Что такое пластичность материала кратко

Обновлено: 04.07.2024

В пластичность Это технологическое свойство материалов, которое позволяет им деформироваться под действием напряжения растяжения; то есть разделение двух его концов без быстрого разрушения в какой-либо точке в середине удлиненного участка. По мере удлинения материала его поперечное сечение уменьшается, становясь тоньше.

Поэтому из пластичных материалов механическим способом превращаются в нитевидные формы (нити, тросы, иглы и т. Д.). В швейных машинах шпульки с намотанной нитью представляют собой самодельный образец пластичных материалов; в противном случае текстильные волокна никогда бы не приобрели своей характерной формы.

Какова цель пластичности материалов? Способность преодолевать большие расстояния или привлекательные конструкции, будь то инструменты, украшения, игрушки; или для транспортировки некоторой жидкости, такой как электрический ток.

Последнее приложение представляет собой ключевой пример пластичности материалов, особенно металлов. Тонкие медные провода (верхнее изображение) являются хорошими проводниками электричества и наряду с золотом и платиной используются во многих электронных устройствах для обеспечения их работы.

Пластичность не была бы возможным свойством, если бы не было молекулярной или атомной перегруппировки, противодействующей падающей растягивающей силе. А если бы его не было, человек никогда бы не узнал, что кабели, антенны, мосты исчезнут, и мир останется в темноте без электрического света (помимо бесчисленных других последствий).

Что такое пластичность?

В отличие от пластичности, пластичность требует более эффективной структурной перестройки.

Зачем? Потому что, когда поверхность, на которой находится натяжение, больше, твердое тело имеет больше средств для скольжения своих молекул или атомов, образуя листы или пластины; тогда как когда напряжение сосредоточено в все меньшем и меньшем поперечном сечении, молекулярное скольжение должно быть более эффективным, чтобы противодействовать этой силе.

Не все твердые тела или материалы могут это сделать, и по этой причине они ломаются при испытаниях на растяжение. Получаемые изломы в среднем горизонтальные, а у пластичных материалов - конические или заостренные, что свидетельствует о растяжении.

Пластичные материалы также могут разрушаться после напряжения. Его можно увеличить, если повысить температуру, так как тепло способствует проскальзыванию молекул (хотя есть несколько исключений). Именно благодаря этим слайдам материал может проявлять пластичность и, следовательно, быть пластичным.

Однако пластичность материала зависит от других переменных, таких как влажность, тепло, примеси и способ приложения силы. Например, свежерасплавленное стекло пластично и принимает нитевидные формы; Но когда он остывает, он становится хрупким и может сломаться при любом механическом ударе.

Свойства

Пластичные материалы обладают собственными свойствами, напрямую связанными с их молекулярным расположением. В этом смысле жесткий металлический стержень и мокрый глиняный стержень могут быть пластичными, хотя их свойства сильно различаются.

Однако у всех них есть кое-что общее: пластичное поведение перед поломкой.В чем разница между пластиковым и эластичным предметом?

Упругий объект деформируется обратимо, что изначально происходит с пластичными материалами; но при увеличении растягивающего усилия деформация становится необратимой, и объект становится пластичным.

С этого момента проволока или резьба принимает определенную форму. После непрерывного растяжения его поперечное сечение становится настолько малым, а растягивающее напряжение слишком высоким, что его молекулярные скольжения больше не могут противодействовать напряжению, и в конечном итоге он ломается.

Если пластичность материала чрезвычайно высока, как в случае золота, с одним граммом можно получить провода длиной до 66 км и толщиной 1 мкм.

Чем более вытянутый провод получается из массы, тем меньше его поперечное сечение (если только тонны золота не доступны для изготовления проволоки значительной толщины).

Примеры пластичных металлов

Металлы относятся к пластичным материалам, которые находят бесчисленное множество применений. Триада состоит из металлов: золота, меди и платины. Один золотой, другой розовато-оранжевый и последний серебряный. Помимо этих металлов, есть и другие менее пластичные:

-Латунь (и другие металлические сплавы)

-Сталь (хотя ее пластичность может быть нарушена в зависимости от состава углерода и других добавок)

-Свинец (но в определенных небольших диапазонах температур)

Без предварительных экспериментальных знаний трудно установить, какие металлы действительно пластичны. Его пластичность зависит от степени чистоты и от того, как добавки взаимодействуют с металлическим стеклом.

Взаимодействия между всеми этими микроскопическими и электронными переменными делают пластичность концепцией, которая требует тщательного изучения с помощью многомерного анализа; и будет обнаружено отсутствие стандартного правила для всех металлов.

По этой причине два металла, хотя и имеют очень похожие характеристики, могут быть пластичными, а могут и не быть.

Размер зерен и кристаллическая структура металлов

Зерна представляют собой части стекла, в которых отсутствуют заметные неровности (зазоры) в их трехмерном расположении. В идеале они должны быть полностью симметричными и иметь четко выраженную структуру.

Каждое зерно одного и того же металла имеет одинаковую кристаллическую структуру; то есть металл с компактной гексагональной структурой ГПУ имеет зерна с кристаллами с ГПУ-системой. Они расположены таким образом, что под действием силы тяги или растяжения скользят друг по другу, как если бы это были плоскости, сделанные из мрамора.

Обычно, когда плоскости, сделанные из мелких зерен, скользят, они должны преодолевать большую силу трения; в то время как, если они большие, они могут двигаться более свободно. Фактически, некоторые исследователи стремятся изменить пластичность определенных сплавов путем контролируемого роста их кристаллических зерен.

С другой стороны, что касается кристаллической структуры, обычно металлы с кристаллической системой ГЦК (граненый центрированный кубический, или гранецентрированный кубик) являются наиболее пластичными. Между тем металлы с кристаллической структурой ОЦК (объемно центрированный кубический, гранецентрированный куб) или ГПУ, обычно менее пластичны.

Например, и медь, и железо кристаллизуются с расположением ГЦК и более пластичны, чем цинк и кобальт, оба с расположением ГПУ.

Влияние температуры на пластичность металлов

Тепло может уменьшить или увеличить пластичность материалов, исключения также относятся к металлам. Однако, как правило, чем мягче металлы, тем легче их превратить в нити, не ломаясь.

Это связано с тем, что повышение температуры заставляет металлические атомы колебаться, что приводит к объединению зерен; то есть несколько мелких зерен объединяются в одно большое зерно.

С более крупными зернами увеличивается пластичность, и молекулярное скольжение сталкивается с меньшими физическими препятствиями.

Эксперимент по объяснению пластичности для детей и подростков

Пластичность становится чрезвычайно сложной концепцией, если вы начнете анализировать ее под микроскопом. Итак, как вы объясните это детям и подросткам? Таким образом, чтобы это выглядело максимально простым для их посторонних глаз.

Жевательная резинка и пластилин

До сих пор ходили разговоры о расплавленном стекле и металлах, но есть и другие невероятно пластичные материалы: резинка и пластилин.

Чтобы продемонстрировать пластичность жевательной резинки, достаточно схватить две массы и начать их растягивать; один расположен слева, а другой будет перенесен справа. В результате получится подвесной мост из жевательной резинки, который не сможет вернуться к своей первоначальной форме, если его не размять руками.

Однако наступит момент, когда мост в конце концов сломается (и на полу появится жвачка).

На изображении выше показано, как ребенок, нажимая на емкость с дырочками, заставляет пластилин выступать так, как будто это волосы. Сухая шпатлевка менее пластична, чем масляная; Таким образом, эксперимент может состоять просто в создании двух дождевых червей: одного из сухой глины, а другого, смоченного маслом.

Ребенок заметит, что маслянистого червяка легче слепить и увеличить его длину за счет его толщины; Пока червь высыхает, он, скорее всего, снова и снова сломается.

Пластилин также представляет собой идеальный материал для объяснения разницы между пластичностью (лодка, ворота) и пластичностью (волосы, черви, змеи, саламандры и т. Д.).

Демонстрация с металлами

Хотя подростки вообще ничем не будут манипулировать, возможность наблюдать образование медных проводов в первом ряду может быть для них привлекательным и интересным опытом. Демонстрация пластичности будет еще более полной, если продолжить работу с другими металлами и, таким образом, можно будет сравнить их пластичность.

Далее все провода необходимо подвергнуть постоянному растяжению до предела прочности. При этом подросток визуально удостоверит, как пластичность влияет на сопротивление проволоки разрыву.

свойство твёрдых тел необратимо изменять свои размеры и форму (т. е. пластически деформироваться) под действием механических нагрузок. П. кристаллических тел (или материалов) связана с действием различных микроскопических механизмов пластической деформации, относительная роль каждого из которых определяется внешними условиями: температурой, нагрузкой, скоростью деформирования. Эти механизмы рассмотрены в порядке увеличения числа атомов, участвующих в элементарном акте пластической деформации.

В кристалле, состоящем из атомов разного сорта, в однородном поле напряжений происходит ориентационное упорядочение относительного расположения атомов (рис. 2, а), в результате чего кристалл приобретает некоторую зависящую от степени упорядоченности деформацию. После снятия напряжений упорядоченное состояние может быть невыгодно, но оно некоторое время сохраняется, т.к. возврат в неупорядоченное состояние происходит со скоростью диффузионных перескоков атомов. Если в кристалле создано неоднородное поле напряжений, то атомы примеси большего радиуса и междоузельные атомы (рис. 2, б) стремятся перейти в растянутые области решётки, а меньшего — в сжатые; возникает неоднородное распределение концентраций, стабилизирующее исходную неоднородную деформацию. Максимальная деформация, которая может возникнуть в результате ориентационного упорядочения или концентрационной неоднородности, ограничена составом кристалла. Таким образом, самодиффузионная и диффузионная деформации определяются потоками точечных дефектов (вакансий, междоузельных и примесных атомов). В реальных условиях перемещение дефектов происходит за счёт тепловых флуктуаций, частота которых быстро падает с понижением температуры. Поэтому эти механизмы П. действуют только при достаточно высоких температурах (не ниже 0,5 от абсолютной температуры плавления).

Дислокационная П. Типичный вид пластической деформации кристаллов — скольжение по кристаллографическим плоскостям. Наиболее легко скольжение происходит по плотноупакованным плоскостям вдоль плотноупакованных направлений. Скольжение по системе параллельных плоскостей даёт макроскопический сдвиг, а сочетание сдвигов, соответствующих скольжению по различным системам, составляет основную часть пластической деформации кристаллов. Скольжение происходит неоднородно: сначала оно охватывает некоторую область плоскости скольжения (рис. 4), а затем границы этой области распространяются на всю плоскость. Граница распространения скольжения называется дислокационной линией или дислокацией (См. Дислокации). Поэтому развитие скольжения можно рассматривать как образование и перемещение дислокаций. Скорость деформации пропорциональна плотности (суммарной длине дислокаций в единице объёма) и скорости перемещения дислокаций. В реальных кристаллах в процессе их образования всегда возникают дислокации, которые под действием напряжений способны увеличивать свою протяжённость (размножение дислокаций). Поэтому стадия образования новых дислокаций лишь в исключительных случаях лимитирует скольжение (например, начало деформации в без дислокационных микрокристаллах). В остальных случаях развитие скольжения определяется движением дислокаций.

Поскольку атомы вблизи дислокаций смещены из своих положений равновесия, перевод их в новые положения равновесия, отвечающие сдвигу кристалла по плоскости скольжения на одно межатомное расстояние, требует значительно меньших затрат энергии, чем для атомов в неискажённом кристалле. Энергетический барьер для смещения дислокации тем меньше, чем больше зона искажения в окрестности дислокации. По подвижности дислокации все материалы делятся на 2 группы. В ковалентных кристаллах этот барьер по порядку величины приближается к энергии межатомных связей и может быть преодолен только за счёт тепловой активации (термических флуктуаций). Поэтому подвижность дислокаций становится заметной лишь при достаточно больших температурах, а при умеренных — ковалентные кристаллы непластичны. В металлических и ионных кристаллах барьер для перемещения дислокации в 10 3 —10 4 раз меньше энергии связи и исчезает при напряжениях 10 -3 —10 -4 G (где G — модуль сдвига); при таких напряжениях движение дислокаций не нуждается в тепловой активации и их подвижность слабо зависит от температуры. Сопротивление движению дислокаций в совершенной кристаллической решётке пренебрежимо мало, чем обусловлена высокая П. ионных и металлических кристаллов.

В реальных кристаллах имеются различные дефекты (точечные дефекты, примесные атомы, дислокации, частицы других фаз), и сопротивление скольжению зависит от взаимодействия движущихся дислокаций с этими дефектами. В беспримесных пластических кристаллах междислокационное взаимодействие является основным. Часть сопротивления скольжению, связанная с непосредственным столкновением дислокаций, может быть уменьшена за счёт тепловой активации, однако преобладающая часть обусловлена дальнодействующим взаимодействием дислокаций через собственные поля напряжений, которые они вокруг себя создают, и почти не зависит от температуры. В результате взаимодействия друг с другом дислокации тормозятся и останавливаются, поэтому для протекания деформации с постоянной скоростью необходимо непрерывное рождение новых дислокаций. Это приводит к постоянному увеличению плотности дислокаций в кристалле, которая достигает 10 11 —10 12 см -2 ; соответственно растет их взаимное сопротивление скольжению — происходит деформационное упрочнение, или Наклёп кристалла.

Двойникование. Этот механизм связан с деформацией элементарной ячейки кристалла, приводящей к изменению ориентировки части кристалла относительно действующих сил (см. также Двойникование). Переориентированная часть кристалла претерпевает относительно исходного кристалла двойниковый сдвиг, величина которого определяется симметрией кристаллической решётки. В реальных условиях развитие деформации происходит путём зарождения и распространения в исходном кристалле прослоек двойниковой компоненты. Если двойниковая прослойка заканчивается внутри кристалла, у её концов возникают поля напряжений; взаимодействие двойников приводит к деформационному упрочнению. В некоторых кристаллах, например кальците, двойникование — основной механизм пластической деформации, но обычно двойникование развивается преимущественно при низких температурах, когда скольжение затруднено и создаются условия для локальной концентрации напряжений, необходимой для зарождения двойников.

П. простых аморфных тел связана с диффузионными перегруппировками атомов и молекул. П. ряда веществ связана с передвижением недеформирующихся твёрдых частиц друг относительно друга в некоторой вязкой среде. К такого рода явлениям можно отнести П. глин, сыпучих тел, смоченных водой, и т.п.

Изучение П. представляет большой практический интерес, т.к. делает возможным рациональный выбор технических материалов, к П. которых обычно предъявляется целый комплекс требований как при обработке, так и при эксплуатации их в различных условиях. Изучением различных аспектов П. занимается ряд физико-математических и теоретических дисциплин: физика твёрдого тела (в частности, теория дислокаций) исследует микроскопические механизмы П., механика сплошных сред (теории пластичности и ползучести) рассматривает П. тел, абстрагируясь от их атомно-кристаллической структуры, сопротивление материалов и др.

Лит.: Фридель Ж., Дислокации [кристаллов], пер. с англ., М., 1967; Физика деформационного упрочнения монокристаллов, К., 1972; Набарро Ф. Р., Базинский З. С., Холт Д. Б., Пластичность монокристаллов, пер. с англ., М., 1967; Хоникомб Р., Пластическая деформация металлов, пер. с англ., М., 1972.

Рис. 1. Самодиффузионная пластичность: I — кристалл с вакансиями в первый момент действия напряжений σ (тонкими стрелками показаны направления перемещений атомов); II — деформация вследствие потока вакансий под действием напряжений; III — конечная деформация кристалла.

Рис. 2. Диффузионная пластичность: а — ориентационное упорядочение примесных атомов (чёрные кружки) в однородном поле напряжений; б — перераспределение примесных атомов в неоднородном поле напряжений; I — исходный кристалл; II — кристалл с примесными атомами под действием напряжений; III — конечная деформация кристалла.

Рис. 3. Краудионная пластичность: I — кристалл до вдавливания; II — образование краудионов при вдавливании острия; III — конечное изменение формы. В кристалле образовались междоузельные атомы.

в физиологии, способность клеток и органов животных и растений менять в известных пределах свои свойства в зависимости от условий их функционирования. Так, говорят о П. центральной нервной системы, проявляющейся, например, в её функциональных перестройках, компенсирующих потерю той или иной части вещества мозга, о П. синапсов (См. Синапсы) и т.п.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Полезное

Смотреть что такое "Пластичность" в других словарях:

ПЛАСТИЧНОСТЬ — Изящность форм; образность. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ПЛАСТИЧНОСТЬ Изящность форм; образовательность. Объяснение 25000 иностранных слов, вошедших в употребление в русский язык, с означением их … Словарь иностранных слов русского языка

Пластичность — – свойство огнеупорной формовочной массы изменять форму под действием внешней механической нагрузки без нарушения сплошности и сохранять ее после прекращения действия нагрузки. [ГОСТ Р 52918 2008] Пластичность – свойство твердых тел… … Энциклопедия терминов, определений и пояснений строительных материалов

ПЛАСТИЧНОСТЬ — ПЛАСТИЧНОСТЬ, пластичности, мн. нет, жен. отвлеч. сущ. к пластичный. Пластичность движений. Пластичность художественного изображения. Пластичность раскаленного добела железа. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

пластичность — легкость, плавность, изящество, пластика, изящность, термопластичность, податливость, гармоничность, грация, грациозность, мягкость, гибкость, тонкость, соразмерность Словарь русских синонимов. пластичность 1. см. изящество. 2. см … Словарь синонимов

ПЛАСТИЧНОСТЬ — (от греческого plastikos годный для лепки, податливый), свойство твердого тела сохранять так называемую остаточную деформацию частично (упругопластическое состояние) или полностью (пластическое состояние) после снятия внешнего механического… … Современная энциклопедия

ПЛАСТИЧНОСТЬ — (от греч. plastikos годный для лепки, податливый), свойство материалов тв. тел сохранять часть деформации при снятии нагрузок, к рые её вызвали. Пластич. деформации испытывают детали конструкций и сооружений, заготовки при обработке давлением… … Физическая энциклопедия

Пластичность — (от греческого plastikos годный для лепки, податливый), свойство твердого тела сохранять так называемую остаточную деформацию частично (упругопластическое состояние) или полностью (пластическое состояние) после снятия внешнего механического… … Иллюстрированный энциклопедический словарь

ПЛАСТИЧНОСТЬ — (от греч. plastikos годный для лепки податливый), свойство твердых тел необратимо деформироваться под действием механических нагрузок. Пластичность определяет возможность обработки материалов давлением (ковки, прокатки и др.) … Большой Энциклопедический словарь

Пластичность — (от греч. plastikуs годный для лепки, податливый, пластичный), качество, присущее скульптуре, художественная выразительность объёмной формы, гармоничное соотношение выразительности моделировки с весомостью, внутренней наполненностью,… … Художественная энциклопедия

ПЛАСТИЧНОСТЬ — ПЛАСТИЧНОСТЬ, способность металлов и некоторых других материалов растягиваться без уменьшения прочности. Говорят, что медь обладает тягучестью, поскольку она легко вытягивается в проволоку, а золото и серебро являются еще более тягучими.… … Научно-технический энциклопедический словарь

ПЛАСТИЧНОСТЬ – свойство твердых тел изменять форму и размеры под влиянием внешних нагрузок и сохранять ее, когда нагрузки перестают действовать (после снятия нагрузок).

Этот опыт показывает, что стержень из материала, обладающего свойством пластичности, сопротивляется действию нагрузок, почти не изменяя свою форму, до тех пор, пока нагрузка не превысит некоторый порог, после чего происходит заметное изменение формы, сохраняющееся и после снятия нагрузки. В этом суть пластичности, но не вся – изменение формы (деформирование) зависит только от приложенной нагрузки и не изменяется само по себе с течением времени. Если деформирование при неизменной нагрузке все же происходит, то материал называют не пластическим, а вязкопластическим или вязкоупругим (см. РЕОЛОГИЯ; ПОЛЗУЧЕСТЬ). Конечно, пластилин – это знакомый и наглядный пример пластического материала. Важно то, что свойство пластичности присуще очень многим конструкционным материалам. В первую очередь, это – металлы и сплавы – сталь, железо, медь, алюминий и другие, но представление о пластическом деформировании оказывается очень полезным и для понимания процессов деформирования композиционных материалов, в том числе металлокерамических, углеродных и полимерных.

Пластичность материала как бы противопоставлена упругости: пластическое тело сохраняет приданную ему форму, а упругое – восстанавливает первоначальную. Но пластичность противопоставляется еще и хрупкости: пластическое тело отвечает на увеличение нагрузки заметным изменением формы, а хрупкое (например, стекло) – появлением трещин и разрушением.

Изучение пластичности развивается по двум направлениям: одно из них связано, в первую очередь, с проблемами техники и цель его – ответ на вопрос: если конструкция подвергается воздействию внешних сил известной величины, каково при этом меняется форма – т.е. как она деформируется? Это важно знать конструктору, но есть и еще одно важное обстоятельство: обычно пластичность предшествует разрушению, так что изучение пластических деформаций является основой прогноза прочности и долговечности конструкции.

Второе направление изучения пластичности – это исследование того, что происходит в материале, как говорят, на микроуровне, т.е., что происходит внутри материала, например, при пластическом изгибе балки. Можно, по аналогии с опытом на изгиб стержня, сделать опыт на его растяжение: верхний конец стержня (его обычно называют образцом) закрепляют, а к нижнему прикладывают нагрузку. В этом случае заметить на глаз изменение длины образца трудно, но если измерять деформации специальными приборами, то обнаруживается, что процесс деформирования оказывается похожим на тот, что и в опыте с изгибом: при постепенном возрастании растягивающей нагрузки сначала проявляются очень малые упругие деформации, когда же нагрузка достигает порогового значения, то деформации (теперь уже, в основном, пластические) становятся, во-первых, более существенными, а, во-вторых, необратимыми (т.е. не исчезают после снятия нагрузки).

При этом обнаруживаются интересные явления. Если в опыте на растяжение использовать стальной образец в виде длинной пластинки с полированной (зеркальной) поверхностью, то в процессе пластического деформирования на этой поверхности появляется много близких тонких параллельных прямых линий, ориентированных под углом 45° к оси образца (ось образца – здесь прямая линия, проходящая посредине пластинки, параллельно ее длинным сторонам). Эти линии называются линиями Людерса – Чернова (по фамилиям открывших их ученых).

Микроскопический анализ этих линий показывает, что они появляются в результате того, что в материале пластинки происходит сдвиг, т.е. один тонкий слой как бы сдвигается относительно второго, второй – относительно третьего и т.д., как карты в колоде. Можно сказать, что линии Людерса – Чернова и есть границы сдвигающихся слоев. На рис.1 схематически изображена картина такого деформирования. Эта схема позволяет понять, как такие сдвиги приводят к пластическому удлинению образца и почему после снятия нагрузки пластические деформации не исчезают. Более сложные и точные опыты показали, что пластические деформации металлов и сплавов всегда вызываются сдвигами внутри материала. Кроме того, в пористых материалах происходят деформации, по внешним проявлениям очень сходные с пластическими, но связанные с уменьшением пор. Наиболее знакомым пористым материалом является пенопласт; в технике пористые материалы создает порошковая металлургия, где детали прессуются из металлического порошка.

Рис.1

Можно довольно точно описать картину деформирования, считая, что упругие деформации тела – это результат изменения расстояния между атомами, из которых оно состоит, а пластические деформации – результат сдвигов.

Итак, пластичность – результат сдвигов. А как происходят сами сдвиги? На этот вопрос (и на многие другие) отвечают разделы физики: физика твердого тела, теория дислокаций, физика металлов и т.д.

Таковы два направления, по которым исследуется пластичности, первое называется феноменологическим – оно изучает феномен пластичности так, как его можно наблюдать в опытах с образцами и нагрузками, и не опирается на результаты микроскопических опытов. Феноменологическое изучение пластичности металлов начинается с классического опыта на растяжение. Его результаты представляются в виде графиков (рис. 2), где по вертикальной оси откладывается напряжение s, равное растягивающей силе P, отнесенной к площади сечения образца F, т.е.

а по горизонтали – деформация образца e, равная удлинению dl образца (под действием силы P), отнесенному к его первоначальной длине l.

В самом простом случае опыта на растяжение образца процесс упругого деформирования описывается законом Гука

За пределом упругости пропорциональности нет, но экспериментальную кривую растяжения можно описать, если считать, что модуль упругости E при этом перестает быть постоянной величиной и становится функцией деформации, т.е.

В этих формулах появляется новая функция w = w(e), которая называется функцией пластичности и должна быть найдена из экспериментальных данных.

Видно, что функция w(e) тождественно равна нулю при упругих деформациях и возрастает при пластических. Тогда ясно, что и упругие, и пластические деформации описываются уравнением, обобщающим закон Гука

1. При различных упругопластических деформациях в каждой точке тела существует универсальная функциональная зависимость между среднеквадратичным значением сдвиговых деформаций и аналогичным среднеквадратичным значением сдвиговых напряжений.

2. При упругопластическом деформировании материала изменение объема всегда происходит упруго.

Чтобы правильно понять эти три утверждения, нужно принять во внимание следующее:

Математическая формулировка теории: пусть есть тензор деформации e ij и тензор напряжений sij. Требуется написать формулы (соотношения), которые связывают эти тензоры при малых упругопластических деформациях, подобно тому, как закон Гука связывает их при упругих деформациях.

Учитывая различные закономерности объемного и сдвигового деформирования, можно разделить тензоры на объемную (шаровую) и сдвиговую (девиаторную) части:

Следующий шаг – установление связи сдвиговых напряжений с деформацииями, поскольку пластичность – это сдвиги.

Для девиатора деформаций среднеквадратичный сдвиг в данной точке определяется формулой

Аналогично, среднеквадратичное сдвиговое напряжение определяется:

Это и есть универсальная функциональная зависимость между и , а универсальна она в том смысле, что имеет место в любой точке тела и при любом виде деформаций (изгиб, кручение, их комбинация и т.д.). Функция считается известной, а фактически должна быть найдена из обработки результатов эксперимента. Так как в силу универсальности она одинакова всегда, в частности, в любом опыте, то удобно использовать опыт на кручение трубки, из которого эта функция определяется особенно легко.

В пределах упругости , и зависимость между и превращается в закон Гука. В теории пластичности считается, что в любой точке тела пластические деформации появляются тогда, когда величина достигает некоторого значения es. Это значение находится из эксперимента и называется пределом текучести по деформациям. Таким образом, условие появления первых пластических деформаций запишется в виде

Это условие называется условием пластичности Хубера – Мизеса. Таким образом, можно окончательно записать

Второй постулат записывается в виде: s = KQ

где s – среднее нормальное напряжение (давление) в данной точке, а Q – относительное изменение объема малой частицы, окружающей эту точку. Число K > 0 называется объемным модулем упругости. Таким образом, относительное изменение объема малой частицы пропорционально среднему нормальному напряжению в этой частице.

Теперь можно записать определяющие соотношения теории малых упругопластических деформаций:

Девиаторы напряжений и деформаций связаны пропорциональной зависимостью

Коэффициент пропорциональности за пределами упругости перестает быть постоянным и становится переменной величиной:

Функция становится отличной от нуля при выполнении неравенства, связанного с условиями пластичности Хубера–Мизеса

Шаровые тензоры напряжений деформаций всегда пропорциональны

или, что эквивалентно,

Все это справедливо только при пропорциональном нагружении, которое иногда называют простым, так как сложное нагружение – это непропорциональное нагружение. Оказывается, что в опыте, когда трубка подвергается растяжению силой P и кручению моментом M, деформации будут различными, в зависимости от того, как прикладываются нагрузки: сразу обе, сначала M, потом P, или наоборот. Это обстоятельство приводит к тому, что теорию пластичности при сложном нагружении уже нельзя построить по аналогии с теорией упругости.

Приведенная теория была разработана, экспериментально и теоретически обоснована и внедрена в инженерную практику работами А.Ильюшина, который опирался на работы своих предшественников – в первую очередь, Х.Хенки и Р.фон Мизеса.

тягучесть это технологическое свойство материалов, позволяющее им деформироваться до растяжения; то есть разделение его двух концов без раннего перелома где-то посередине удлиненного участка. По мере удлинения материала его поперечное сечение уменьшается, становясь более тонким.

Поэтому пластичные материалы механически обрабатывают, чтобы придать им нитевидные формы (провода, кабели, иглы и т. Д.). На швейных машинах катушки с витыми нитями представляют собой домашний пример пластичных материалов; в противном случае текстильные волокна никогда бы не приобрели характерных форм.


Какова цель пластичности в материалах? Способность преодолевать большие расстояния или привлекательные дизайны, будь то для разработки инструментов, украшений, игрушек; или для транспортировки некоторой жидкости, такой как электрический ток.

Последнее приложение представляет собой ключевой пример пластичности материалов, особенно металлов. Тонкие медные провода (верхнее изображение) являются хорошими проводниками электричества, и наряду с золотом и платиной доступны во многих электронных устройствах для обеспечения их работы..

Пластичность не была бы возможным свойством, если бы не было молекулярной или атомной перегруппировки для противодействия падающей растягивающей силе. И если бы его не существовало, человек никогда бы не узнал о кабелях, антеннах, мостах, которые исчезли бы, и мир остался бы в темноте без электрического света (помимо других неисчислимых последствий).

  • 1 Что такое пластичность??
  • 2 свойства
  • 3 Примеры пластичных металлов
    • 3.1 Размер зерен и кристаллические структуры металлов
    • 3.2 Влияние температуры на пластичность металлов
    • 4.1 Жевательная резинка и пластилин
    • 4.2 Демонстрация с металлами

    Что такое пластичность?

    В отличие от пластичности пластичность заслуживает более эффективной структурной перестройки.

    Почему? Потому что, когда поверхность, где натяжение больше, твердое тело имеет больше средств для скольжения своих молекул или атомов, образуя листы или пластины; в то время как когда напряжение сосредоточено во все меньшем поперечном сечении, молекулярное скольжение должно быть более эффективным для противодействия этой силе..

    Не все твердые вещества или материалы могут это сделать, и по этой причине они разрушаются при испытаниях на растяжение. Полученные разрывы в среднем горизонтальны, в то время как из пластичных материалов конические или заостренные, признак растяжения.

    Пластичные материалы также могут прорваться через точку напряжения. Это может быть увеличено, если температура повышается, так как тепло способствует и облегчает молекулярные слайды (хотя есть несколько исключений). Именно благодаря этим оползням материал может проявлять пластичность и, следовательно, быть пластичным.

    Однако пластичность материала включает в себя другие переменные, такие как влажность, тепло, примеси и способ применения силы. Например, свежеплавленное стекло является пластичным, принимая нитевидные формы; но при охлаждении становится хрупким и может сломаться при любом механическом воздействии.

    свойства

    Пластичные материалы имеют свои собственные свойства, непосредственно связанные с их молекулярным расположением. В этом смысле жесткий металлический стержень и мокрый глиняный стержень могут быть пластичными, даже если их свойства сильно отличаются.

    Тем не менее, все они имеют что-то общее: пластичное поведение до распада. В чем разница между пластиком и упругим предметом?

    Эластичный объект обратимо деформируется, что происходит первоначально с пластичными материалами; но сила растяжения увеличивается, деформация становится необратимой, и объект становится пластичным.

    С этого момента проволока или нить принимают определенную форму. После непрерывного растяжения его поперечное сечение становится настолько малым, а растягивающее напряжение слишком высоким, так что его молекулярные скольжения больше не могут противодействовать растяжению и в конечном итоге разрушаются..

    Если пластичность материала чрезвычайно высока, как в случае с золотом, с помощью одного грамма можно получить провода длиной до 66 км, толщиной 1 мкм..

    Чем длиннее проволока, полученная из массы, тем меньше ее поперечное сечение (если у вас нет тонны золота, чтобы построить проволоку значительной толщины)..

    Примеры пластичных металлов

    Металлы относятся к пластичным материалам с неисчислимым количеством применений. Триада состоит из металлов: золота, меди и платины. Один золотой, другой розовато-оранжевый, а последний серебряный. В дополнение к этим металлам есть и другие с более низкой пластичностью:

    -Латунь (и другие металлические сплавы)

    -Сталь (хотя на ее пластичность может повлиять, в зависимости от ее углеродного состава и других добавок)

    -Свинец (но в определенных небольших температурных диапазонах)

    Без предварительных экспериментальных знаний трудно определить, какие металлы действительно пластичны. Его пластичность зависит от степени чистоты и от того, как добавки взаимодействуют с металлическим стеклом.

    Взаимодействия между всеми этими микроскопическими и электронными переменными делают пластичность концепцией, которую необходимо глубоко проанализировать с помощью многомерного анализа; и вы найдете отсутствие стандартного правила для всех металлов.

    Именно по этой причине два металла, хотя и с очень похожими характеристиками, могут быть или не быть пластичными.

    Размер зерен и кристаллические структуры металлов

    Зерна представляют собой кристаллические участки, которые не имеют заметных неровностей (зазоров) в своих трехмерных решетках. В идеале они должны быть полностью симметричными, а их структура должна быть четко определена..

    Каждое зерно для одного и того же металла имеет одинаковую кристаллическую структуру; то есть металл с компактной гексагональной структурой, ГПУ, имеет зерна с кристаллами с системой ГПУ. Они расположены таким образом, что перед силой тяги или растяжения они скользят друг над другом, как если бы они были плоскостями, состоящими из мрамора..

    Обычно, когда плоскости, состоящие из мелких зерен, скользят, они должны преодолевать большую силу трения; в то время как если они большие, они могут двигаться более свободно. Фактически, некоторые исследователи стремятся изменить пластичность некоторых сплавов посредством контролируемого роста их кристаллических зерен..

    С другой стороны, что касается кристаллической структуры, то обычно металлы с кристаллической системой ГЦК (гранец по центру, или кубические по центру лица) являются наиболее пластичными. Между тем, металлы с ОЦК кристаллической структурой (кубическое тело, кубические с центром на гранях) или ГПУ, как правило, менее пластичны.

    Например, и медь, и железо кристаллизуются с помощью ГЦК-компоновки и являются более пластичными, чем цинк и кобальт, оба с ГЦП-компоновками.

    Влияние температуры на пластичность металлов

    Высокая температура может уменьшить или увеличить пластичность материалов, и исключения также относятся к металлам. Однако, как правило, при размягчении металлов, тем больше возможностей превратить их в нити, не разрывая их..

    Это связано с тем, что повышение температуры вызывает колебание металлических атомов, что приводит к объединению зерен; то есть несколько мелких зерен соединяются, образуя крупное зерно.

    С более крупными зернами пластичность увеличивается, и молекулярные слайды сталкиваются с меньшим количеством физических препятствий.

    Эксперимент по объяснению пластичности у детей и подростков


    Пластичность становится чрезвычайно сложной концепцией, если начать анализировать под микроскопом. Итак, как вы объясните это детям и подросткам? Таким образом, что это кажется настолько простым, насколько это возможно, на ваших любопытных глазах.

    Жевательная резинка и пластилин

    До сих пор мы говорили о металлах и расплавленном стекле, но есть и другие невероятно пластичные материалы: жевательная резинка и пластилин..

    Чтобы продемонстрировать пластичность жевательной резинки, достаточно схватить две массы и начать их растягивать; один слева, а другой справа. Результатом будет мост подвески жевательной резинки, который не сможет вернуться к своей первоначальной форме, если не будет разминать руками.

    Тем не менее, наступит момент, когда мост в конечном итоге сломается (и пол будет испачкан жвачкой).

    На изображении выше показано, как ребенок, нажимающий на контейнер с отверстиями, заставляет пластилин появляться, как если бы это были волосы. Сухое игровое тесто менее пластично, чем маслянистое; следовательно, эксперимент может состоять просто в создании двух дождевых червей: один с сухим пластилином, а другой увлажненный маслом.

    Ребенок заметит, что маслянистый червь легче вылепить и набрать длину за счет своей толщины; Пока червь высыхает, он может несколько раз сломаться.

    Пластилин также представляет собой идеальный материал, чтобы объяснить разницу между податливостью (лодка, ворота) и пластичностью (волосы, дождевые черви, змеи, саламандры и т. Д.).

    Демонстрация с металлами

    Хотя подростки не будут манипулировать чем-либо, возможность стать свидетелем образования медных проводов в первом ряду может стать для них привлекательным и интересным опытом. Демонстрация пластичности будет еще более полной, если мы перейдем к другим металлам и, таким образом, сможем сравнить их пластичность..

    Далее все провода должны подвергаться постоянному растяжению до их точки разрыва. При этом подросток будет визуально подтверждать, как пластичность влияет на сопротивление проволоки разрыву..

    ПЛАСТИ́ЧНОСТЬ (от греч. πλαστι ϰός – год­ный для леп­ной ра­бо­ты, по­дат­ли­вый, пла­стич­ный), свой­ст­во твёр­дых тел под дей­ст­ви­ем оп­ре­де­лён­ных ме­ха­нич. на­гру­зок не­об­ра­ти­мо из­ме­нять свои раз­ме­ры и фор­му (пла­сти­че­ски де­фор­ми­ро­вать­ся) без раз­ру­ше­ния. Пла­стич. де­фор­мации вы­зы­ва­ют­ся ме­ха­нич. на­груз­кой, ве­ли­чи­на ко­то­рой пре­вы­ша­ет т. н. пре­дел уп­ру­го­сти, и со­хра­ня­ют­ся в те­ле по­сле сня­тия на­груз­ки. П. – од­на из важ­ней­ших ха­рак­те­ри­стик ме­ха­нич. свойств всех де­фор­ми­руе­мых твёр­дых тел. От­сут­ст­вие П. или низ­кая П. на­зы­ва­ет­ся хруп­ко­стью .

    Читайте также: