёзды или звёзды типа UV Кита — переменные звёзды, резко и непериодически увеличивающие свою светимость в несколько раз во всём диапазоне от радиоволн до рентгеновского излучения.

Спектрально-двойной — называют систему двойных звёзд, если двойственность обнаруживается при помощи спектральных наблюдений. Обычно это системы, у которых скорости компонентов достаточно велики, а расположены они настолько близко, что увидеть их раздельно с использованием современных телескопов невозможно. В результате орбитального движения звёзд вокруг центра масс одна из них приближается к нам, а другая от нас удаляется, их лучевые скорости (вдоль направления на наблюдателя) неодинаковы и, как.

Звезда солнечного типа, звезда-аналог Солнца и двойник Солнца — это три категории звёзд, более или менее похожих на Солнце. Изучение этих звёзд весьма важно для лучшего понимания свойств Солнца, его уникальности или, наоборот, типичности среди других звёзд, а также возможности существования обитаемых планет у других звёзд солнечного типа.

Прямое восхождение (α, R. A. — от англ. right ascension) — длина дуги небесного экватора от точки весеннего равноденствия до круга склонения светила. Прямое восхождение — одна из координат второй экваториальной системы (есть ещё и первая, в которой используется часовой угол). Вторая координата — склонение.

Голубо́й гига́нт — звезда спектрального класса O или B. Голубые гиганты — молодые горячие массивные звёзды, которые на диаграмме Герцшпрунга — Рассела размещаются в области главной последовательности. Массы голубых гигантов достигают 10—20 масс Солнца, а светимость в тысячи и десятки тысяч раз превышает солнечную.

Большая полуось — один из основных геометрических параметров объектов, образованных посредством конического сечения.

Красное смещение — сдвиг спектральных линий химических элементов в красную (длинноволновую) сторону. Это явление может быть выражением слабого диффузного рассеяния, эффекта Доплера или гравитационного красного смещения, или их комбинацией. Сдвиг спектральных линий в фиолетовую (коротковолновую) сторону называется синим смещением. Впервые сдвиг спектральных линий в спектрах небесных тел описал французский физик Ипполит Физо в 1848 году, и предложил для объяснения сдвига эффект Доплера, вызванный лучевой.

Хромосфера (от др.-греч. χρομα — цвет; σφαίρα — шар, сфера) — внешняя оболочка Солнца и других звёзд толщиной около 10 000 км, окружающая фотосферу.

В списке приведены самые яркие звёзды, наблюдаемые с Земли, в оптическом диапазоне по видимой звёздной величине. Для кратных звёзд приведена суммарная звёздная величина.

Остаточный диск (англ. debris disk) — околозвёздный диск из пыли и обломков на орбите вокруг звезды. Такие диски могут являться фазой в формировании планетной системы, следующей за фазой протопланетного диска. По другой версии, они создаются и поддерживаются остатками столкновений между планетезималями.

Обита́емая зо́на, зо́на обита́емости, зона жизни (англ. habitable zone, HZ) в астрономии — условная область в космосе, определённая из расчёта, что условия на поверхности находящихся в ней планет будут близки к условиям на Земле и будут обеспечивать существование воды в жидкой фазе. Соответственно, такие планеты (или их спутники) будут благоприятны для возникновения жизни, похожей на земную. Вероятность возникновения жизни наиболее велика в обитаемой зоне в окрестностях звезды (circumstellar habitable.

Науго́льник (лат. Norma) — созвездие южного полушария неба, лежит к юго-западу от Скорпиона, севернее Южного Треугольника, в контакте с Циркулем. Через него проходят обе ветви Млечного Пути, но эта область неба бедна яркими звёздами. Созвездие не содержит звёзд ярче 4,0 визуальной звёздной величины, 42 звезды, видимые невооружённым глазом, площадь на небе 165,3 квадратного градуса. Наилучшие условия для наблюдений в мае — июне, частично наблюдается в южных районах России (к югу от 48 С.Ш). В созвездии.

Небе́сный эква́тор — большой круг небесной сферы, плоскость которого перпендикулярна оси мира и совпадает с плоскостью земного экватора. Небесный экватор делит небесную сферу на два полушария: северное полушарие, с вершиной в северном полюсе мира, и южное полушарие, с вершиной в южном полюсе мира. Созвездия, через которые проходит небесный экватор, называют экваториальными.

Избыток инфракрасного излучения —это измеренный параметр астрономического источника, который по своему спектральному распределению энергии имеет больший измеренный поток инфракрасного излучения, чем ожидалось, в предположении, что звезда излучает, как абсолютно черное тело. Слева можно увидеть спектральное распределение энергии белого карлика G29-38. На длинах волн более 2 мкм обнаруженное излучение сильнее ожидаемого по экстраполированному видимому спектру белого карлика и виден избыток инфракрасного.

Галактическая система координат — это система небесных координат, имеющая начало отсчёта в Солнце и направление отсчёта от центра галактики Млечный Путь. Плоскость галактической системы координат совпадает с плоскостью галактического диска. Подобно географическим, галактические координаты имеют широту и долготу.

Переменные типа BY Дракона — переменные звёзды главной последовательности поздних спектральных классов, обычно K или M. Прототипом данной категории звёзд является BY Дракона. Вариации их блеска возникают из-за вращения, поскольку на их поверхности находятся пятна, аналогичные солнечным, но занимающие намного бо́льшую площадь, а также из-за хромосферной активности. Амплитуда яркости обычно не превышает 0,5 звёздной величины, а характерная продолжительность циклов равна периоду вращения звезды (от.

Показатель цвета (в астрономии) — разность звёздных величин астрономического объекта, измеренных в двух спектральных диапазонах.

Шарово́е звёздное скопле́ние (англ. globular cluster) — звёздное скопление, содержащее большое число звёзд, тесно связанное гравитацией и обращающееся вокруг галактического центра в качестве спутника. В отличие от рассеянных звёздных скоплений, которые располагаются в галактическом диске, шаровые находятся в гало; они значительно старше, содержат гораздо больше звёзд, обладают симметричной сферической формой и характеризуются увеличением концентрации звёзд к центру скопления. Пространственные концентрации.

Возни́чий (лат. Auriga) — созвездие северного полушария неба. Самая яркая звезда — Капелла, 0,1 визуальной звёздной величины. Наиболее благоприятные условия видимости в декабре — январе. Видно на всей территории России.

Фе́никс (лат. Phoenix, Phe) — созвездие южного полушария неба. Занимает на небе площадь в 469,3 квадратного градуса, содержит 68 звёзд, видимых невооружённым глазом.

Звёздное скопление — гравитационно связанная группа звёзд, имеющая общее происхождение и движущаяся в гравитационном поле галактики как единое целое. Некоторые звёздные скопления также содержат, кроме звёзд, облака газа и/или пыли.

Покры́тие — это астрономическое явление, во время которого, с точки зрения наблюдателя из определённой точки, одно небесное тело проходит перед другим небесным телом, заслоняя его часть.

Жёлтый сверхгигант — сверхгигант, принадлежащий к спектральным классам F или G. Масса таких звёзд обычно составляет 15-20 солнечных.

Цефеи́ды — класс пульсирующих переменных звёзд с довольно точной зависимостью период—светимость, названный в честь звезды δ Цефея. Одной из наиболее известных цефеид является Полярная звезда. Для астрономов цефеиды являются своего рода маяками, благодаря зависимости период—светимость, цефеиды используются как эталоны светимости при определении расстояний до удалённых объектов.

Прохожде́ние, или астрономи́ческий транзи́т — это астрономическое явление, во время которого с точки зрения наблюдателя из определённой точки одно небесное тело проходит перед другим небесным телом, заслоняя его часть.

Склонение (δ) в астрономии — одна из двух координат экваториальной системы координат. Равняется угловому расстоянию на небесной сфере от плоскости небесного экватора до светила и обычно выражается в градусах, минутах и секундах дуги. Склонение положительно к северу от небесного экватора и отрицательно к югу от него.

Субкарлики, ранее отмечавшиеся sd (например, sdM5e) — звёзды, класс светимости которых присваивается VI, согласно Йеркской классификации. Это звёзды со светимостью на 1,5-2 звёздных величины тусклее звёзд главной последовательности того же спектрального класса. На диаграмме Герцшпрунга — Рессела субкарлики расположены ниже главной последовательности.

Корма́ (лат. Puppis, Pup) — созвездие южного полушария небесной сферы, лежит в Млечном пути. Занимает площадь в 673,4 квадратного градуса, содержит 241 звёзду, видимых невооружённым глазом. Частично созвездие видно почти на всей территории России, и чем южнее наблюдатель, тем большая часть созвездия наблюдается. Видимость ярчайшей звезды этого созвездия ζ Кормы начинается на широте 50°. В Адлере эта звезда восходит примерно на 6°30', а на юге Дагестана - примерно на 8°30'. В самых южных городах и.

Околозвёздный диск — торо- или кольцеобразное скопление материи, состоящее из газа, пыли, планетезималей или астероидов в орбите вокруг звезды.

Межзвёздная пыль — твёрдые микроскопические частицы, наряду с межзвёздным газом заполняющие пространство между звёзд. В настоящее время считается, что пылинки имеют тугоплавкое ядро, окружённое органическим веществом или ледяной оболочкой. Химический состав ядра определяется тем, в атмосфере каких звёзд они сконденсировались. Например, в случае углеродных звёзд, они будут состоять из графита и карбида кремния.

Гало́ гала́ктики (также звёздное гало́) — невидимый компонент галактики, основная часть её сферической подсистемы. Гало имеет сферическую форму и простирается за видимую часть галактики. В основном состоит из разрежённого горячего газа, звёзд и тёмной материи, составляющей основную массу галактики.

Га́зовые гига́нты — планеты, состоящие в значительной мере из водорода, гелия, аммиака, метана и других газов. Планеты этого типа имеют небольшую плотность, краткий период суточного вращения и, следовательно, значительное сжатие у полюсов; их видимые поверхности хорошо отражают, или, иначе говоря, рассеивают солнечные лучи.

Гипергига́нт — звезда огромной массы и размеров, имеющая на диаграмме Герцшпрунга — Рассела класс светимости 0. Гипергиганты определяются как самые мощные, самые тяжёлые, самые яркие и одновременно самые редкие и короткоживущие сверхгиганты. Обычно гипергигантами считаются сверхгиганты ярче −8m. KY Лебедя является примером пограничной звезды; объект с меньшей светимостью уже не будет классифицироваться как гипергигант.

Единоро́г (лат. Monoceros от греч. μονόκερως), экваториальное созвездие. Занимает на небе площадь в 481,6 квадратного градуса и содержит 146 звёзд, видимых невооружённым глазом. Лежит в Млечном пути, однако ярких звёзд не содержит. Местонахождение созвездия — внутри зимнего треугольника, образованного яркими звёздами — Сириусом, Проционом и Бетельгейзе, по которым его легко найти. Единорог — одно из 15 созвездий, через которые проходит линия небесного экватора. Видно в центральных и южных районах.

Окта́нт (лат. Octans) — маленькое и очень тусклое созвездие южного полушария неба, включающее Южный полюс мира.

Золота́я Ры́ба (порт. Dorado от лат. Doradus) — созвездие южного полушария неба. Занимает на небе площадь в 179,2 квадратного градуса. Содержит 32 звезды, видимых невооружённым глазом.

Орёл (лат. Aquila) — экваториальное созвездие. Западная его часть лежит в восточной ветви Млечного Пути, южнее Стрелы. Площадь созвездия — 652,5 квадратного градуса, число звёзд ярче 6m — 70.

Паруса́ (реже — Па́рус) (лат. Vela) — созвездие южного полушария неба. Его южная граница проходит по самым богатым областям Млечного Пути. Занимает на небе площадь в 499,6 квадратного градуса, содержит 195 звёзд, видимых невооружённым глазом.

§ 13. О пределение расстояний и размеров тел в С олнечной системе

1. Форма и размеры Земли

П редставление о Земле как о шаре, который свободно, без всякой опоры находится в космическом пространстве, является одним из величайших достижений науки древнего мира.

Считается, что первое достаточно точное определение размеров Земли провёл греческий учёный Эратосфен (276—194 до н. э.), живший в Египте. Идея, положенная в основу измерений Эратосфена, весьма проста: измерить длину дуги земного меридиана в линейных единицах и определить, какую часть полной окружности эта дуга составляет. Получив эти данные, можно вычислить длину дуги в 1 ° , а затем длину окружности и величину её радиуса, т. е. радиуса земного шара. Очевидно, что длина дуги меридиана в градусной мере равна разности географических широт двух пунктов: ϕ B – ϕ A .


Рис. 3.8. Способ Эратосфена

Для того чтобы определить эту разность, Эратосфен сравнил полуденную высоту Солнца в один и тот же день в двух городах, находящихся на одном меридиане. Измерив высоту Солнца h B (рис. 3.8) в полдень 22 июня в Александрии, где он жил, Эратосфен установил, что Солнце отстоит от зенита на 7,2 ° . В этот день в полдень в городе Сиена (ныне Асуан) Солнце освещает дно самых глубоких колодцев, т. е. находится в зените ( h A = 90 ° ). Следовательно, длина дуги составляет 7,2 ° . Расстояние между Сиеной ( A ) и Александрией ( B ) около 5000 греческих стадий — l .

Стадией в Древней Греции считалось расстояние, которое проходит легко вооружённый греческий воин за тот промежуток времени, в течение которого Солнце, коснувшееся горизонта своим нижним краем, целиком скроется за горизонт.

Несмотря на кажущееся неудобство такой единицы и достаточную громоздкость словесного определения, её введение выглядело вполне оправданным, учитывая, что строгая периодичность небесных явлений позволяла использовать их движение для счёта времени.

Обозначив длину окружности земного шара через L , получим такое выражение:

= ,

откуда следует, что длина окружности земного шара равняется 250 тыс. стадий.

Точная величина стадии в современных единицах неизвестна, но, зная, что расстояние между Александрией и Асуаном составляет 800 км, можно полагать, что 1 стадия = 160 м. Результат, полученный Эратосфеном, практически не отличается от современных данных, согласно которым длина окружности Земли составляет 40 тыс. км.


Рис. 3.9. Параллактическое смещение

Определить географическую широту двух пунктов оказывается гораздо проще, чем измерить расстояние между ними. Зачастую непосредственное измерение кратчайшего расстояния между этими пунктами оказывается невозможным из-за различных естественных препятствий (гор, рек и т. п.). Поэтому применяется способ, основанный на явлении параллактического смещения и предусматривающий вычисление расстояния на основе измерений длины одной из сторон (базиса — BC ) и двух углов B и C в треугольнике ABC (рис. 3.9).

Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя.

Чем дальше расположен предмет, тем меньше его параллактическое смещение, и чем больше перемещение наблюдателя (базис измерения), тем больше параллактическое смещение.


Рис. 3.10. Схема триангуляции

Для определения длины дуги используется система треугольников — способ триангуляции , который впервые был применён ещё в 1615 г. Пункты в вершинах этих треугольников выбираются по обе стороны дуги на расстоянии 30—40 км друг от друга так, чтобы из каждого пункта были видны по крайней мере два других. Основой для вычисления длин сторон во всех этих треугольниках является размер базиса AC (рис. 3.10). Точность измерения базиса длиной в 10 км составляет около 1 мм. Во всех пунктах устанавливают геодезические сигналы — вышки высотой в несколько десятков метров. С вершины сигнала с помощью угломерного инструмента ( теодолита ) измеряют углы между направлениями на два-три соседних пункта. Измерив углы в треугольнике, одной из сторон которого является базис, геодезисты получают возможность вычислить длину двух других его сторон. Проводя затем измерение углов из пунктов, расстояние между которыми вычислено, можно узнать длину двух очередных сторон в треугольнике. Зная длину сторон этих треугольников, можно определить длину дуги AB .

В какой степени форма Земли отличается от шара, выяснилось в конце XVIII в. Для уточнения формы Земли Французская академия наук снарядила сразу две экспедиции. Одна из них работала в экваториальных широтах Южной Америки в Перу, другая — вблизи Северного полярного круга на территории Финляндии и Швеции. Измерения показали, что длина одного градуса дуги меридиана на севере больше, чем вблизи экватора. Последующие исследования подтвердили, что длина дуги одного градуса меридиана увеличивается с возрастанием географической широты. Это означало, что форма Земли — не идеальный шар: она сплюснута у полюсов. Её полярный радиус на 21 км короче экваториального.

Для школьного глобуса масштаба 1 : 50 000 000 отличие этих радиусов будет всего 0,4 мм, т. е. совершенно незаметно.


Отношение разности величин экваториального и полярного радиусов Земли к величине экваториального называется сжатием . По современным данным, оно составляет , или 0,0034. Это означает, что сечение Земли по меридиану будет не окружностью, а эллипсом, у которого большая ось проходит в плоскости экватора, а малая совпадает с осью вращения.


В XX в. благодаря измерениям, точность которых составила 15 м, выяснилось, что земной экватор также нельзя считать окружностью. Сплюснутость экватора составляет всего (в 100 раз меньше сплюснутости меридиана). Более точно форму нашей планеты передаёт фигура, называемая эллипсоидом, у которого любое сечение плоскостью, проходящей через центр Земли, не является окружностью.

В настоящее время форму Земли принято характеризовать следующими величинами:

сжатие эллипсоида — 1 : 298,25;

средний радиус — 6371,032 км;

длина окружности экватора — 40075,696 км.

2. Определение расстояний в Солнечной системе. Горизонтальный параллакс

И змерить расстояние от Земли до Солнца удалось лишь во второй половине XVIII в., когда был впервые определён горизонтальный параллакс Солнца. По сути дела, при этом измеряется параллактическое смещение объекта, находящегося за пределами Земли, а базисом является её радиус.

Горизонтальным параллаксом ( p) называется угол, под которым со светила виден радиус Земли, перпендикулярный лучу зрения (рис. 3.11) .


Рис. 3.11. Горизонтальный параллакс светила

Из треугольника OAS можно выразить величину — расстояние OS = D :


D = ,

где R — радиус Земли. По этой формуле можно вычислить расстояние в радиусах Земли, а зная его величину, — выразить расстояние в километрах.

Очевидно, что чем дальше расположен объект, тем меньше его параллакс. Наибольшее значение имеет параллакс Луны, который меняется в связи с тем, что Луна обращается по эллиптической орбите, и в среднем составляет 57 ʹ . Параллаксы планет и Солнца значительно меньше. Так, параллакс Солнца равен 8,8 ʺ . Такому значению параллакса соответствует расстояние до Солнца, примерно равное 150 млн км. Это расстояние принимается за одну астрономическую единицу (1 а. е.) и используется при измерении расстояний между телами Солнечной системы.

Известно, что для малых углов sin p ≈ p , если угол p выражен в радианах. В одном радиане содержится 206 265 ʺ . Тогда, заменяя sin p на p и выражая этот угол в радианной мере, получаем формулу в виде, удобном для вычислений:


D = R ,

или (с достаточной точностью)


D = R .

Во второй половине XX в. развитие радиотехники позволило определять расстояния до тел Солнечной системы посредством радиолокации . Первым объектом среди них стала Луна. Затем радиолокационными методами были уточнены расстояния до Венеры, Меркурия, Марса и Юпитера. На основе радиолокации Венеры величина астрономической единицы определена с точностью порядка километра. Столь высокая точность определения расстояний — необходимое условие для расчётов траекторий полёта космических аппаратов, изучающих планеты и другие тела Солнечной системы. В настоящее время благодаря использованию лазеров стало возможным провести оптическую локацию Луны. При этом расстояния до лунной поверхности измеряются с точностью до сантиметров.

П РимеР РешениЯ задаЧи

На каком расстоянии от Земли находится Сатурн, когда его горизонтальный параллакс равен 0,9 ʺ ?

Известно, что параллакс Солнца на расстоянии в 1 а. е. равен 8,8 ʺ .

Тогда, написав формулы для расстояния до Солнца и до Сатурна и поделив их одна на другую, получим:

= .

D 1 = = = 9,8 а. е.

Ответ : D 1 = 9,8 а. е.

3. Определение размеров светил


Рис. 3.12. Угловые размеры светила

З ная расстояние до светила, можно определить его линейные размеры, если измерить его угловой радиус ρ (рис. 3.12). Формула, связывающая эти величины, аналогична формуле для определения параллакса:


D = .

Учитывая, что угловые диаметры даже Солнца и Луны составляют примерно 30 ʹ , а все планеты видны невооружённым глазом как точки, можно воспользоваться соотношением: sin ρ ≈ ρ . Тогда:

D = и D = .


r = R .

Если расстояние D известно, то

где величина ρ выражена в радианах.

П РимеР РешениЯ задаЧи

Чему равен линейный диаметр Луны, если она видна с расстояния 400 000 км под углом примерно 30 ʹ ?

Если ρ выразить в радианах, то


d = = 3490 км.

Ответ : d = 3490 км.


В опросы 1. Какие измерения, выполненные на Земле, свидетельствуют о её сжатии? 2. Меняется ли и по какой причине горизонтальный параллакс Солнца в течение года? 3. Каким методом определяется расстояние до ближайших планет в настоящее время?


У пражнение 11 1. Чему равен горизонтальный параллакс Юпитера, наблюдаемого с Земли в противостоянии, если Юпитер в 5 раз дальше от Солнца, чем Земля? 2. Расстояние Луны от Земли в ближайшей к Земле точке орбиты (перигее) 363 000 км, а в наиболее удалённой (апогее) — 405 000 км. Определите горизонтальный параллакс Луны в этих положениях. 3. Во сколько раз Солнце больше, чем Луна, если их угловые диаметры одинаковы, а горизонтальные параллаксы равны 8,8 ʺ и 57 ʹ соответственно? 4. Чему равен угловой диаметр Солнца, видимого с Нептуна?

Формулы


Угловой диаметр плоского круглого объекта (диска) для наблюдателя, находящегося на линии, перпендикулярной плоскости, содержащей диск и проходящей через его центр, можно рассчитать по следующей математической формуле: [ 1 ]

где искомый угловой диаметр, диаметр диска и расстояние до него, выраженные в одних и тех же единицах. Полученный результат обычно выражается в шестидесятеричных градусах с десятичной дробной частью (например, 2,5° соответствует 2°30'; два с половиной градуса в обоих случаях). г г Д

Если у вас есть сферический объект , исходя из его диаметра , получается следующая формула: г

где – искомый угловой диаметр, – диаметр сферы , – расстояние между наблюдателем и центром сферы; как и в предыдущем случае, оба выражены в однородных единицах. г г Д

Причина различия между двумя формулами заключается в том, что при взгляде на сферу края, являющиеся точками касания линий взгляда, находятся ближе к наблюдателю, чем центр сферы. Для практического использования разница существенна только для очень близких к наблюдателю сферических объектов, так как для малых углов она выполняется с замечательным приближением, чем для

Когда намного больше, чем , результирующий угол очень мал. В этой ситуации значение угла (выраженное в радианах) очень близко к значению его тангенса, поэтому можно сделать приближение по следующей формуле: Д г

(угол также выражается в радианах ). [ 7 ]

Оценка угловых диаметров с помощью руки на расстоянии вытянутой руки

Оценки некоторых угловых диаметров можно получить, наблюдая за рукой, расположенной перпендикулярно в определенных позах, с полностью вытянутой рукой, как показано на прилагаемом рисунке. [ 8 ] ​[ 9 ] ​[ 10 ]

Использование в астрономии


В астрономии размеры объектов в небе часто даются с точки зрения их углового диаметра, видимого с Земли, а не их фактических размеров. Поскольку эти угловые диаметры обычно малы, обычно их представляют в угловых секундах. Угловая секунда составляет 1/3600 шестидесятеричной степени. Зная, что половина окружности (180 шестидесятеричных градусов) - это радианы, один радиан равен 3600*180/ секунд дуги или, что то же самое, 206,265 секунд дуги. Следовательно, угловой диаметр объекта с физическим диаметром d на расстоянии D , выраженный в угловых секундах, определяется выражением: [ 11 ] число Пи число Пи

  • Угловой диаметр орбиты Земли вокруг Солнца на расстоянии одного парсека составляет 1″ (одну угловую секунду).
  • Угловой диаметр Солнца с расстояния в один световой год составляет 0,03″, а Земли — 0,0003″.

Приведенный выше угловой диаметр Солнца в 0,03″ примерно такой же, как у человека на расстоянии, равном диаметру Земли. [один]

В этой таблице показаны угловые размеры известных небесных тел, видимых с Земли:

  • Таблица показывает, что угловой диаметр Солнца, если смотреть с Земли, составляет примерно 32 угловых минуты (1920 угловых секунд или 0,53 градуса), как показано выше.
  • Угловой диаметр Солнца примерно в 250 000 раз больше, чем у Сириуса (Сириус в два раза больше диаметра Солнца, но его расстояние от Земли в 500 000 раз больше); С Земли Солнце в 1×10 10 раз ярче. Из соотношения их угловых диаметров следует, что Сириус — звезда примерно в 6,25 (=250 000·500 000/2/1×10 10 ) раз ярче Солнца на единицу [телесного угла].
  • Угловой диаметр Солнца также примерно в 250 000 раз больше, чем у Альфы Центавра А (у него примерно такой же диаметр, но расстояние от Земли в 250 000 раз больше); С Земли Солнце в 4×10 10 раз ярче. Из соотношения их угловых диаметров следует, что Альфа Центавра А — звезда примерно в 1,5 (=250 000·250 000/1/4×10 10 ) раз ярче Солнца на единицу [телесного угла].
  • Угловой диаметр Солнца примерно такой же, как у Луны: диаметр Солнца в 400 раз больше, но и расстояние его от Земли больше. С другой стороны, Солнце в 200 000–500 000 раз ярче полной Луны (цифры варьируются в зависимости от изменяющихся факторов, таких как относительное положение двух звезд или яркость Солнца). Небесное тело диаметром от 1,5″ до 4″ и такой же яркостью на единицу телесного угла, как у Солнца, будет иметь ту же яркость, что и полная Луна (просто разделите угловой диаметр Солнца [1962"] на коэффициент светимости [ от 200 000 до 500 000] и умножьте на [400] отношение расстояний до Земли между Луной и Солнцем).
  • Хотя Плутон физически больше Цереры, при наблюдении с Земли (например, через космический телескоп Хаббла) Церера намного больше по видимым размерам.
  • В то время как угловые размеры, измеренные в градусах, полезны для больших областей неба (в созвездии Ориона, например, три звезды пояса покрывают около 4,5 градусов угловой амплитуды), когда речь идет об угловом размере галактик, нужны гораздо более точные единицы измерения. туманности и другие объекты ночного неба.

Порядок угловых единиц

Как известно, шестидесятеричные степени подразделяются следующим образом:

  • 360 градусов (°) образуют полный круг
  • 60 угловых минут (′) – это градус
  • 60 угловых секунд (″) составляют одну минуту

Чтобы представить эти значения в перспективе, достаточно отметить, что и Солнце, и полная Луна, если смотреть с Земли, имеют угловой диаметр около половины градуса (или около 30 угловых минут, или 1800 угловых секунд). Движение Луны по небу можно измерить по угловому изменению: примерно 15 градусов каждый час или 15 угловых секунд в секунду. Линия длиной в милю (примерно 1,6 км), отмеченная на поверхности Луны, будет видна с Земли с амплитудой в одну угловую секунду.

В астрономии обычно трудно измерить расстояние до объекта напрямую. Но объект может иметь известный физический размер (похожий на более известный объект) и измеримый угловой диаметр. В этом случае формула углового диаметра может быть обращена для расчета расстояния до Земли от удаленных объектов:

Диаграмма, представляющая угловые диаметры Солнца, Луны и планет

Поскольку видимый размер является угловой величиной, можно установить сравнение углового диаметра Солнца, Луны и планет, сохраняя пропорцию между размером, в котором они представлены, и расстоянием, на котором они наблюдаются. Таким образом, чтобы получить достоверное представление об угловых диаметрах небесных тел, изображение должно наблюдаться на расстоянии, в 103 раза превышающем максимальный размер Луны на изображении.

Например, если на мониторе круг шириной 10 см, его следует рассматривать с расстояния 10,3 м.

некруглые объекты

Многие объекты дальнего космоса, такие как галактики и туманности, кажутся некруглой формы, поэтому обычно даются два измерения диаметра: большой диаметр и меньший диаметр. Например, Малое Магелланово Облако имеет визуальный видимый диаметр 5°20' x 3°5'.

дефект освещения

Дефект освещенности – это максимальная угловая ширина неосвещенной части небесного тела, видимой данным наблюдателем. Например, если объект имеет диаметр 40 угловых секунд с 75-процентной освещенностью поверхности, дефект освещения составляет 10 угловых секунд (как, например, в случае фаз Венеры).

Примеры

Как показано на рисунке 1, два небесных тела очень разных диаметров могут иметь одинаковый угловой диаметр. Так обстоит дело с Солнцем и Луной, наблюдаемыми с Земли. Экваториальный диаметр Солнца примерно в 400 раз больше лунного, но поскольку расстояние от Земли до Солнца примерно в 400 раз больше, чем расстояние от Земли до Луны, оба тела имеют практически одинаковые угловые диаметры, около 30 минут дуги, и, таким образом, наше спутник может полностью скрыть Солнце, в некоторых случаях производя полное солнечное затмение .

Чтобы получить представление об истинной величине углового диаметра , представим себе монету в 2 евро, расположенную на разных расстояниях:

Читайте также: