Что такое спин кратко

Обновлено: 04.07.2024

Часть 1. Спин.

Физические эксперименты всегда подразумевают измерение каких-либо величин. В экспериментах по схеме Белла, мы будем измерять спин элементарных частиц, поэтому нам следует разобраться, что же это за штука такая.

В классической механике есть такая величина: момент импульса. Так же, как и просто импульс, момент импульса характеризует количество движения. Разница вот в чём: импульс характеризует поступательное движение тела в определённой системе отсчёта, а момент импульса - вращательное движение тела вокруг определённой оси вращения.

Вы знаете, конечно, что импульс определяется как произведение массы тела на его линейную скорость. А момент импульса определяется как произведение момента инерции тела на его угловую скорость, ту, которая измеряется в оборотах в секунду. Что такое момент инерции - я тут объяснять не буду, для нашей задачи это несущественно. Зато очень существенно вот что: момент импульса является величиной векторной, то есть, характеризуется не только абсолютным значением, но и направлением, которое всегда совпадает с направлением оси вращения. Тут вы можете спросить: но ведь у оси вращения два направления. Например, куда направлен вектор момента импульса вращающейся юлы-волчка, вверх или вниз? Отвечу: принято определять направление вектора момента импульса по "правилу буравчика". При вращении тела этот вектор направлен туда, куда вкручивался бы штопор, вращай мы его также. Так что, если юла раскручена по часовой стрелке, то считается, что вектор момента импульса направлен вниз. А если против часовой - тогда вверх.

Момент импульса, как и импульс, подчиняется закону сохранения. То есть, если вращающееся тело не взаимодействует ни с какими другими телами, его момент импульса остаётся неизменным, что бы там не происходило внутри самого тела. Даже если тело самопроизвольно развалится на несколько частей, то суммарный момент импульса всех осколков будет равен моменту импульса развалившегося тела. Причём, момент импульса не меняется не только по абсолютной величине, но и по направлению. Это можно наблюдать на примере той же юлы: пока она достаточно быстро крутится, её ось вращения направления не меняет. Повторяю: если тело ни с чем не взаимодействует, то его момент импульса сохраняется. Но если на тело воздействовать извне, то его момент импульса изменить можно, как по абсолютной величине , так и по направлению.

Спин элементарной частицы – это её момент импульса. Можно считать, что частица – это шарик, который вращается вокруг собственной оси, как, например, наша планета. Такое представление, вообще-то, довольно примитивно, но для нашей задачи сгодится. Надо только понимать, что спин, в отличие от классического момента импульса – величина квантовая, и поэтому обладает некоторыми специфическими особенностями, которые мы ниже рассмотрим.

Момент импульса тела может быть любым как по направлению, так и по абсолютной величине. Спин частицы по абсолютной величине может принимать только одно из небольшого набора значений (количество возможных значений определяется типом частицы). Иными словами, спин квантуется. А вот направление спина частицы может быть любым. Стало быть, измерять мы будем именно направление спина.

Ну что же, перейдём к "практической" части. Нет, это ещё не белловские эксперименты, для начала мы проделаем несколько простых опытов, чтобы лучше понять свойства спина и поупражняться с его измерением.

Для измерения спина частиц используют устройство, которое называется "прибор Штерна-Герлаха", по фамилиям его изобретателей. Дальше мы будем называть это устройство сокращено: "ПШГ". Кратко рассмотрим принцип действия прибора.

Элементарная частица имеет электрический заряд* и вращается, а значит, она представляет собой маленький магнит. Другими словами, если у частицы есть спин, значит, у неё есть и магнитные свойства, или, говоря более научно – магнитный момент. Вот этот-то магнитный момент вращающейся частицы и использует ПШГ. Устройство ПШГ, а также прочее оборудование, необходимое для опытов, показаны на рисунке 1.1.


Собственно, сам ПШГ состоит из двух магнитов. Верхний и нижний магниты имеют различную форму, благодаря чему магнитное поле в промежутке между ними неоднородно. Также на рисунке изображены источник частиц, (надо же их откуда-то брать?) и экран, который регистрирует точку попадания частицы. Например, в качестве экрана может использоваться фотопластинка: попавшая в неё частица "засвечивает" точку попадания.

Если спин направлен вверх, то неравномерное магнитное поле в зазоре отклоняет частицу вверх (красная траектория). Если спин направлен вниз, то частица отклоняется вниз (синяя траектория). Таким образом, наблюдая на экране точку попадания частицы, мы определяем, как был направлен её спин – вверх или вниз.

Мы рассмотрели случаи, когда спин частицы направлен вдоль оси Z. То есть, направление спина совпадает с ориентацией прибора или строго противоположно ей. Но ведь спин частицы может быть ориентирован в пространстве как угодно. Возникает вопрос: а что же будет с частицей, если её спин и ориентация ПШГ не совпадают? Тут классическая физика и квантовая механика дают разные ответы.

Отклонения частицы по оси Y при такой ориентации прибора (напоминаю – она показана толстой серой стрелкой) быть не должно.


Ось X на рисунке 1.2 и на следующих рисунках не показана, чтобы не загромождать. Можете считать, что она направлена от нас прямо вглубь рисунка. Места попадания частиц в регистрирующий экран показаны красной звёздочкой. Направление спина показано так, как мы условились раньше: тонкой чёрной стрелкой.

Тут, чтобы вас не запутать на будущее, я должен оговорить вот что: на самом деле два результата измерения мы получим только на частицах со спином 1/2. К таким частицам относятся, в частности, электроны, протоны, нейтроны и некоторые другие. Для прочих частиц возможны три результата, четыре, пять и так далее, но в любом случае число возможных результатов будет конечным. Чтобы не делать в дальнейшем таких оговорок, давайте определимся: мы будем в наших экспериментах работать только с протонами.




Я пока не буду объяснять, почему классический (a) и квантовый (b) расчёты дадут при такой ориентации прибора именно эти картины распределения попаданий. Если вам непонятно, то предлагаю тут притормозить и разобраться самостоятельно. Вся необходимая для этого информация изложена выше и даже выделена жирным курсивом . Также вам помогут, надеюсь, дополнительные построения, нарисованные пунктирными линиями.

Итак, констатируем важный вывод, на который мы будем ссылаться в дальнейших рассуждениях:

Утверждение 1.1.

Вне зависимости от того, с каким направлением спина протон входит в измерительный прибор, мы получим только один из двух возможных результатов измерения: направление спина протона либо совпадает с ориентацией прибора, либо строго противоположно ему.

Для порядка отмечу, что в нашем случае измерительным прибором является устройство, включающее ПШГ и регистрирующий экран. Однако, утверждение 1.1. верно и для любого другого устройства, измеряющего направление спина. Но мы будем и дальше пользоваться прибором Штерна-Герлаха. Только вот, в свете утверждения 1.1., регистрирующий экран нам больше не нужен. Поскольку из ПШГ все протоны выходят только по одной из двух возможных траекторий, мы можем вместо экрана поставить на каждой траектории детектор протонов. Теперь схема эксперимента, показанного на рисунке 1.1, будет выглядеть так, как на рисунке 1.5-a.


Детекторы обозначены как D + (плюс – детектор) и D – (минус – детектор). В плюс – детектор будут попадать все протоны, направление спина которых совпадает с ориентацией прибора. В минус – детектор попадут все протоны с противоположной прибору ориентацией.

Итак, мы выяснили, что ПШГ направляет входные протоны по одной и из двух возможных траекторий. Дальше эти траектории будем называть так: "плюс-канал" и "минус-канал". Выше, на рисунках 1.1, 1.5, протон в плюс-канале (красный) я изобразил со спином вверх, а протон в минус-канале (синий) со спином вниз. Но это было сделано, так сказать, "авансом", на самом деле мы пока не уверены, что протоны выходят из прибора именно в таких состояниях. Есть ведь серьёзные поводы для сомнений.

Во-первых, может быть, вообще никакого спина у протона не существует, а ПШГ просто разбрасывает протоны по каналам каким-то случайным или псевдослучайным образом, как, например, фонтан разбрасывает водяные брызни?

Во-вторых, в "классическом" случае, если бы мы действительно имели дело с вращающимися заряженными шариками без всяких квантовых свойств, шарик отклонялся бы в неравномерном магнитном поле, но его момент импульса при этом бы не изменился: какой на входе, такой и на выходе. Другими словами, "классическое" измерение не меняет измеряемой величины. Может быть и в квантовом случае такая картина: с каким протон спином вошел в прибор, с таким и вышел?

Для начала проведём эксперимент, который должен развеять наши сомнения на счёт "во-первых" (рисунок 1.6).


Теперь у нас в схеме три ПШГ, они обозначены как П1 , П2 , П3 . Обратите внимание: на выходах П1 детекторов нет. Протоны, прошедшие через плюс-канал П1 , сразу попадают в П2 , и далее в один из двух детекторов: D2 + или D2 – . Аналогично, протоны из минус-канала П1 попадают в П3 , а затем в D3 + или D3 – .

"Отстреляем" серию протонов и убедимся, что в такой конфигурации опыта на каждый "выстрел" срабатывает только один из двух детекторов: либо D2 + , либо D3 – . Детекторы D2 – и D3 + не срабатывают никогда. Получается вот что: если протон оказался в плюс-канале П1, то он гарантировано попадает и в плюс-канал П2. Аналогично, из минус-канала П1 протон гарантировано попадает в минус-канал П3. Очевидно, что если бы ПШГ действительно разбрасывал протоны по каналам беспорядочно, то такого результата мы бы не получили. Протоны на выходах П1 были бы ориентированы так же случайно, как и на его входе, и регистрировались бы с равной вероятностью всеми четырьмя детекторами. Так что мы можем уверенно утверждать: протон несёт в себе какой-то параметр состояния, согласно которому ПШГ "сортирует" протон в плюс- или минус-канал. Учитывая результаты предыдущих экспериментов, мы констатируем некоторое сходство это параметра с классическим моментом импульса. Поэтому продолжаем называть этот параметр спином и рисовать протон со стрелочкой. Да, а вот эта куча стрелочек, проткнувшая на рисунке 1.6 зелёный протон, будет означать, что спин протона не определён.

Чтобы дальше исследовать свойства спина, проделаем следующий эксперимент. (рисунок 1.7).


Прибор П1 у нас жестко зафиксирован и работает в качестве источника упорядоченных протонов. Так что в П2 попадают только такие протоны, которые гарантированно пройдут через ПШГ с вертикальной ориентацией. Ну а П2 может поворачиваться вокруг оси, показанной на рисунке штрихпунктирной линией на любой угол α . Теперь посмотрим, как будут срабатывать детекторы при разных значениях угла α . Разумеется, в зачёт пойдут только те попытки, когда срабатывает хотя бы один детектор. Если не ни один не срабатывает, значит, протон в П1 ушел в минус-канал, этот случай нас сейчас не интересует.

Для угла в 0° срабатывать будет только плюс-детектор D2 + (это мы уже видели в предыдущем эксперименте, рисунок 1.6). Теперь повернём измеритель на 1° и произведём серию "выстрелов". Здесь мы увидим, что иногда, очень редко, срабатывает минус-детектор D2 – . Но "иногда" нас не устраивает, нам нужно определить вероятности срабатывания плюс-детектора или минус-детектора. Мы их легко посчитаем по следующим формулам.

Вероятность срабатывания плюс-детектора D2 + :



где:

N(+) - количество срабатываний детектора D2 + ;

N(–) - количество срабатываний детектора D2 – .

Соответственно, вероятность срабатывания минус-детектора D2 – :


Как не трудно догадаться, вероятности P(+) и P(–) в сумме всегда дают единицу

Итак, мы получили вероятности срабатывания того или иного детектора при α = 1°. Аналогичным образом мы можем проделать опыт для любых значений угла, и получить графики зависимости вероятностей P(+) и P(–) от угла α. Эти графики будут выглядеть так (рисунок 1.8).


А вот формулы этих зависимостей:

Утверждение 1.2:



Как видите, утверждение 1.2. сформулировано без слов. Тем не менее, смысл его вполне ясен, а кому не ясен - смотрите на графики.

Если угол между ориентациями приборов П1 и П2 равен 0° (направления совпадают), то протон гарантировано попадает в плюс-детектор (вероятность этого события равна единице) и никогда не попадёт в минус-детектор.

Если угол равен 180° (направления противоположны), то ситуация обратная: будет срабатывать только минус-детектор.

Если угол равен 90° или 270° градусов (ориентации приборов перпендикулярны), то вероятности срабатывания плюс-детектора и минус-детектора одинаковы и равны 0,5.

При всех прочих значениях углов вероятности срабатывания плюс-детектора и минус-детектора будут различными, но в сумме они всё равно дадут единицу.

Для объяснения этих результатов можно предложить две версии.

Версия 1. Спин протона влияет на его "сортировку" при прохождении ПШГ. Но сам спин при этом не меняется.

Версия 2. Спин протона не только влияет на его "сортировку" при прохождении ПШГ, но и меняется при этом: в плюс-канале направление спина совпадает с ориентацией ПШГ, а в минус-канале направления противоположны.

Очередной эксперимент (рисунок 1.9) поможет нам выяснить, какая из этих версий правильная.


Засчитывать опять будем только результативные "выстрелы", когда срабатывает хотя бы один детектор. Результативных "выстрелов" будет примерно четверть: половину протонов отсеет в минус канал П1, ещё половину - П2.

Если верна версия 1 (спин протона при прохождении ПШГ не меняется), то будет срабатывать только плюс-детектор. Надо объяснять почему?

Если верна версия 2 (направление спина протона на плюс-выходе ПШГ совпадает с ориентацией ПШГ), то примерно в половине результативных попыток будет срабатывать плюс-детектор, а в половине - минус детектор.

Так вот, если мы реально проведём такой эксперимент, то увидим, что с равной вероятностью срабатывают оба детектора. Значит, верна версия 2.

Вернёмся чуть назад, к предыдущему опыту (рисунок 1.7) и его результатам (рисунок 1.8). Теперь мы точно знаем, что в плюс-канале П1 оказываются только те протоны, направление спина которых совпадает с ориентацией П1. А значит, утверждение 1.2 (формулы (ф. 1.3), (ф. 1.4)) определяют вероятности попадания протона в плюс-канал или в минус-канал в зависимости от угла между направлением спина протона и ориентацией прибора.

Формулы из утверждения 1.2 - типичный пример того, какие предсказания даёт квантовый подход. Как уже было сказано во введении, квантовая теория принципиально не позволяет точно вычислить результат эксперимента, но может точно вычислить вероятность того или иного результата. Вот и в нашем случае невозможно вычислить, какой детектор сработает, если угол α не равен 0° или 180°.

Теперь мы можем сформулировать обозначенную во введении проблему (детерминизм или случайность) на нашем конкретном примере. Посмотрите ещё раз на ситуацию, когда направление спина протона и ориентация прибора не параллельны. В этом случае может сработать либо плюс-детектор, либо минус-детектор. Классический (детерминистский) и квантовый (случайный) подход объясняют эту неопределённость по разному.

Классический подход: в системе, включающей протон и измеритель спина, заключены скрытые параметры, предопределяющие тот или иной результат измерения. Нам же выбор результата кажется случайным только потому, что мы этих параметров не знаем. Или, более философично: в системе протон - измеритель "записан" (или, если угодно, "запрограммирован") только один вариант будущего состояния системы, именно он и будет реализован.

Квантовый подход: в системе, включающей протон и измеритель спина, предопределено то, что мы получим один из двух результатов измерения. Также предопределена вероятность получения того или иного результата. Но выбор результата абсолютно случаен. Опять же, философично: в системе протон - измеритель "записаны" два варианта будущего состояния системы и вероятности реализации каждого из них. Но какой из них реализуется – это не предопределено.

*Некоторые электрически нейтральные частицы, нейтрон, например, тоже обладают магнитным моментом. Но физический механизм этого явления мы тут рассматривать не будем, это к нашей теме не относится.

Итак, полностью абстрагируемся и забываем любые классические определения. Ибо спин – это понятие, присущее исключительно квантовому миру. Попробуем разобраться в том, что это такое.

Больше полезной информации для учащихся – у нас в телеграм.

Спин и момент импульса

Спин (от английского spin – вращаться) – собственный момент импульса элементарной частицы.

Теперь вспомним, что такое момент импульса в классической механике.

Момент импульса – это физическая величина, характеризующая вращательное движение, точнее, количество вращательного движения.

В классической механике момент импульса определяется как векторное произведение импульса частицы на ее радиус вектор:


По аналогии с классической механикой спин характеризует вращение частиц. Их представляют в виде волчков, вращающихся вокруг оси. Если частица имеет заряд, то, вращаясь, она создает магнитный момент и явлеятся своего рода магнитом.

Однако данное вращение нельзя трактовать классически. Все частицы помимо спина обладают внешним или орбитальным моментом импульса, характеризующим вращение частицы относительно какой-то точки. Например, когда частица движется по круговой траектории (электрон вокруг ядра).


Спин же является собственным моментом импульса, то есть характеризует внутреннее вращательное состояние частицы вне зависимости от внешнего орбитального момента импульса. При этом спин не зависит от внешних перемещений частицы.

Представить, что же там вращается внутри частицы, невозможно. Однако факт остается фактом – для заряженных частиц с разнонаправленными спинами траектории движения в магнитном поле будут различны.

Спиновое квантовое число

Для характеристики спина в квантовой физике введено спиновое квантовое число.

Спиновое квантовое число – одно из квантовых чисел, присущих частицам. Часто спиновое квантовое число называют просто спином. Однако следует понимать, что спин частицы (в понимании собственного момента импульса) и спиновое квантовое число – это не одно и то же. Спиновое число обозначается буквой J и принимает ряд дискретных значений, а само значение спина пропорционально приведенной постоянной Планка:


Бозоны и фермионы

Разным частицам присущи разные спиновые числа. Так, главное отличие состоит в том, что одни обладают целым спином, а другие – полуцелым. Частицы обладающие целым спином называются бозонами, а полуцелым – фермионами.

Бозоны подчиняются статистике Бозе-Эйнштейна, а фермионы – Ферми-Дирака. В ансамбле частиц, состоящем из бозонов, любое их количество может находиться в одинаковом состоянии. С фермионами все наоборот – наличие двух тождественных фермионов в одной системе частиц невозможно.


Бозоны: фотон, глюон, бозон Хиггса. Подробнее о бозоне Хиггса - в отдельной статье.

Фермионы: электрон, лептон, кварк

Попробуем представить, чем отличаются частицы с разными спиновыми числами на примерах из макромира. Если спин объекта равен нулю, то его можно представить в виде точки. Со всех сторон, как ни вращай этот объект, он будет одинаков. При спине равном 1 поворот объекта на 360 градусов возвращает его в состояние, идентичное первоначальному состоянию.

Например, карандаш, заточенный с одной стороны. Спин равный 2 можно представить в виде карандаша, заточенного с двух сторон - при повороте такого карандаша на 180 градусов мы не заметим никаких изменений. А вот полуцелый спин равный 1/2 представляется объектом, для возвращения которого в первоначальное состояние нужно соверщить оборот в 720 градусов. Примером может служить точка, движущаяся по листу Мебиуса.


Итак, спин - квантовая характеристика элементарных частиц, которая служит для описания их внутреннего вращения, момент импульса частицы, не зависящий от ее внешних перемещений.

Надеемся, что вы осилите эту теорию быстро и сможете при случае применить знания на практике. Ну а если задачка по квантовой механике оказалось непосильно сложной или не можете не забывайте о студенческом сервисе, специалисты которого готовы прийти на выручку. Учитывая, что сам Ричард Фейнман сказал, что "в полной мере квантовую физику не понимает никто", обратиться за помощью к опытным специалистам – вполне естественно!

Спин (от англ. spin — вертеть[-ся], вращение) — собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. Спином называют также собственный момент импульса атомного ядра или атома; в этом случае спин определяется как векторная сумма (вычисленная по правилам сложения моментов в квантовой механике) спинов элементарных частиц, образующих систему, и орбитальных моментов этих частиц, обусловленных их движением внутри системы.

\hbar J,

Спин измеряется в единицах ħ (приведённой постоянной Планка, или постоянной Дирака) и равен где J — характерное для каждого сорта частиц целое (в том числе нулевое) или полуцелое положительное число — так называемое спиновое квантовое число, которое обычно называют просто спином (одно из квантовых чисел).

В связи с этим говорят о целом или полуцелом спине частицы.

Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантовомеханического явления, не имеющего аналогии в классической механике: обменного взаимодействия.

Содержание

Свойства спина

Любая частица может обладать двумя видами углового момента: орбитальным угловым моментом и спином.

В отличие от орбитального углового момента, который порождается движением частицы в пространстве, спин не связан с движением в пространстве. Спин — это внутренняя, исключительно квантовая характеристика, которую нельзя объяснить в рамках релятивистской механики. Если представлять частицу (например, электрон) как вращающийся шарик, а спин как момент, связанный с этим вращением, то оказывается, что поперечная скорость движения оболочки частицы должна быть выше скорости света, что недопустимо с позиции релятивизма.

Будучи одним из проявлений углового момента, спин в квантовой механике описывается векторным оператором спина >," width="" height="" />
алгебра компонент которого полностью совпадает с алгеброй операторов орбитального углового момента >." width="" height="" />
Однако, в отличие от орбитального углового момента, оператор спина не выражается через классические переменные, иными словами, это только квантовая величина. Следствием этого является тот факт, что спин (и его проекции на какую-либо ось) может принимать не только целые, но и полуцелые значения (в единицах постоянной Дирака ħ ).

Примеры

Ниже указаны спины некоторых микрочастиц.

\hbar.

На июль 2004 года, максимальным спином среди известных элементарных частиц обладает барионный резонанс Δ(2950) со спином 15/2. Спин ядер может превышать 20

История

В 1921 году опыт Штерна — Герлаха подтвердил наличие у атомов спина и факт пространственного квантования направления их магнитных моментов.

В 1928 году Поль Дирак строит релятивистскую теорию спина и вводит уже четырёхкомпонентную величину — биспинор.

Математически теория спина оказалась очень прозрачной, и в дальнейшем по аналогии с ней была построена теория изоспина.

Спин и магнитный момент

\! \mu_0

Несмотря на то, что спин не связан с реальным вращением частицы, он тем не менее порождает определённый магнитный момент, а значит, приводит к дополнительному (по сравнению с классической электродинамикой) взаимодействию с магнитным полем. Отношение величины магнитного момента к величине спина называется гиромагнитным отношением, и, в отличие от орбитального углового момента, оно не равно магнетону ():

\hat<\vec<\mu></p>
<p>> = g\cdot \mu_0 \hat>.

Введённый здесь множитель g называется g -фактором частицы; значения этого g -фактора для различных элементарных частиц активно исследуются в физике элементарных частиц.

Спин и статистика

Вследствие того, что все элементарные частицы одного и того же сорта тождественны, волновая функция системы из нескольких одинаковых частиц должна быть либо симметричной (то есть не изменяется), либо антисимметричной (домножается на −1) относительно перестановки местами двух любых частиц. В первом случае говорят, что частицы подчиняются статистике Бозе — Эйнштейна и называются бозонами. Во втором случае частицы описываются статистикой Ферми — Дирака и называются фермионами.

Оказывается, именно значение спина частицы говорит о том, каковы будут эти симметрийные свойства. Сформулированная Вольфгангом Паули в 1940 году теорема о связи спина со статистикой утверждает, что частицы с целым спином ( s = 0, 1, 2, …) являются бозонами, а частицы с полуцелым спином ( s = 1/2, 3/2, …) — фермионами.

Обобщение спина

Спин классических систем

Понятие спина было введено в квантовой теории. Тем не менее, в релятивистской механике можно определить спин классической (не квантовой) системы как собственный момент импульса [1] . Классический спин является 4-вектором и определяется следующим образом:

S_\nu = \frac<1></p>
<p>\,\varepsilon_<\nu\alpha\beta\gamma>\,L^\,U^\gamma,

U^<\alpha></p>
<p>В силу антисимметрии тензора Леви-Чивиты, 4-вектор спина всегда ортогонален к 4-скорости .
В системе отсчёта, в которой суммарный импульс системы равен нулю, пространственные компоненты спина совпадают с вектором момента импульса, а временная компонента равна нулю.

Именно поэтому спин называют собственным моментом импульса.

В квантовой теории поля это определение спина сохраняется. В качестве момента импульса и суммарного импульса выступают интегралы движения соответствующего поля. В результате процедуры вторичного квантования 4-вектор спина становится оператором с дискретными собственными значениями.

См. также

Примечания

  1. Вейнберг С. Гравитация и космология. — M.: Мир, 1975.

Литература

Статьи

    Группа ученых из Кембриджского и Бирмингемского университетов зафиксировала явление разделения спина (спинон) и заряда (холон) в сверхтонких проводниках. Группа ученых из немецкого Института конденсированного состояния и материалов (IFW) добилась разделения электрона на орбитон и спинон.
  • Явления в микромире
  • Квантовые числа
  • Спинтроника

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Спин" в других словарях:

СПИН — собственный момент импульса элементарной частицы или системы, образованной из этих частиц, напр. атомного ядра. Спин частицы не связан с её движением в пространстве и не может быть объяснён с позиций классической физики он обусловлен квантовой… … Большая политехническая энциклопедия

спин — а; м. [англ. spin вращение] Физ. Собственный момент количества движения элементарной частицы, атомного ядра, присущий им и определяющий их квантовые свойства. * * * спин (англ. spin, буквально вращение), собственный момент количества движения… … Энциклопедический словарь

Спин — Спин. Спиновый момент, присущий, например, протону, можно наглядно представить, связав его с вращательным движением частицы. СПИН (английское spin, буквально вращение), собственный момент количества движения микрочастицы, имеющий квантовую… … Иллюстрированный энциклопедический словарь

СПИН — (обозначение s), в КВАНТОВОЙ МЕХАНИКЕ собственный угловой момент, присущий некоторым ЭЛЕМЕНТАРНЫМ ЧАСТИЦАМ, атомам и ядрам. Спин может рассматриваться как вращение частицы вокруг своей оси. Спин является одним из квантовых чисел, посредством… … Научно-технический энциклопедический словарь

СПИН — (английское spin, буквально вращение), собственный момент количества движения микрочастицы, имеющий квантовую природу и не связанный с движением частицы как целого. Измеряется в единицах постоянной Планка h и может быть целым (0, 1, 2. ) или… … Современная энциклопедия

СПИН — (от англ. spin вращаться, вертеться), собственный момент кол ва движения элем. ч ц, имеющий квант. природу и не связанный с перемещением ч цы как целого. С. называют также собств. момент кол ва движения ат. ядра (и иногда атома); в этом случае С … Физическая энциклопедия

Спинёв — Спинёв, Николай Николаевич Спортивные награды Академическая гребля Олимпийские игры Золото Афины 2004 четвёрка Николай Николаевич Спинёв (род. 30 мая 1974, Ростов на Дону) российский спортсмен, олимпийский чемпион … Википедия

спин — (англ. spin вращаться) собственный механический момент количества движения элементарной частиц (электрона, протона, нейтрона) или атомного ядра, всегда присущий данному виду частиц, определяющий их свойства и обусловленный их квантовой природой;… … Словарь иностранных слов русского языка

спин — момент, вращение Словарь русских синонимов. спин сущ., кол во синонимов: 2 • вращение (15) • момент … Словарь синонимов

СПИН — (англ. spin букв. вращение), собственно момент количества движения микрочастицы, имеющий квантовую природу и не связанный с движением частицы как целого; измеряется в единицах Планка постоянной . и может быть целым (0, 1, 2. ) или полуцелым… … Большой Энциклопедический словарь

Алексей Акимов

Физик Алексей Акимов о поведении элементарных частиц, свойствах лазерного света и конденсате Бозе — Эйнштейна

Над материалом работали

Алексей Акимов

кандидат физико-математических наук, руководитель группы "Квантовые симуляторы" Российского квантового центра, преподаватель МФТИ, сотрудник ФИАН, исследователь в Harvard University


  • Спин (от англ. spin, буквально — вращение, вращать(-ся)) — собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. Спином называют также собственный момент импульса атомного ядра или атома; в этом случае спин определяется как векторная сумма (вычисленная по правилам сложения моментов в квантовой механике) спинов элементарных частиц, образующих систему, и орбитальных моментов этих частиц, обусловленных их движением внутри системы.

Спин измеряется в единицах ħ (приведённой постоянной Планка, или постоянной Дирака) и равен ħJ, где J — характерное для каждого сорта частиц целое (в том числе нулевое) или полуцелое положительное число — так называемое спиновое квантовое число, которое обычно называют просто спином (одно из квантовых чисел).

В связи с этим говорят о целом или полуцелом спине частицы.

Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантовомеханического явления, не имеющего аналогии в классической механике: обменного взаимодействия.

Вектор спина является единственной величиной, характеризующей ориентацию частицы в квантовой механике. Из этого положения следует, что: при нулевом спине у частицы не может существовать никаких векторных и тензорных характеристик; векторные свойства частиц могут описываться только аксиальными векторами; частицы могут иметь магнитные дипольные моменты и не могут иметь электрических дипольных моментов; частицы могут иметь электрический квадрупольный момент и не могут иметь магнитный квадрупольный момент; отличный от нуля квадрупольный момент возможен лишь у частиц при спине, не меньшем единицы.

Спиновый момент электрона или другой элементарной частицы, однозначно отделённый от орбитального момента, никогда не может быть определён посредством опытов, к которым применимо классическое понятие траектории частицы.

Число компонент волновой функции, описывающей элементарную частицу в квантовой механике, растёт с ростом спина элементарной частицы. Элементарные частицы со спином

Читайте также: