Что такое приемник кратко

Обновлено: 08.07.2024

ПРИЁМНИК, -а, м. 1. Аппарат для приёма чего-нибудь (сигналов, речи, музыки, изображений) при помощи электромагнитных, световых и иных волн. Приёмник звука, Приёмник света. Приёмник излучения. 2. То же, что радиоприёмник. 3. Устройство в виде вместилища для чего-нибудь (спец.). Приёмник сточных вод. 4. Учреждение, куда временно помещают кого-нибудь для дальнейшего распределения. Приёмник при зоопарке.

Смотреть что такое ПРИЁМНИК в других словарях:

ПРИЁМНИК

accumulator, bin, receiving apparatus, receiving box, (в канале связи) listener, receiver, receptacle, receptor, recipient, (сточных вод) sink, stacker. смотреть

ПРИЁМНИК

м. 1) ricevitore m; presa f; (сборник) collettore m 2) радио (radio)ricevitore m, apparecchio m radio(ricevente), radio f 3) (ёмкость) serbatoio m, re. смотреть

ПРИЁМНИК

м.(радиосигналов) receiver; (звука и излучения) detector- абсолютно неселективный приёмник- амплитудный приёмник- волоконно-оптический приёмник звука- . смотреть

ПРИЁМНИК

-а, м. 1.Устройство для приема, собирания в него чего-л.В приемник полилась вонючая и теплая муть вместо спирта. Лесков, Загон. Он осмотрел огромный д. смотреть

ПРИЁМНИК

техн. прийма́ч, -ча́ - автодинный приёмник - автомобильный приёмник - батарейный приёмник - бестрансформаторный приёмник - всеволновый приёмник - двухконтурный приёмник - детекторный приёмник - дипольный приёмник - длинноволновый приёмник - избирательный приёмник - индивидуальный приёмник - испытательный приёмник - карманный приёмник - контрольный приёмник - коротковолновый приёмник - ламповый приёмник - локационный приёмник - направленный приёмник - одноламповый приёмник - пеленгаторный приёмник - передвижной приёмник - приёмник давления - приёмник излучения - приёмник-передатчик - приёмник света - радиовещательный приёмник - радиолокационный приёмник - радиометрический приёмник - радиотелеграфный приёмник - радиотелеметрический приёмник - регенеративный приёмник - ретрансляционный приёмник - самолётный приёмник - сетевой приёмник - скоростной приёмник - согласующий приёмник - средневолновый приёмник - супергетеродинный приёмник - суперрегенеративный приёмник - телевизионный приёмник - телеизмерительный приёмник - трёхконтурный приёмник - фототелеграфный приёмник - широкополосный приёмник Синонимы: авиаприемник, автоприемник, авторадиоприемник, банкнотоприемник, грязеприемник, детприемник, жижеприемник, кристадин, магнитоприемник, маслоприемник, микроприемник, монетоприемник, мусороприемник, навозоприемник, нейтродин, приемничек, радиоприемник, реперфоратор, светоприемник, силоприемник, спецприемник, стереоприемник, суперприемник, телеприемник, теплоприемник, термоприемник, топливоприемник, ультрааудион, фотоприемник, шлакоприемник, эвакоприемник. смотреть

ПРИЁМНИК

м.1) тех. receptor m, recipiente m2) радио aparato (receptor) de radio, receptor mламповый приёмник — receptor con válvulasдетекторный приёмник — detec. смотреть

ПРИЁМНИК

м1) alıcı телевизио́нный приёмник — televizyon alıcısı2) (радиоприемник) radyo Синонимы: авиаприемник, автоприемник, авторадиоприемник, банкнотоприемн. смотреть

ПРИЁМНИК

1) Орфографическая запись слова: приёмник2) Ударение в слове: при`ёмник3) Деление слова на слоги (перенос слова): приёмник4) Фонетическая транскрипция . смотреть

ПРИЁМНИК

1) (радиоприёмник) 收音机 shōuyīnjī2) (принимающее устройство) 接收机 jiēshōujī, 接收器 jiēshōuqì, 容器 róngqì3) (учреждение) 收留机关 shōuliú jīguān, 收容所 shōuróng su. смотреть

ПРИЁМНИК

ПРИЁМНИК

передачvevökészülék* * *мtv-vevőkészülék, rádió-vevőkészülékСинонимы: авиаприемник, автоприемник, авторадиоприемник, банкнотоприемник, грязеприемник, . смотреть

ПРИЁМНИК

приёмник м 1. радио Empfänger m 1d телевизионный приёмник Fernsehempfänger m 2. тех. Aufnehmer m 1d 3. (учреждение) Sammelstelle f cСинонимы: авиаприе. смотреть

ПРИЁМНИК

м. 1) (аппарат) récepteur m приёмник звука — récepteur de sons приёмник света — récepteur de lumière 2) (радио) récepteur (или poste) m de radio корот. смотреть

ПРИЁМНИК

(2 м); мн. приёмники, Р. приёмниковСинонимы: авиаприемник, автоприемник, авторадиоприемник, банкнотоприемник, грязеприемник, детприемник, жижеприемник. смотреть

ПРИЁМНИК

•приёмник•מַקלֵט ז'* * *בית קיבולמקבלСинонимы: авиаприемник, автоприемник, авторадиоприемник, банкнотоприемник, грязеприемник, детприемник, жижеприемн. смотреть

ПРИЁМНИК

приёмник (тех. устройство для приёма чего-л.)Синонимы: авиаприемник, автоприемник, авторадиоприемник, банкнотоприемник, грязеприемник, детприемник, жи. смотреть

ПРИЁМНИК

приёмник, -аСинонимы: авиаприемник, автоприемник, авторадиоприемник, банкнотоприемник, грязеприемник, детприемник, жижеприемник, кристадин, магнитопри. смотреть

ПРИЁМНИК

Rzeczownik приёмник m odbiornik m

ПРИЁМНИК

1) приёмник (аппарат для приёма чего-л); ӧти лампаа приёмник — одноламповый приёмник;приёмникыс оз уджав — приёмник не работает 2) учреждение, куда временно помещают кого-л (напр., детей). смотреть

ПРИЁМНИК

Безударные гласные в слове: приёмник

ПРИЁМНИК

м.; в соч. - приёмник света

ПРИЁМНИК

(для дождевой воды) kingio ya maji (-);(радио) [chombo cha] redio (-), msikilizaji (mi-)

ПРИЁМНИК

приёмник, приёмники, приёмника, приёмников, приёмнику, приёмникам, приёмник, приёмники, приёмником, приёмниками, приёмнике, приёмниках

ПРИЁМНИК

1) récepteur; radiorécepteur 2) récepteur, bac [réservoir] de réception

ПРИЁМНИК

I. м 1. tex. qabuledici (elektrik cərəyanı qəbul və sərf edən aparat); 2. bax радиоприёмник. II. м qəbul məntəqəsi.


Приёмник системы радиоуправления (внизу) с аккумуляторной батареей и исполнительным механизмом — рулевой машинкой.

Радиоприёмник — устройство, соединяемое с антенной и служащее для осуществления радиоприема [1] .

Радиоприёмник (радиоприёмное устройство) — устройство для приёма электромагнитных волн радиодиапазона (то есть с длиной волны от нескольких тысяч метров до долей миллиметра) с последующим преобразованием содержащейся в них информации к виду, в котором она могла бы быть использована.

Содержание

Классификация радиоприёмников

Радиоприёмные устройства делятся по следующим признакам:

  • по основному назначению: радиовещательные, телевизионные, связные, пеленгационные, радиолокационные, для систем радиоуправления, измерительные и др.;
  • по роду работы: радиотелеграфные, радиотелефонные, фототелеграфные и т. д.;
  • по виду модуляции, применяемой в канале связи: амплитудная, частотная, фазовая;
  • по диапазону принимаемых волн, согласно рекомендациям МККР:
    • мириаметровые волны — 100-10 км, (3 кГц-30 кГц), СДВ
    • километровые волны — 10-1 км, (30 кГц-300 кГц), ДВ
    • гектометровые волны — 1000—100 м, (300 кГц-3 МГц), СВ
    • декаметровые волны — 100-10 м, (3 МГц-30 МГц), КВ
    • метровые волны — 10-1 м, (30 МГц-300 МГц), УКВ
    • дециметровые волны — 100-10 см, (300 МГц-3 ГГц), ДМВ
    • сантиметровые волны — 10-1 см, (3 ГГц-30 ГГц), СМВ
    • миллиметровые волны — 10-1 мм, (30 ГГц-300 ГГц), ММВ
    • приёмник, включающий все широковещательные диапазоны (ДВ, СВ, КВ, УКВ) называют всеволновым.

    Основные показатели

    Принцип работы

    В самом общем виде принцип работы радиоприёмника выглядит так: колебания электромагнитного поля (смесь полезного радиосигнала и помех разного происхождения) наводят в антенне переменный электрический ток; полученные таким образом электрические колебания фильтруются для отделения требуемого сигнала от нежелательных (помех); из сигнала выделяется (детектируется) заключенная в нём полезная информация; полученный в результате сигнал преобразуется в вид, пригодный для использования: звук, изображение на экране телевизора, поток цифровых данных, непрерывный или дискретный сигнал для управления исполнительным устройством (например, телетайпом или рулевой машинкой) и т. д. В зависимости от конструкции приёмника сигнал в его тракте может проходить, кроме детектирования, многоэтапную обработку: фильтрацию по частоте и амплитуде, усиление, преобразование частоты (сдвиг спектра), оцифровку с последующей программной обработкой и преобразованием в аналоговый вид.

    История

    В 1887 году немецкий физик Генрих Герц построил искровой передатчик радиоволн (радиопередатчик) с катушкой Румкорфа и полуволновой дипольной передающей антенной (первый в мире радиопередатчик радиоволн) и искровой приёмник радиоволн (первый в мире радиоприёмник), осуществил первую в мире радиопередачу и радиоприём радиоволн, доказал существование радиоволн, предсказанное Максвеллом и Фарадеем и изучил некоторые основные свойства радиоволн (прохождение, поглощение, отражение, преломление, интерференция, стоячая волна и др.).

    В 1899 построена первая линия связи, протяжённостью 45 км, которая соединяла остров Гогланд и город Котка. В период первой мировой войны начинают применяться электронные лампы и получает развитие приёмник прямого усиления.

    В 1917—1918 г. во Франции (Л. Леви), в Германии (В. Шоттки) и в США (Э. Армстронг) был предложен принцип супергетеродинного приёма. Из-за несовершенства тогдашних электронных ламп супергетеродин не мог быть качественно реализован.

    В 1929-30гг. с появлением радиоламп с экранной сеткой (тетродов и пентодов) супергетеродинный приёмник становится основным типом.

    С середины 1970-х гг. начинается широкое применение в приёмниках интегральных микросхем.

    В настоящее время радиоприёмники развиваются методом большой интеграции узлов структурной схемы и широкого применения цифровой обработки сигналов, принятых на фоне помех.

    Будущее

    В настоящее время существуют различные модели радиоприёмников: переносные, карманные, с цифровым тюнером. Существуют даже простые радиоприёмники на кнопочном управлении (автопоиск радиостанций, например, Облик). Функцию радиоприёма берут на себя мобильные телефоны, цифровые проигрыватели и даже некоторые телевизоры. Также существует цифровое, спутниковое и интернет-радио.

    Растущая популярность технологии беспроводной связи, модулей SDR и всех современных радиоинтерфейсов, вызвала желание вспомнить характеристики и свойства базовых конфигураций радиоприемников.

    Окончательный выбор схемы конечно зависит от типа, сложности и объема передаваемых данных. Методы проектирования радиоприемников тоже изменились с годами. В основном это произошло за счет увеличения возможностей имеющихся интегральных микросхем, за счет разработки новых технологий их производства.

    Также важно снизить затраты, увеличивая при этом функциональность систем обработки сигналов (процессоров DSP). Однако независимо от архитектуры схемы приемников, они должны отвечать определенным неизменным требованиям в отношении частотного диапазона, эффективности и основных параметров: селективности и чувствительности. Начнём краткий обзор.

    Приемник AM


    Одной из основных, базовых исторически схем является приемник, предназначенный для обработки амплитудно-модулированного сигнала, то есть несущей волны, в которой изменение значения амплитуды отражает передаваемую информацию. Демодуляции такого сигнала можно добиться с помощью простого диодного детектора. Принципиальная схема базового AM-приемника включает в себя: антенну, фильтр, диодный детектор и усилитель, обеспечивающий соответствующий уровень демодулированного (уже звукового) сигнала. Диодный детектор в простейших решениях AM-приемников работает как односторонний выпрямитель, который отслеживает изменения огибающей модулированного сигнала путем зарядки и разрядки конденсатора.


    Есть различные модификации амплитудной модуляции, возникшие из-за недостатков базовой версии. Спектр амплитудно-модулированного сигнала, помимо несущей частоты, также включает компоненты, частоты которых являются суммой и разностью частоты несущей волны и частоты информационного сигнала. Это так называемые боковые полосы, они называются так потому, что на самом деле сигнал, которым модулируется несущая волна, может содержать множество компонентов с разными частотами. Для воссоздания исходного сигнала нужна только одна полоса. Получение узкой полосы излучения и высокой энергоэффективности достигается за счет подавления одной боковой полосы и несущей волны - технология SSB.

    Приемник с прямым усилением

    Следующим шагом в развитии радиотехники стало внедрение приемников прямого усиления, создание которых было связано с распространением усилителей на электронных лампах. Это решение широко использовалось в первых радио. В отличие от более поздних решений, приемники с прямым усилением не использовали преобразование частоты, поэтому задача детектора заключалась в демодуляции непосредственно принятого радиочастотного сигнала. Достоинством этой простой конструкции было, прежде всего, отсутствие влияния так называемого зеркального сигнала.


    В приемниках, использующих смешение частот, это серьезная проблема, поскольку случайно принятый зеркальный сигнал ухудшает качество полезного. Каждый дополнительный резонансный контур увеличивает избирательность приемника. Но недостатком этого решения была необходимость одновременной перенастройки всех схем, что было сложной задачей при проектировании.

    Другая проблема заключалась в том, что избирательность приемника снижалась с увеличением частоты. Недостатки этого решения способствовали быстрому распространению преобразователей частоты с прямым преобразованием и супергетеродинных приемников.

    Прямое преобразование

    Способ избежать необходимости использовать множество индивидуально настраиваемых фильтров заключался в передаче радиочастотного сигнала в полосе частот низкой частоты. Приемник с прямым преобразованием, также известный как гомодин, состоит из следующих модулей: входной цепи, смесителя, то есть элемента в котором принимаемый в антенне сигнал передается в низкочастотный диапазон, генератора, фильтра и усилителя.


    Характерной особенностью этого решения является двойная роль смесителя, который также действует как детектор. Другой конфигурацией выступают так называемые супергетеродинные приемники, в которых каскад преобразования частоты отделен от блока детекторов. В группе приемников этого типа есть две основных конструкции: супергетеродинный приемник с одинарным и двойным преобразованием частоты.

    Супергетеродинный приёмник

    В супергетеродинной схеме - модулированный радиочастотный сигнал преобразуется в сигнал более низкой частоты путем смешивания входного радиочастотного сигнала с сигналом другой частоты, вырабатываемой отдельной схемой генератора, так называемого гетеродина. Частотное смешение выполняется в компоненте с нелинейной характеристикой (диод, транзистор). В результате этой операции создается искаженный сигнал, который кроме составляющих с частотой ВЧ, и гетеродинных частот, также содержит компоненты, частоты которых являются их суммой и разностью.


    После смесителя вводится фильтр, настроенный на один из этих компонентов, например f h – f w.cz, называемый промежуточной частотой ПЧ. Промежуточная частота фиксированная. Перестраиваемый элемент - гетеродин. Частота местного генератора меняется в зависимости от принимаемого сигнала.

    Зеркальный радиосигнал

    Недостатком приемников с преобразованием частоты является необходимость подавления так называемого зеркального сигнала. Объяснение неблагоприятного влияния зеркального сигнала можно увидеть на примере. Предполагаем, что модулированный сигнал имеет частоту 100 МГц, а гетеродин генерирует сигнал с частотой 110,7 МГц. В результате смешивания обоих сигналов создается сигнал с частотой f h – f RF = 10,7 МГц. Фильтр ПЧ настроен на эту частоту, но сигнал с частотой 121,4 МГц также достигает антенны. Это зеркальный сигнал, то есть форма волны с частотой, которая отличается от частоты полезного сигнала на величину, равную удвоенной промежуточной частоте.


    Если сигнал этот не подавляется входными цепями, то смешивание этого сигнала и сигнала от генератора также даст форму волны 10,7 МГц. Это будет мешать правильному приему полезного сигнала. Решением проблемы помех при приеме зеркальных сигналов является использование супергетеродинного приемника с двойным преобразованием.

    Двойное преобразование частоты

    Чем выше промежуточная частота, тем больше частотное разделение полезного радиочастотного сигнала и частота зеркального сигнала. Это увеличивает вероятность подавления мешающего сигнала во входной цепи. Следовательно, в супергетеродинном приемнике с двойным преобразованием промежуточная частота на первом этапе преобразования намного выше, чем ПЧ во втором каскаде. Из-за меньшего значения вторая ступень преобразования обеспечивает лучшую селективность.

    Работу описанного супергетеродинного приемника следует проследить на таком примере. Предположим, что сигнал с частотой 25 МГц достигает антенны, а промежуточная частота первого каскада преобразования составляет 20 МГц. Отсюда следует, что гетеродин должен генерировать сигнал с частотой 45 МГц. Мешающий сигнал в таком случае будет зеркальной волной, которая может быть легко устранена во входных цепях из-за ее почти в три раза более высокой частоты (65 МГц) по сравнению с частотой полезного сигнала.

    Основным элементом каждого тракта обработки приемника являются входные цепи, а в случае конфигурации преобразователя частоты также гетеродин и смеситель. Основная задача входных цепей - отделить форму волны определенной частоты от сигналов, достигающих антенны, привести ее к следующему этапу обработки с минимально возможными потерями и подавить все мешающие сигналы, достигающие антенны. Поэтому важнейшим параметром входных цепей является избирательность. Также важны диапазон настройки и частотная характеристика.

    В последние годы были разработаны многие другие методы, включая прямой цифровой синтез (DDS), которые используются для генерации сигналов на желаемой частоте. Гетеродин должен обеспечивать генерацию сигналов в определенной полосе и настройку с соответствующим шагом частот. Кроме того, он должен характеризоваться достаточно низким уровнем фазового шума в заданной полосе, совпадающим с шириной канала. Выходной сигнал генератора также должен иметь соответствующий уровень, необходимый для управления смесителем.


    Часто бывает необходимо использовать дополнительный усилитель. Его задача - обеспечить приемлемый уровень сигнала для потерь преобразования в смесителе. В случае портативных устройств дополнительным важным параметром гетеродина является питание и потребляемая мощность.

    Смесители и усилители

    Смесители построены в основном на основе нелинейных полупроводниковых элементов (диодов, транзисторов). Из-за простоты конструкции, среди беспроводных устройств преобладают решения с диодными смесителями. Самыми популярными конфигурациями схем этого типа являются односторонние и одно- или двухбалансные смесители.


    Возможны различные дополнительные модификации схем, например смесители с подавлением, которые используются в основном в диапазоне высоких частот (ГГц). Простейший диодный смеситель - одиночный, относящийся к группе суммирующих усилителей. Эта схема состоит из трансформаторов, которые соединяют входные сигналы (ВЧ и гетеродин) со смесителем, одним диодом и выходным фильтром, настроенным на желаемую частоту.

    Второй тип смесителей - это смесители в которых входной сигнал и сигнал от гетеродина подаются на два независимых входа. Примером системы такого типа является сбалансированный. Он используется для устранения нежелательных гетеродинных частот, проникающих в выходной усилитель промежуточной частоты.

    Схема состоит из двух диодов, соединенных таким образом, чтобы на выходе смесителя не появлялось напряжение частоты гетеродина. Модификация этой схемы, двухбалансный смеситель, содержит четыре диода, а также позволяет исключить влияние составляющих принимаемого сигнала. Потери преобразования в смесителях обоих типов сопоставимы.


    Существуют также активные смесители, которые обычно изготавливаются в виде интегральных микросхем и позволяют снизить потери преобразования и даже усилить обработанный сигнал. Благодаря этому они могут взаимодействовать с генераторами с более низким уровнем выходного сигнала.

    Усилители приемника должны быть малошумящими и устойчивыми к искажениям. Также важно, чтобы входной малошумящий усилитель мог обеспечить адекватное усиление сигнала. Соответствующий параметр SNR (сигнал/шум) на входе следующего каскада приемника должен достичь уровня, позволяющего в дальнейшем корректную обработку сигнала.

    Наиболее важными параметрами усилителей являются полоса пропускания, коэффициент шума, усиление, напряжение питания, потребляемая мощность и линейность. В идеале усилитель должен обеспечивать достаточное усиление для воспроизведения слабых сигналов, но не вносить чрезмерных искажений в сигналы с большой амплитудой.

    Цифровые радиоприёмники

    В настоящее время большинство аналоговых элементов тракта промежуточной частоты могут быть реализованы в цифровой технологии, это решение называется SDR - Software Defined Radio. Это связано с тем, что все больше и больше операций, таких как фильтрация сигналов и преобразование частоты, которые до сих пор были областью аналоговой электроники, выполняются с использованием цифровых фильтров и процессоров. Также бывает что сигналы промежуточной частоты преобразуются в цифровую форму в схемах аналого-цифрового преобразователя и только затем демодулируются в процессоре DSP.


    В этом случае выбор аналого-цифрового преобразователя в основном определяется типом архитектуры приемника. На это влияют селективность фильтров, динамический диапазон усилителей, а также ширина полосы и тип используемой модуляции.


    Уровень сигнала, подаваемого на аналого-цифровой преобразователь, требует использования соответствующего разрешения. Например, в случае приемника с двойным преобразованием, предназначенного для приложения стандарта IEEE 802.16 для обработки радиочастотных сигналов используются 12-битные преобразователи. В случае использования одиночного преобразования, когда промежуточная частота выше, используются преобразователи с более высоким 14-битным разрешением. Это связано с меньшей избирательностью приемников этого типа.

    Из-за преобладания цифровых схем решение о том, какие функции приемника должны быть аналоговыми, а какие - цифровыми, зависит от таких факторов как производительность, стоимость, размер и потребляемая мощность. Практически в каждом устройстве, работа которого основана на беспроводной передаче, есть интегральные микросхемы, состоящие из модулей, выполняющих большинство функций обработки аналоговых сигналов, включая фильтрацию, демодуляцию и усиление.

    В принципе сейчас идёт повсеместная тенденция к миниатюризации, что и влияет на конструкцию приемников. Интеграция все большего числа функций в единую микросхему влияет на свойства готового устройства, которые важны с точки зрения пользователя (низкая стоимость, низкое энергопотребление, небольшие размеры). Но независимо от уровня интеграции, основные элементы архитектуры приемника и основные этапы обработки принятого сигнала остаются неизменными.

    Форум по обсуждению материала РАДИОПРИЕМНИКИ: ВИДЫ И ПРИНЦИП РАБОТЫ


    Обзор китайского устройства для электролиза воды - фото, видео, описание работы.


    Переделываем игрушку обычный трактор в радиоуправляемый - фотографии процесса и получившийся результат.


    Приводятся основные сведения о планарных предохранителях, включая их технические характеристики и применение.


    Про использование технологии беспроводного питания различных устройств.

    Э лектрический ток, протекая в каком либо проводнике, порождает электромагнитное поле, распостраняющееся в окружающем его пространстве.
    Если этот ток является переменным, то электромагнитное поле способно наводить(индуцировать) Э. Д. С. в другом проводнике, находящемся на каком то удалении - осуществляется передача электрической энергии на расстояние.



    Подобный метод передачи энергии на расстояние не получил пока широкого применения - весьма высоки потери.
    Но для передачи информации, он используется уже более ста лет, и весьма успешно.

    Для радиосвязи используются электромагнитные колебания, так называемого, радиочастотного диапазона направленные в пространство - радиоволны. Для наиболее эффективного излучения в пространство используют антенны различных конфигураций.

    Полуволновой вибратор.

    Простейшая антенна - полуволновой вибратор, состоит из двух отрезков провода, направленных в противоположные стороны, в одной плоскости.


    Общая длина их составляет половину длины волны, а длина отдельного отрезка - четверть. Если один из концов вибратора направлен вертикально, вместо второго может использоваться земля, или даже - общий проводник схемы передатчика.

    Например, если длина вертикальной антенны составляет - 1 метр, то для радиоволны длиной 4 метра (диапазон УКВ) она будет представлять наибольшее сопротивление. Соответственно, эффективность такой антенны будет максимальной - именно для радиоволн этой длины, как при приеме, так и при передаче.

    Говоря по правде, в диапазоне УКВ, наиболее уверенный прием должен наблюдаться, при горизонтальном расположении антенны. Это связано с тем, что передача в этом диапазоне с частотной модуляцией на самом деле, выполняется чаще всего, с помощью горизонтально расположенных полуволновых вибраторов. Поэтому, именно - полуволновой вибратор(а не четвертьволновой) будет являться более эффективной приемной антенной.

    Различные радиоволновые диапазоны.

    Радиоволны делятся на различные радиодиапазоны, в зависимости от их длины. Что такое - длина радиоволны? Радиоволны распостраняются со скоростью света(который сам по себе является одним из диапазонов электромагнитных колебаний). За секунду, они распостраняются на расстояние около 300000 километров. Разделив это расстояние на частоту электромагнитных колебаний можно узнать их длину волны.

    Например, колебания частотой от 3 до 30 Кгц. порождают радиоволны сверхдлинного диапазона. Соответственно, длина сверхдлинных радиоволн лежит в пределах от 10 до 100 километров. Передача информации на большие расстояния, в этом диапазоне возможна, с применением очень больших передающих антенных устройств(более километра) и очень мощных передатчиков. Сверхдлинные волны применяют для дальней подводной связи.

    Колебания частотой от 30 до 300 Кгц вызывают радиоволны длинноволнового диапазона. Их длина от 1 до 10 километров. Они способны огибать земную поверхность, за счет явления - дифракции. Дифракцией радиоволн называют их способность огибать в той или иной степени препятствия, лежащие на пути распостранения - выпуклость земного шара, горы, строения и. т. д.

    Дифракция возникает в результате возбуждения радиоволной высокочастотных колебаний на поверхности препятствий. Эти колебания вызывают в свою очередь вторичное излучение радиоволн, проникающих в области пространства затененные от передающей антенны радиопередатчика. Часть энергии радиоволн при этом неизбежно теряется - на нагрев поверхности.

    Передающие антенны длинноволнового диапазона довольно велики, как и мощность передатчика.



    Главным достоинством длинных волн, является возможность очень устойчивой связи, на большое расстояние - без ретранслятора.

    Частоты от 0,3 до 3Мгц - принадлежат средневолновому диапазону, от 3 до 30Мгц - коротковолновому. Волны этих диапазонов способны отражаться от различных слоев ионосферы, что способствует сверхдальней связи, при относительно невысокой мощности передатчика и небольших размерах передающей антенны.

    Распостранение радиоволн на большие расстояния за счет пространственных волн объясняется отражением в ионосфере. Наряду с отражением имеет место частичное поглощение, возрастающее с увеличением длины волны.

    Отражение и поглощение в ионосфере также связано с концентрацией электронов - величиной непостоянной. Ее изменения носят циклический характер - суточные, сезонные и связанные с 11-летним солнечным циклом, но нередко случаются и внезапные изменения - из за вспышек на солнце и падения метеорных потоков.



    Частоты от 30Мгц до 3Ггц - радиоволны ультрокороткого(метрового и дециметрового) диапазона. Радиоволны этого диапазона хорошо поглощаются земной поверхностью и проходят через ионосферу - устойчивая связь возможна до линии горизонта. Плюсом здесь является качественная связь, при крайне малой мощности передатчика - и сответственно,возможности миниатюризации его размеров.



    Сверхвысокочастотный диапазон 3 - 30Ггц(сантиметровый) используется для космической связи. Электромагнитные колебания такой частоты по своим свойствам вплотную приближаются к свету. Их можно легко фокусировать с помощью сферических отражателей, для передачи на очень большие расстояния.



    Как устроен радиопередатчик?

    Основой любого радиопередатчика является - задающий генератор несущей частоты.



    Эта схема генератора,сама вполне может служить маломощным передатчиком(при наличии антенны). Электромагнитные колебания генерируемой им частоты, сами по себе не несут никакой полезной информации. Что бы появилась возможность ее передачи, необходимо изменить несущую частоту, промодулировав ее полезным сигналом.

    Применяются три вида модуляции - амплитудная, частотная и фазная. При амплитудной модуляции меняется амплитуда несущей частоты, в такт с амплитудой информационного сигнала. Частотная модуляция обуславливает девиацию (отклонения) несущей частоты в такт с амплитудой полезного сигнала. При фазной модуляции, подобное происходит соответственно, с фазой колебаний несущей частоты.


    Процесс модуляции осуществляется с помощью различных электронных схем. Например, для частотной модуляции необходимо воздействовать на такие параметры задающего генератора, как емкость или индуктивность его колебательного контура. Если подать на переход база - эмиттер транзистора переменное напряжение низкой частоты, это вызовет изменение его емкости, с периодом поданной частоты. Соответственно, произойдет частотная модуляция задающего генератора.


    Если собрать подобную схему, используя самые распостраненные высокочастотные транзисторы (например кт315), микрофон динамического типа, можно получить простейший радиомикрофон. С катушкой L1, состоящей из одного витка одножильного провода диаметром 1-1,5 см, он будет перекрывать радиовещательный диапазон FM.

    Сигнал от такого устройства можно принимать на расстоянии от 50, до 150 метров, в зависимости от чувствительности используемого приемника. Точная подстройка осуществляется конденсатором С5.
    Устройства для прослушки - жучки, собирают по схожим схемам.
    Если требуется большая дальность передачи, сигнал задающего генератора необходимо дополнительно усилить, с помощью выходного усилителя мощности и подать на передающую антенну.

    Простейшей передающей антенной может служить отрезок провода, с длиной в четверть длины излучаемой волны. Для амплитудной модуляции необходимо, что бы выходная мощность передатчика менялась согласно с периодом колебаний частоты полезного сигнала. Для этого используется воздействие усиленного полезного сигнала, на выходной усилитель мощности.

    Устройство радиоприемника.

    Дальнейшим этапом идет усиление полученого радиочастотного сигнала и выделение (детектирование) из него полезной информационной составляющей. В зависимости от вида модуляции принимаемого сигнала применяются различные схемы амплитудных и частотных детекторов. Причем,большинство существующих схем частотного детектора разработаны для приемников с преобразованием частоты - супергетеродинов.

    Детекторный приемник.

    Детекторный приемник самое простое устройство, позволяющее произвести прием радиовещательных радиостанций, использующих амплитудную модуляцию. Классический детекторный приемник рассчитанный на прием в диапазоне длинных и средних волн состоит из колебательного контура, амплитудного детектора, собранного на одном диоде и высокоомных головных телефонов (наушников, говоря по-просту). Рисунок иллюстрирующий принцип работы амплитудного детектора



    На рисунке диод "обрезает" отрицательную составляющую радиосигнала. Затем, фильтрующая емкость производит выделение огибающей выпрямленного сигнала высокой частоты - получается сигнал низкой частоты. Вот так, может выглядеть схема реального детектороного приемника.



    В качестве колебательного контура можно использовать конденсатор переменной емкости(C1), от любого неисправного промышленного приемника и магнитную антенну от него же. Наушники - старинные головные телефоны ТОН-2.

    У такого приемника нет усилителя, поэтому радиосигнал на его входе должен быть достаточно силен. Отсюда - обязательно подключение протяженной (не менее 10 метров) внешней антенны и заземления.

    Приемник прямого усиления.

    Без внешней антенны и заземления можно обойтись, модернизировав детекторный приемник - добавив к нему усилитель высокой частоты(УВЧ).



    Такое устройство называется - приемник прямого усиления. Теперь приемник уже не нуждается во внешней антенне и заземлении - напряжения усиленного сигнала, полученного с магнитной антенны достаточно, для работы детектора. Добавив усилитель звуковой частоты(УЗЧ) и динамик, получим почти полноценный карманный транзисторный приемник, позволяющий прослушивать радиопередачи, без наушников.



    Почему почти? Селективность(избирательность)входного контура такого приемника невысока, и в случаe приема нескольких радиостанций близкого диапазона, их сигналы будут сильно мешать друг - другу.

    Эта проблема становится тем актуальней, чем меньше длина волн перекрываемого диапазона. Практически, диапазон коротких волн - уже не доступен для приемников, собранных по такой схеме. Кроме того, поднимать чувствительность до необходимых пределов, с помощью широкополосных высокочастотных каскадов крайне сложно, из-за их самовозбуждения.

    Регенеративный приемник.

    Хотя, по правде говоря, существует способ повышения селективности одиночного колебательного контура. Если связать его, с выходом одного из каскадов УВЧ приемника, то при определенном уровне положительной обратной связи, электромагнитные колебания контура на резонансной частоте, перестают быть затухающими, восстанавливаются - регенерируют. Это ведет к резкому увеличению добротности контура, и, соответствено - улучшению его селективности.

    Это дает возможность расширить область приема, вплоть до диапазона коротких волн. Минусом здесь является крайняя неустойчивость работы - малейшее снижение уровня обратной связи ведет к срыву регенерации, повышение чревато самовозбуждением каскада УВЧ. Поэтому, регенеративные приемники постепенно были вытеснены супергетеродинами.

    Супергетеродин.

    Супергетеродин, приемник с преобразованием частоты - это наиболее распостраненная схема. Она содержит в себе маломощный генератор колебаний промежуточной частоты - гетеродин.


    Частота генерации гетеродина меняется одновременно с изменением настройки входной частоты. Для этого применяется двухсекционный конденсатор переменной емкости - одна секция использована в входном колебательном контуре, вторая - в контуре гетеродина.

    Причем, гетеродин настроен так, что разница между собственной его частотой и частотой радиосигнала остается примерно неизменной на протяжении всего перестраевомого диапазона. Это и есть промежуточная частота, которая выделяется в смесителе - каскаде где обе частоты встречаются. Причем, полученная таким образом промежуточная частота оказывается промодулированой полезным сигналом.

    Далее, происходит усиление промежуточной частоты каскадами усилителя промежуточной частоты. Такие каскады имеют повышенный коэффициент усиления только на этой частоте, что исключает самовозбуждение усилителя. После усиления промежуточной частоты, происходит детектирование и окончательное усиление полезного сигнала. Супергетеродин обеспечивает высокую селективность и достаточную чувствительность для работы во всех радиовещательных диапазонах.

    Кроме того, появляется возможность приема и детектирования частотно - модулированных сигналов на частотах УКВ, что значительно улушает качество воспроизведения звука. Самая распостраненная схема частотного детектора - балансная, содержит в себе два контура, настроенных на несущую частоту с некоторым отклонением - слегка рассогласоваными. Частота первого из них настраивается несколько выше, а второго - несколько ниже промежуточной частоты.


    Модулированная промежуточная частота отклоняясь от своего среднего значения наводит колебания(может быть - звуковые) полезного сигнала выделяемые на резисторах R1 и R2.

    Приемник прямого преобразования.

    Как только частоты полезного сигнала и гетеродина совпадают - на выходе смесителя возникают биения с частотой модуляции, - т. е. низкочастотная информативная составляющая. Полученный сигнал можно возпроизвести, после достаточного усиления. Несмотря на свою простоту и эффективность, схема прямого преобразования получила лишь ограниченное распостранение - из-за недостаточно высокого качества передачи музыки и речи.

    Использование каких - либо материалов этой страницы, допускается при наличии ссылки на сайт "Электрика это просто".

    Читайте также: