Что такое резонанс напряжений кратко

Обновлено: 05.07.2024

Резонанс электрического тока и напряжения чаще всего проявляется в сетях индуктивного и емкостного характеров. Он стал очень популярным в радиоэлектронике и активно используется как один из методов конфигурирования радиоприемника на определенную частоту волны. Несмотря на его пользу, резонанс обычно несет существенный вред электрическому оборудованию и проводам. В этом материале рассмотрено, что такое резонансное напряжение, как его используют и при каких условиях оно возникает.

Что такое резонансное напряжение

Если в сеть с переменным электротоком последовательно подключены дроссель и конденсаторный элемент, они способны по-своему воздействовать на генератор, который питает всю схему. Также они влияют на фазовые отношения тока и напряженности. Индуктивная катушка привносит в цепь сдвиг фаз, который заставляет электроток отставать от напряжения на четверть периода. Конденсирующий элемент, наоборот, работает так, что U отстает от тока на четверть по фазе.

Это означает, что сопротивляемость индуктивного типа, которое работает на сдвижение фазы напряжения и тока в сети, функционирует противоположно силе емкостного сопротивления.


Основная формула резонанса электрической цепи

К сведению! Данный процесс приводит к тому, что общий сдвиг по фазе между силой тока и напряженностью в сети всегда зависит от отношения величины индуктивной и емкостной сопротивляемостей.


Резонирование токов

Если емкостное R в сети больше индуктивного, то все соединение является емкостным. Это значит, что напряжение характеризуется разностью фаз по току. Иногда бывает и обратная ситуация, индуктивное сопротивление сети получается большим, чем емкостное. В этом случае вся сеть становится индуктивной.

При каких условиях возникает явление: основные условия

Резонанс электротоков и напряжений появляется в результате сохранения тождества реактивных характеристик сопротивляемости сети. Несмотря на это, в ней должна быть и активная характеристика хотя бы минимального значения. Частота же генератора питания соединения всегда должна совпадать с частотой резонанса контура индуктивно-емкостной сети.

Обратите внимание! Условие работы сопротивления активного типа в реальных действующих схемах выполняется практически всегда. Одна лишь реактивная характеристика емкости и индуктивности возможна только в изолированных и теоретических примерах.

Во время резонанса дроссель и конденсатор обмениваются накопленной энергией. В теоретических примерах, когда происходит первое подключение электрогенератора (в качестве питательного источника), энергия копится в катушке индуктивности или конденсаторе. После выключения электрогенератора из сети возникают колебания незатухающего характера, возникшие в результате этого обмена.

Для чего используется резонанс

Как явление, резонанс напряжений часто используется в различных фильтрах электрического типа. Например, если есть необходимость устранения из сигнала передачи некоторой составляющей тока определенной частоты, то к приемнику параллельно подключают катушку и конденсатор, которые по отношению друг к другу соединены последовательно. В результате подобных действий электроток определенной резонансной частоты замкнется через цепочку дроссель-конденсатор и не попадет на приемник.


Колебательный контур

Важно! Сам по себе резонанс напряженности в электричестве — явление негативное, так как он способствует появлению перенапряжений на некоторых участках соединения и выводит из строя приборы.

Принцип работы резонанса

Если сопротивление емкости и индуктивности подключить последовательно, то они вызовут в переменной цепи гораздо меньший сдвиг фаз, чем при отдельном включении. Говоря иначе, одновременное воздействие индуктивности и емкости создает компенсационные силы сдвига фаз. Полностью сдвиг компенсируется лишь в том случае уравнивания индуктивного и емкостного сопротивления, когда ωL = 1 / ωС.

Обратите внимание! Такая схема будет полностью характеризоваться активным R, то есть вести себя так, как будто в нее не подключены дроссель и конденсатор. Эта сопротивляемость будет равна сумме всех активных характеристик катушки и проводов соединения.

Вместе с этим рабочие напряжения дросселя и конденсатора будут равными и максимальными для данных условий. Если при маленьком активном сопротивлении данные характеристики значительно превысят общую напряженность цепи, то напряжения начнут резонировать.

Как правильно рассчитать резонансный контур

Колебательный контур — это цепь, которая характеризуется появлением в ней колебаний определенной частоты, зависящих от параметров этой цепи. Самый простой контур включает в себя последовательно или параллельно соединенные дроссель и конденсатор. Для расчета ƒ резонанса в контуре используют формулу ƒ = 1/(2π √LC), где L — индуктивность, а C — емкость.


Калькуляторы точного расчета резонансного контура

Таким образом, было рассмотрено, при каких условиях возникает явление резонанса напряжений и что это такое. Наблюдается оно только в схемах, которые характеризуются емкостью и индуктивностью, где активное R крайне мало.

Резонансные явления наблюдаются в колебательных системах, когда частота собственных колебаний элементов системы совпадает с частотой внешних (вынужденных) колебательных процессов. Данное утверждение справедливо и для цепей с циркулирующим переменным током. В таких электрических цепях при наличии определённых условий возникает резонанс напряжений, что влияет на параметры тока. Явление резонанса в электротехнике может быть полезным или вредным, в зависимости от ситуации, в которой происходит процесс.

Описание явления

Если в некой электрической цепи (см. рис. 1) имеются ёмкостные и индуктивные элементы, которые обладают собственными резонансными частотами, то при совпадении этих частот амплитуда колебаний резко возрастёт. То есть происходит резкий всплеск напряжений на этих элементах. Это может вызвать разрушение элементов электрической цепи.

Резонанс в электрической цепи

Рис. 1. Резонанс в электрической цепи

Давайте рассмотрим на этом примере, какие явления будут происходить при подключении генератора переменного тока к контактам схемы. Заметим, что катушки и конденсаторы обладают свойствами, которые можно сравнить с аналогом реактивного резистора. В частности, дроссель в электрической цепи создаёт индуктивное сопротивление. Конденсатор является причиной ёмкостного сопротивления.

Индуктивный элемент вызывает сдвиг фаз, характеризующийся отставанием тока от напряжения на ¼ периода. Под действием конденсатора ток, наоборот, на ¼ периода опережает напряжение.

Другими словами, действие индуктивности противоположно действию на сдвиг фаз ёмкостного сопротивления. То есть катушки индуктивности и ёмкостные элементы по-разному воздействуют на генератор и по-своему корректируют фазовые соотношения между электрическим током и напряжением.

Формула

Общее реактивное сопротивление рассматриваемых нами элементов равно сумме сопротивлений каждого из них. С учётом противоположности действий можно записать: Xобщ = XL — Xc , где XL = ωL — индуктивное реактивное сопротивление, выражение Xc = 1/ωC — это ёмкостное реактивное сопротивление.

На рисунке 2 изображены графики зависимости полного сопротивления цепи и связанной с ним силы тока, от реактивного сопротивления индуктивного элемента. Обратите внимание на то, как падает полное сопротивление при уменьшении реактивной сопротивляемости RL (график б) и как при этом возрастает ток (график в).

Графики зависимости параметров тока от падения реактивного сопротивления

Рис. 2. Графики зависимости параметров тока от падения реактивного сопротивления

Электрические цепи, состоящие из последовательно соединённых конденсаторов, пассивный резисторов и катушек индуктивности называют последовательными резонансными (колебательными) контурами (см. рис. 2). Существуют также параллельные контуры, в которых R, L, C элементы подключены параллельно (рис. 3).

Рис. 3. Последовательный колебательный контур Рис. 4. Параллельный колебательный контур

В режиме резонанса мощность источника питания будет рассеиваться только на активных сопротивлениях (в том числе на активном сопротивлении катушки). Для резонансных контуров характерны потери только активной мощности, которая израсходуется на поддержание колебательного процесса. Реактивная мощность на L C элементах при этом не расходуется. Ток в резонансном режиме принимает максимальное значение:

Расчеты резонанс напряжений

Формулировка

Описанное явление довольно распространено в электротехнике. Иногда с ним борются, а иногда специально создают условия для образования резонанса. Основными характеристиками всякого резонансного контура являются параметры добротности и частоты [ 1 ].

В случае, если XL = Xc – справедливо равенство: ωL = 1/ωC , отсюда получаем:

Если ω = ω0 – возникает резонанс напряжений. Частоты совпадают в том случае, когда индуктивное сопротивление сравняется с ёмкостным сопротивлением конденсатора. В таких случаях в цепи будет действовать только активное сопротивление R. Наличие реактивных элементов в схеме приводит к увеличению полного сопротивления цепи (Z):

где R – общее активное сопротивление.

Учитывая, что по закону Ома U = I/Z, можно утверждать, что общее напряжение в цепи зависит, в том числе, и от слагаемых индуктивного и ёмкостного сопротивлений.

Если бы в рассматриваемой схеме (рис. 1) отсутствовало активное сопротивление R, то значение полного сопротивления Z стремилось бы к 0. Следовательно, напряжение на реактивных элементах при этом возрастает до критического уровня.

Поскольку XL и Xc зависят от частоты входного напряжения, то для возникновения резонанса следует подобрать соответствующую частоту сети, или изменять параметры катушки, либо конденсатора до тех пор, пока резонансные частоты не совпадут. Любое нарушение условий резонанса немедленно приводит к выходу системы из резонансного режима с последующим падением напряжения.

Условия наступления

Резонансные явления наступают только при наличии следующих условий:

  1. Наличие минимального активного сопротивления на участке электрической цепи.
  2. Равенство реактивных сопротивлений, возникших на цепочке LC.
  3. Совпадение входной частоты источника питания с резонансной частотой колебательного контура.

При резонансе в контуре напряжения на его элементах могут повышаться на порядок и больше.

Примеры применения на практике

Классическим примером применения резонанса колебательных контуров является настройка радиоприёмника на частоту соответствующей радиостанции. В качестве рабочего элемента настроечного узла используется конденсатор с регулируемой ёмкостью. Вращение ручки настройки изменяет ёмкость конденсатора, а значит и резонансную частоту контура.

В момент совпадения резонансной частоты с рабочей частотой какой-либо радиостанции возникает резонанс напряжений, в результате которого резко возрастает амплитуда колебаний принятой радиоприёмником частоты. Специальные фильтры отделяют эти колебания от несущих радиочастот, а усилители усиливают полученные сигналы. В динамике появляются звуки, генерируемые передатчиком радиостанции.

Колебательные контуры, построенные на принципе последовательного соединения LC-элементов, применяются в цепях питания высокоомных нагрузок, потребляющих токи повышенного напряжения. Такие же устройства применяют в полосовых фильтрах.

Последовательный резонанс применяют при пониженных напряжениях сети. В этом случае используют реактивную энергию обмоток трансформатора, соединённых последовательно.

Конденсаторы и различные катушки индуктивности (рис. 5) входят в конструкцию практически всех аналоговых устройств. Они используются для настройки фильтров или для управления токами в отдельных узлах.

Катушки индуктивности

Катушки индуктивности

Важно знать, что резонансные контуры не увеличивают количество электрической энергии в цепях. Они лишь могут повышать напряжения, иногда до опасных значений. Постоянный ток не причиной резонансных явлений.

Наряду с полезными свойствами резонансных явлений, в практической электротехнике часто возникают ситуации, когда резонанс напряжений приносит вред. В основном это связано с нежелательным повышением параметров тока на участках цепей. Примером могут служить опасное резонансные явления в кабельных линиях без нагрузки, что может привести к пробоям изоляции. Чтобы этого не случилось, на концевых участках таких линий устанавливают балластные нагрузочные элементы.

В физике резонансом называется явление, при котором в колебательном контуре частота свободных колебаний совпадает с частотой вынужденных колебаний. В электричестве аналогом колебательного контура служит цепь, состоящая из сопротивления, ёмкости и индуктивности. В зависимости от того как они соединены различают резонанс напряжений и резонанс токов.

Резонанс напряжений

Резонанс напряжений возникает в последовательной RLC-цепи.

Резонанс напряжений

Условием возникновения резонанса является равенство частоты источника питания резонансной частоте w=wр, а следовательно и индуктивного и емкостного сопротивлений xL=xC. Так как они противоположны по знаку, то в результате реактивное сопротивление будет равно нулю. Напряжения на катушке UL и на конденсаторе UC будет противоположны по фазе и компенсировать друг друга. Полное сопротивление цепи при этом будет равно активному сопротивлению R, что в свою очередь вызывает увеличение тока в цепи, а следовательно и напряжение на элементах.

При резонансе напряжения UC и UL могут быть намного больше, чем напряжение источника, что опасно для цепи.

Резонанс напряжений

С увеличением частоты сопротивление катушки увеличивается, а конденсатора уменьшается. В момент времени, когда частота источника будет равна резонансной, они будут равны, а полное сопротивление цепи Z будет наименьшим. Следовательно, ток в цепи будет максимальным.

Резонанс напряжений

Из условия равенства индуктивного и емкостного сопротивлений найдем резонансную частоту

Исходя из записанного уравнения, можно сделать вывод, что резонанса в колебательном контуре можно добиться изменением частоты тока источника (частота вынужденных колебаний) или изменением параметров катушки L и конденсатора C.

Следует знать, что в последовательной RLC-цепи, обмен энергией между катушкой и конденсатором осуществляется через источник питания.

Резонанс токов

Резонанс токов возникает в цепи с параллельно соединёнными катушкой резистором и конденсатором.

Резонанс токов

Условием возникновения резонанса токов является равенство частоты источника резонансной частоте w=wр, следовательно проводимости BL=BC. То есть при резонансе токов, ёмкостная и индуктивная проводимости равны.

Для наглядности графика, на время отвлечёмся от проводимости и перейдём к сопротивлению. При увеличении частоты полное сопротивление цепи растёт, а ток уменьшается. В момент, когда частота равна резонансной, сопротивление Z максимально, следовательно, ток в цепи принимает наименьшее значение и равен активной составляющей.

Резонанс токов

Выразим резонансную частоту


Как видно из выражения, резонансная частота определяется, как и в случае с резонансом напряжений.

Явление резонанса может носить как положительный, так и отрицательный характер. Например, любой радиоприемник имеет в своей основе колебательный контур, который с помощью изменения индуктивности или емкости настраивают на нужную радиоволну. С другой стороны, явление резонанса может привести к скачкам напряжения или тока в цепи, что в свою очередь приводит к аварии.

Это явление можно наблюдать в индуктивных ёмкостных цепях. Резонанс широко используют в радиотехнике для наведения приёмника на определённую частоту.

У этого явления есть и отрицательная сторона – может повредить электрические приборы и кабели.

По сути, резонанс токов — это совмещение частоты разных систем. Давайте выясним, что это за явление, какова его значимость, в каких областях применяется.

Индуктивность, ёмкость и их реактивная сопротивляемость

напряжения и токов

Индуктивность – это свойство объекта копить энергию в намагниченном поле. Характеризуется тем, что фазный ток отстаёт от напряжения. Устройства индуктивности – это электрические моторы, трансформаторы.

Ёмкость – элементы, обладающие способностью копить энергию при помощи электрополя.

Характеризуются отставанием величины напряжения от величины тока. Это варикапы, различные конденсаторы. Это их главные свойства, детали в рамках данной статьи не учитываются.

Помимо названых элементов есть и другие, которые обладают определённой индуктивностью и ёмкостью.

Индуктивность и ёмкость в цепи тока переменной величины

Резонанс напряжения и токов

Ёмкость в линии с током постоянной величины выглядит как разомкнутый отрезок цепи, индукция представлена проводником. При переменном токе реактивный резисторный аналог представлен катушками с устройствами конденсации.

Реактивная сопротивляемость зависима от значения ёмкости либо индуктивности, а также частоты тока с переменной величиной.

Глядя на расчёт реактивного значения, становится заметно, что имея определённые значения индуктивного либо ёмкостного элемента, разность их равняется нулю, и, как следствие, в остатке будет находиться активное сопротивление. У этой ситуации есть ещё некоторые нюансы.

Резонанс напряжения

Резонанс напряжения и токов

Это явление возникнет, когда к генератору последовательно подключить катушку с конденсатором с одинаковыми реактивными сопротивлениями.

Обращаем ваше внимание, что ситуации, когда реактивными бывают только ёмкость и индуктивность, существуют только в идеале. А в реальности всегда есть сопротивление проводов, хотя и незначительное.

При резонансном эффекте конденсатор с дросселем обмениваются энергией. При запуске генератора, конденсатор начинает накапливать энергию, а затем, после выключения, в результате обмена начинают происходить колебания.

Схема, включающая в себя ёмкость и индуктивность, называется колебательным контуром.

Периодичность вычисляется формулой Томпсона:

формула Томпсона

Поскольку сопротивление зависимо от частоты, соответственно, при увеличении частоты сопротивляемость индуктивности возрастает, при этом у ёмкости, наоборот, снижается.

Общий показатель сопротивления будет ощутимо понижаться, когда сопротивления одинаковые.

К главным показателям контура относятся частота и передаточный коэффициент. Если разобрать контур с четырьмя полюсами, становится понятно, что передаточный коэффициент равен добротности (Q).

В резонансе, чем значительнейпоказатель добротности, тем значительней напряжение на контурных элементах по сравнению с напряжением на генераторе.

В контуре показатели мощности падают из-за сопротивления. Энергия поставщика используется лишь для поддержки колебаний.

Токовый резонанс

Резонанс напряжения и токов

Это явление происходит при параллельном подключении ёмкости с индуктивностью.

Работает это по следующей схеме: ток большого значения проходит между катушкой и конденсаторным устройством, когда в части цепи без разветвления ток нулевой.

Это обуславливается возросшим сопротивлением при получении частоты резонанса. Проще говоря, в резонансной точке суммарное сопротивление достигает максимума. В результате роста или падения частоты одно сопротивление растёт, второе падает.

Обобщая, можно сказать, что всё происходит по аналогии с вышеупомянутым процессом, причины появления токового резонанса заключаются в следующем:

  1. Частотность питания равна резонансной частоте в контуре.
  2. Проводимость тока переменного значения одинаковы, что у ёмкости, что у индукции.

Практическое применение напряжения

Давайте разберём полезные и вредные свойства данного явления.

Несомненную пользу эффект резонанса напряжения принёс в радиоэлектронике. В цепи радиоприёмника вмонтирована катушка с конденсаторным устройством, соединённые с антенной.

Движением сердечника, меняя индукцию, либо ёмкостную величину с помощью конденсатора, подбирается частота резонанса. Вследствие этого напряжение катушки растёт, и радиоприёмник фиксирует определённую волну.

Но для кабелей такое явление довольно опасно, так как при подаче напряжения на кабель, не имеющий нагрузки, есть вероятность прострела изоляционной оболочки. Чтобы этого не произошло, подсоединяют балластную нагрузку.

Такая же ситуация ведёт к поломке частей электроники, приборов контроля и измерений и прочего электрического оборудования.

Резонансное явление напряжения – вещь достаточно интересная и заслуживает внимания. Резонанс возможен только в индуктивных ёмкостных цепях. В линиях, где активное сопротивление велико, это явление невозможно.

Подведём итог, коротко дав ответы по данной теме:

Ответ: в индуктивных ёмкостных схемах.

Ответ: реактивные сопротивления должны быть равны.

Ответ: Поменять частоту, добавить активное сопротивление.

Надеемся, теперь вам понятно, что это за явление, условия для его появления и практическое использование.

Допустим, что в цепи рис.1 действует переменная ЭДС. Она изменяется по закону:


В цепи течет ток вида:

полное электросопротивление. Угол ($\varphi $) на который колебания тока отстают от колебаний напряжения определен выражением:

Если изменить частоту колебаний ($\omega $). Как следует из формул (3) , (5) произойдёт изменение амплитуды силы тока ($I_m$) и сдвига фаз ($\varphi $).

Если $\omega =0$, то выражение $\frac<\omega C>\to \infty $. Импеданс ($Z$) становится бесконечным, следовательно, $I_m=0.$ При $\omega =0$ мы имеем дело с постоянным током, который не проходит через конденсатор. Если начать увеличивать частоту, то величина реактивного сопротивления ($<\left(\omega L-\frac<\omega C>\right)>^2$) сначала уменьшается, следовательно, уменьшается импеданс, увеличивается $I_m.$ Когда частота ($\omega $) становится равной резонансной частоте контура ($<\omega >_0$):

полное сопротивление цепи ($Z$) становится минимальным и равным активному сопротивлению цепи ($R$). Сила тока при этом достигает максимума. При $\omega ><\omega >_0$ выражение $<\left(\omega L-\frac<1><\omega C>\right)>^2\ne 0$ и растет при росте частоты. Импеданс вновь увеличивается, амплитуда силы тока уменьшается, приближаясь к нулю асимптотически.

Графически вышеописанный процесс изображен на рис.2.


Готовые работы на аналогичную тему

Амплитуда силы тока при резонансной частоте ($\omega =<\omega >_0$) равна:

при этом разность фаз равна нулю ($\varphi =0$). В цепи как бы нет емкости и индуктивности. При этой частоте напряжения на емкости и индуктивности полностью взаимно компенсируются, становясь равными по модулю, так как они по фазе противоположны всегда. Такой резонанс называют резонансом напряжений. Векторная схема резонанса напряжений изображена на рис.3. При резонансе контур ведет себя как активное сопротивление.


Итак, случай вынужденных колебаний, когда частота генератора ЭДС (или приложенного внешнего напряжения) равна резонансной частоте, представляет особый интерес. При этом амплитуда тока достигает максимума, а сдвиг фаз между током и напряжением равен нулю. Контур действует как активное сопротивление.

Применение резонанса напряжений

Задание: Чему равна амплитуда напряжения на конденсаторе ($U_$) при резонансе напряжений, если колебания затухают слабо? Добротность контура равна$\ O$. Внешняя ЭДС изменяется в соответствии с законом: $<\mathcal E>=<<\mathcal E>>_m.$

Решение:

Амплитуда тока при резонансе достигает максимума, она равна:

где $<\omega >_0$ -- резонансная частота.

Следовательно, амплитуда напряжения на конденсаторе будет равна:

где емкостное сопротивление равно:

Подставим в формулу (1.2) $X_C$ из (1.3) и $I_$ из (1.1) получим амплитуду напряжения на конденсаторе при резонансе:

подставим выражение для резонансной частоты в формулу (1.4), получим:

где $O=\frac\sqrt>$ -- добротность контура.

Задание: Чему равна амплитуда напряжения на индуктивности ($U_$) при резонансе напряжений, если колебания затухают слабо? Добротность контура равна$\ O$. Внешняя ЭДС изменяется в соответствии с законом: $<\mathcal E>=<<\mathcal E>>_m.$

Решение:

Выражение для напряжения на индуктивности можно записать как:

где выражение для амплитуды тока ($I_m(\omega_0)$) при резонансе напряжений:

Получим, что амплитуда напряжения на индуктивности равна:

Колебания напряжения на конденсаторе и индуктивности имеют равные амплитуды, но их разность фаз равна $\pi $.

Читайте также: