Что такое скалярная величина в физике кратко

Обновлено: 05.07.2024

Физические величины отличаются друг от друга не только смыслом, единицами измерения, но и размерностью.

Энергия и заряд характеризуются только величиной, а сила и скорость еще и направлением. Первые называются скалярными физическими величинами, вторые - векторными.

Программисты называют вектором упорядоченный набор чисел - массив. Откуда такое различие? Дело в том, что векторную величину можно представить набором чисел ЕСЛИ ЗАДАНА СИСТЕМА КООРДИНАТ. Проекции вектора на оси однозначно его определяют.

Когда мы описываем векторную величину в физике, система координат может быть задана неявно и даже неоднозначно. Например: "Земля притягивает Луну с силой, направленной по линии, соединяющей их центры". Если же мы хотим описать вектор тремя числами, нам придется точно описать направления осей системы координат.

Над векторными величинами можно совершать различные математические операции. Сложение и вычитание несложны и наглядны. Тут почти не бывает ошибок как в графическом, так и в числовом представлении. Хуже с умножением. Их целых три вида.

Умножение вектора на скаляр. Вектор просто изменяет свою длину т.к. все его проекции умножаются на одно и то же число.

Скалярное умножение векторов. Формулу можно посмотреть в справочнике, нас же интересует физический смысл. Самый простой пример - работа. Скалярная величина, равная произведению двух векторных: силы и перемещения. Если тело перемещается по направляющим, то работу совершает только та ее составляющая, которая направлена вдоль направляющей. Отсюда в формуле косинус угла между векторами.

Векторное умножение векторов. Самое трудное для осознания. Из школы помним какое-то правило буравчика, но ясного представления у большинства нет. Для начала разберемся , как с помощью вектора описать вращение. У вращения есть одно специфическое направление - ось. Вот вдоль нее и направлены вектора всех характеризующих его величин: угол поворота, угловая скорость, угловое ускорение и т.д.. Теперь попробуем вызвать вращения тела вокруг заданной оси. Пусть это будет гайка на шпильке. Мы берем гаечный ключ. Зачем? Чтобы получить рычаг. Заметим, перпендикулярный оси. И давим на конец рычага. перпендикулярно рычагу и оси вращения. Все остальные составляющие приложенной силы нам нисколько не помогут.

Сила векторно умножается на плечо (оно же векторно описанная длина рычага) и получается момент силы вектор направленный вдоль оси вращения и это самое вращение вызывающий.

Специально привел в качестве примера работу и момент силы. В качестве размерности и там и там указывают ньютонометры. Но это разные физические величины и ньютонометры у них разные. У работы скалярные, а у момента силы - векторные.

А теперь вспомним Азимова: "Число два не имеет физического смысла" . Если существуют два варианта чего-то, значит есть и другие.

Кроме скалярных и векторных величин, существуют и более сложные физические величины. Как правило они связаны с объектами, имеющими анизотропию - неодинаковые свойства по разным направлениям. Например кристаллы. Давим на кристалл с некоторой силой. Его деформация будет описываться вектором, не совпадающим по направлению с действующей силой. Как описать это свойство ? Внешнее усилие по каждой оси приводит к разной деформации по всем осям.

Величина, характеризующая зависимость деформации кристалла от внешней нагрузки будет тензором. В отличии от вектора, который можно наглядно представить некоторой стрелочкой в пространстве, тензор плохо поддается визуальному представлению. Зато в конкретной системе координат представляется достаточно просто - матрицей. Умножение вектора и тензора дает вектор.

Тензорные величины широко используются в теории упругости, кристаллографии, электромеханике, гидродинамике.

А как же Азимов? Чем число три лучше числа два?

То, что мы называем тензорами, официально именуется тензорами второго порядка. Они описываются двумерной матрицей. Тогда скаляр будет тензором нулевого ранга, а вектор - первого. Тут-то и открывается бесконечный простор для тензоров n-го ранга, описываемых многомерными матрицами. Просто в физике они крайне редко используются в связи с недостаточной наглядностью.

Величиной в физике и математике называют свойства физических тел, измеряемых при помощи выполнения математических операций. Они имеют единицы измерения и зависят от физических законов и аксиом. Выделяют скалярные и векторные величины, обладающие различными характеристиками и параметрами.

В физике понятие скалярной величины и ее измерения

Особенности скалярных величин

Скалярные величины характеризуются только одним параметром — числовым значением. Они разделяются на 2 вида:

  • Чистые скаляры. Характеризуются числовым значением, не находящимся в зависимости от осей отсчета — линий пересечения плоских поверхностей в единой системе координат.
  • Псевдоскаляры. Находятся при помощи расчета числа, знак которого зависит от положительного направления осей в системе координат.

В физике в список скалярных величин входят:

Скалярные и векторные величины

Скалярные величины в физике

  • Масса — определяет величину материи и ее гравитационные свойства. Измеряется в килограммах и обозначается буквой латинского алфавита m.
  • Температура — средняя кинетическая энергия физического тела. Выражается в кельвинах или градусах Цельсия.
  • Работа — мера действия силы на физическое тело или систему тел. Измеряется в Джоулях и обозначается латинской буквой A.
  • Длина — величина, определяющая дистанцию между 2 концами тела в продольном направлении. Исчисляется в метрах. Особым видом длины является путь — скаляр, выражающий расстояние между начальным и конечным положением объекта, осуществляющего перемещение по заданной траектории.
  • Время — продолжительность действия или события. Рассчитывается в секундах.
  • Период — время совершения 1 полного колебания. Обозначается символом T и измеряется в секундах.
  • Частота — величина, обратная периоду. Определяет количество полных колебаний в единицу времени. Рассчитывается в Герцах.
  • Объем — скаляр, обозначающий размер пространства, ограниченного поверхностями со всех сторон. Измеряется в м 3 .
  • Напряжение — измеряет изменение потенциальной энергии тела, приходящейся на единицу заряда. Обозначается буквой U и рассчитывается в Вольтах.
  • Сила тока — скаляр, показывающий число электрических зарядов, проходящих через сечение проводника в единицу времени. Обозначается символом I и рассчитывается в Амперах.
  • Энергия — обозначает способность тела осуществлять работу.

Если скаляры выражают одно единственное свойство физического тела, то они называются однородными. Величины, описывающие несколько свойств объекта, именуются разнородными. Однородные скаляры сравнимы: они либо равны, либо одна из них больше или меньше другой. Но скалярные величины разного рода не могут сравниваться друг с другом.

Определение положительного скаляра и его измерения

Понятие положительной скалярной величины и ее измерения позволяет сравнивать между собой однородные скаляры. Положительная скалярная величина способна принимать значения строго выше 0. Она обозначается знаком «+". Если величина может принимать значения меньше 0, то она называется отрицательной и обозначается символом «-". Большинство скаляров могут быть только положительными. Для их расчета используют единицы измерения — фиксированного размера объекта.

Чтобы получить скалярную величину, достаточно умножить ее числовое значение на ее единицу измерения. Для структуризации и стандартизации вычислений физических параметров тела была разработана Международная система СИ. Она устанавливает единицы измерения для каждой величины. Во время проведения расчетов скалярных величин применяют алгебраические действия — сложение, вычитание, деление и умножение (отдельный подвид — возведение в степень).

Список примеры векторных величин

Особенности векторных величин

В физике и математике примерами векторных величин являются:

Векторная величина это

  • Сила — мера взаимодействия физических веществ. Обозначается латинской буквой F и измеряется в Ньютонах. Три закона Исаака Ньютона составляют основу классической механики. С их помощью можно определить массу тела и его ускорение.
  • Скорость — расстояние, пройденное материей за определенный временной промежуток. Маркируется символом V и рассчитывается в м/с. Скорость используется для определения пути и времени движения предмета при помощи формулы: S = V * t. Скорость, с которой тело движется по окружности, называется линейной.
  • Ускорение — величина, показывающая изменение показателей скорости физического тела. Ускорение свободного падения действует на все тела, придавая им силу тяжести. Оно направлено к ядру Земли и равняется 9,8 м/с 2
  • Импульс — характеризует величину движения тела. Маркируется буквой латинского алфавита p и рассчитывается в кг*м/с. С помощью этой величины человек может определить массу физического тела и скорость ее передвижения.

На графиках функции векторные величины изображаются в виде прямой линии, имеющей направление и свои собственные координаты в заданном масштабе.

Свойства векторов

Вектор — математический элемент, представляющий собой прямой отрезок с направлением. Он обозначается либо 2 заглавными латинскими буквами, либо одной прописной. Длиной вектора является его модуль. Если длина вектора равняется 0, то он называется нулевым. Вектор, имеющий длину 1 см, именуется единичным. Длина ненулевого вектора выражается в виде расстояния между началом и концом направленного отрезка. Проекцией вектора на ось является строго положительный отрезок, сонаправленный с исходной осью. Свойства проекции:

Определение понятия скалярные величины

  • Произведение вектора на косинус между осью и направленным отрезком равен проекции вектора.
  • Проекция на ось принимает значения меньше 0, если отрезок с осью образует тупой угол.
  • Проекция на ось принимает значение больше 0, если отрезок с осью образует острый угол.

Коллинеарные векторы — отрезки, располагающиеся либо на одной прямой, либо на параллельных прямых. Нулевой вектор коллинеарен всегда. Если коллинеарные векторы направлены в одну сторону, то они называются сонаправленными. Если отрезки направлены в диаметрально противоположные стороны, то они называются противоположно направленными. Коллинеарные векторы являются равными, если они одинаковы по модулю и направлению.

Построение отрезков с направлением на плоскости осуществляется при помощи его координат для осей абсцисса и ордината. Для изображения направленного отрезка необходимо построить точки, координаты которых соответствуют началу и концу вектора, и соединить их.

Свойства векторов

С векторами также можно производить операции сложения, деления, вычитания и умножения. Чтобы сложить два вектора, необходимо от произвольной точки на плоскости отложить первый направленный отрезок и от него отложить второй вектор. Отрезок, соединяющий начало первого вектора и конец второго, будет считаться их суммой. Этот способ сложения именуется методом треугольника.

Вторым способом нахождения суммы векторов является метод параллелограмма. От произвольной точки откладываются оба направленных отрезка. Полученный рисунок нужно достроить до параллелограмма. Диагональ фигуры будет являться суммой векторов.

С векторами также можно проводить операцию умножения. Произведение длин направленных отрезков на косинус угла между ними называется скалярным. В результате вычислений получается число — скаляр. Скалярное произведение равно 0 в случае, когда отрезки пересекаются под углом 90°. Зная скалярное произведение, человек сможет найти косинус угла между построенными векторами.

Полученные в результате выполнения алгебраических операций выражения применяются для исследования перемещения тел вокруг оси вращения и изучения элементов высшей математики. Также направленные отрезки нашли широкое применение в геометрии и астрономии.

Скалярная величина – это физическая величина, которая имеет только одну характеристику – численное значение.

Скалярная величина может быть положительной или отрицательной.

Примеры скалярных величин: температура, масса, объем, время, плотность. Математические действия со скалярными величинами – это алгебраические действия.

Векторная величина – это физическая величина, которая имеет две характеристики:

1) численное значение, которое всегда положительно (модуль вектора);

Примеры векторных физических величин: скорость, ускорение, сила.

Векторная величина обозначается латинской буквой и стрелкой над этой буквой. Например:

Модуль вектора обозначается так:

или - модуль вектора ,

или - модуль вектора ,

или - модуль вектора ,

На рисунке (графически) вектор изображается направленным отрезком прямой линии. Модуль вектора равен длине направленного отрезка в заданном масштабе.


Действия с векторами

Математические действия с векторными величинами – это геометрические действия.

Сравнение векторов

Равные векторы. Два вектора равны, если они имеют:

Противоположные векторы. Два вектора противоположны, если они имеют:

Сложение векторов

Мы можем сложить два вектора геометрически по правилу параллелограмма и по правилу треугольника.

Пусть заданы два вектора и (см. рис.). Найдем сумму этих векторов + = . Величины и - это составляющие векторы, вектор - это результирующий вектор.

Правило параллелограмма для сложения двух векторов:


1. Нарисуем вектор .

2. Нарисуем вектор так, что его начало совпадает с началом вектора ; угол между векторами равен (см. рисунок).

3. Через конец вектора проведем прямую линию, параллельную вектору .

4. Через конец вектора проведем прямую линию, параллельную вектору .

Мы построили параллелограмм. Стороны этого параллелограмма – составляющие векторы и .

5. Проведем диагональ параллелограмма из общей точки начала вектора и начала вектора .

6. Модуль результирующего вектора равен длине диагонали параллелограмма и определяется по формуле:

начало вектора совпадает с началом вектора и началом вектора (направление вектора показано на рисунке).

Правило треугольника для сложения двух векторов:



1. Нарисуем составляющие векторы и так, что начало вектора совпадает с концом вектора . При этом угол между векторами равен .

2. Результирующий вектор направлен так, что его начало совпадает с началом вектора , а конец совпадает с концом вектора .

3. Модуль результирующего вектора находим по формуле:

Вычитание векторов

Вычитание векторов – это действие, обратное сложению:

Найти разность вектора и вектора - это тоже самое, что найти сумму вектора и вектора , противоположного вектору . Мы можем найти вектор разности геометрически по правилу параллелограмма или по правилу треугольника (см. рис.).

Скалярная величина – это физическая величина, которая имеет только одну характеристику – численное значение.

Скалярная величина может быть положительной или отрицательной.

Примеры скалярных величин: температура, масса, объем, время, плотность. Математические действия со скалярными величинами – это алгебраические действия.

Векторная величина – это физическая величина, которая имеет две характеристики:

1) численное значение, которое всегда положительно (модуль вектора);

Примеры векторных физических величин: скорость, ускорение, сила.

Векторная величина обозначается латинской буквой и стрелкой над этой буквой. Например:

Модуль вектора обозначается так:

или - модуль вектора ,

или - модуль вектора ,

или - модуль вектора ,

На рисунке (графически) вектор изображается направленным отрезком прямой линии. Модуль вектора равен длине направленного отрезка в заданном масштабе.


Действия с векторами

Математические действия с векторными величинами – это геометрические действия.




Сравнение векторов

Равные векторы. Два вектора равны, если они имеют:

Противоположные векторы. Два вектора противоположны, если они имеют:

Сложение векторов

Мы можем сложить два вектора геометрически по правилу параллелограмма и по правилу треугольника.

Пусть заданы два вектора и (см. рис.). Найдем сумму этих векторов + = . Величины и - это составляющие векторы, вектор - это результирующий вектор.

Правило параллелограмма для сложения двух векторов:


1. Нарисуем вектор .

2. Нарисуем вектор так, что его начало совпадает с началом вектора ; угол между векторами равен (см. рисунок).

3. Через конец вектора проведем прямую линию, параллельную вектору .

4. Через конец вектора проведем прямую линию, параллельную вектору .

Мы построили параллелограмм. Стороны этого параллелограмма – составляющие векторы и .

5. Проведем диагональ параллелограмма из общей точки начала вектора и начала вектора .

6. Модуль результирующего вектора равен длине диагонали параллелограмма и определяется по формуле:

начало вектора совпадает с началом вектора и началом вектора (направление вектора показано на рисунке).

Правило треугольника для сложения двух векторов:



1. Нарисуем составляющие векторы и так, что начало вектора совпадает с концом вектора . При этом угол между векторами равен .

2. Результирующий вектор направлен так, что его начало совпадает с началом вектора , а конец совпадает с концом вектора .

3. Модуль результирующего вектора находим по формуле:

Вычитание векторов

Вычитание векторов – это действие, обратное сложению:

Найти разность вектора и вектора - это тоже самое, что найти сумму вектора и вектора , противоположного вектору . Мы можем найти вектор разности геометрически по правилу параллелограмма или по правилу треугольника (см. рис.).

В физике существуют скалярные величины (скаляры) и векторные величины (векторы). Хотя, правильнее в последнем случае все-таки говорить векторная величина, часто говорят, например, "вектор скорости".

Упрощенно можно сказать, что скаляр - это просто число.

Векторная величина - это когда есть число, которое имеет еще и направление в пространстве. Вектор в трехмерном пространстве можно представить в виде тройки чисел, каждое из которых есть компонента вектора относительно соответствующей координаты в трехмерной системе координат.


Для тех, кто любит попроще - первый том Фейнмановских лекций по физике.

Для нас важно понять два момента:

1) Примерами скаляров являются: длина, площадь, время, масса, плотность, температура и т.п.

Для наших задач достаточно понимания скаляра, как величины (числа с размерностью) без направления.

2) Под вектором мы будем понимать направленный отрезок. То есть три числа (мы ведь живем в трехмерном пространстве), которые преобразуются по определенным правилам при переходе от одной системы координат к другой.

Попробуем обойтись без математических формул этих правил. Просто представим в нашем трехмерном пространстве направленный отрезок. Некую стрелку, которая, для простоты, неподвижна, неизменна, и имеет направление от одного конца к другому. Или даже представим, что у нас есть определенная операция перемещения в пространстве. У нее есть величина (расстояние перемещения по прямой из начальной точки в конечную) и направление.


И представим систему координат (например, прямоугольную), которая неподвижна относительно нас, и начало отсчета которой совпадает с началом нашего направленного отрезка.

Будет! Мы же сами задали эти три числа, как координаты вектора .

А теперь вывод. То, что важно для физики!

Если у нас есть три какие-то величины (возможно, мы даже не знаем, связаны ли они между собой), которые изменяются с изменением системы координат, по такому же закону, по которому изменяются компоненты вектора из предыдущего абзаца ((Ах, Аy, Аz) --> (Аx', Аy', Аz')), то мы можем смело утверждать, что эти три величины представляют собой компоненты какого-то вектора.

Формулы можно посмотреть у Фейнмана или еще где-нибудь. Они пока для понимания не столь важны. А важно следующее!

Рассмотрим подробнее физические величины в нашем трехмерном пространстве. Зададим прямоугольную систему координат X , Y , Z . Помним, что у нас есть еще время t.

Теперь посмотрим, что есть что.

Путь вектор или скаляр? Скаляр. Почему?

Перемещение - вектор. У перемещения есть начало и конец, есть величина перемещения и направление перемещения. Таким образом, у него три компоненты - три величины, по одной на каждую из координат.

Далее сами перебираем физические величины и определяем, что есть скаляр, а что вектор!

Читайте также: