Что такое неявное задание функции кратко

Обновлено: 05.07.2024

Функция называется явной, если она задана формулой, правая часть которой не содержит зависимой переменной.

Такая функция имеет вид: , т.е. переменная y выражается через х.

Определение.

Неявной функцией y независимой переменной х называется функция, значения которой находятся из уравнения, связывающего х и y и, не разрешенного относительно y.

Неявная функция имеет вид: .

Замечание.

Основные характеристики функции

Изучить функцию – это значит охарактеризовать ход ее изменения (ее поведение) при изменении независимой переменной. Характеризуют функцию по следующим свойствам:

1) четность или нечетность функции;

2) периодичность функции;

4) возрастание или убывание функции (монотонность функции);

5) ограниченность функции.

Рассмотрим эти характеристики.

Четные и нечетные функции

Определение.

Функция называется четной, если она не изменяет своего значения при изменении знака аргумента, т.е. .

Например, ; ; – четные функции.

График четной функции расположен симметрично относительно оси (рис.1.4).

Определение.

Функция называется нечетной, если при изменении знака аргумента знак функции меняется на противоположный, а числовое значение её сохраняется, т.е. .

Например, ; – нечетные функции.

График нечетной функции расположен симметрично относительно начала координат (рис.1.5).

Функция может быть ни четной. ни нечетной, и в этом случае её называют функцией общего вида.

Графики таких функций не симметричны ни относительно оси , ни относительно начала координат.

Периодические функции

Определение.

Функция называется периодической, если существует такое положительное число , что в области определения функции.

Наименьшее из положительных чисел Т, удовлетворяющих условию определения, называется периодом функции .

Например, функции , являются периодическими с периодом .

Нули функции

Определение.

Значение аргумента, при котором функция обращается в нуль, , называется нулем функции.

Например, нулями функции являются значения и .

Монотонные функции

Определение.

Функция называется возрастающей (убывающей) в некоторой области изменения аргумента, если большему значению аргумента соответствует большее (меньшее) значение функции (рис.1.6, 1.7).

Определение.

Если функция в некоторой области изменения аргумента является только возрастающей или только убывающей, то функция называется монотонной.

Ограниченные функции

Определение.

Функция называется ограниченной на множестве Х, если существует такое число , что для всех выполняется неравенство .

Например, функции и – ограниченные функции, т.к. и для .

График ограниченной функции лежит между прямыми и (рис.1.8).

УПРАЖНЕНИЯ

1. Найти область определения следующих функций:

2. Найти множество значений функции:

3. Найти , , , , если .

4. Пусть и . Найти и .

5. Установить чётность или нечётность функции:

1) ; Ответ: чётная;

2) ; Ответ: чётная;

3) ; Ответ: общего вида;

4) ; Ответ: нечётная.

6. Найти основные периоды функций:

7. Введя промежуточные аргументы, представить данную функцию, как суперпозицию других функций:

Явная функция у (х) задается формулой вида
y=f(x), т. е. значение у вычисляется просто
подстановкой х. Например, y=x^2+2x+1.

Неявная функция у (х) задается уравнением вида
f(x,y)=0, т. е. для вычисления ее значения надо
решать уравнение. Например, уравнение
x^2+y^2-1=0 задает ДВЕ неявные функции:
y=koren(1-x^2) и y=-koren(1-x^2).

Это же уравнение можно рассматривать и как
задание неявной функции х (у).

А в учебнике нет?
y=2x - явная функция y от x и неявная x от y
В последнем случае функция легко преобразуется в явную x=(1/2)y, но такое преобразование возможно не всегда, например, не проходит в случае общего вида алгебраического уравнения пятой и более высоких степеней.

Способы задания функций

Существуют следующие способы задания функции y = f ( x ) :

  1. Явный аналитический способ по формуле вида y = f ( x ) .
  2. Интервальный.
  3. Параметрический: x = x ( t ) , y = y ( t ) .
  4. Неявный, как решение уравнения F ( x, y ) = 0 .
  5. В виде ряда, составленного из известных функций.
  6. Табличный.
  7. Графический.

Явный аналитический способ задания функции

При явном способе, значение функции определяется по формуле, представляющем собой уравнение y = f ( x ) . В левой части этого уравнения стоит зависимая переменная y , а в правой – выражение, составленное из независимой переменной x , постоянных, известных функций и операций сложения, вычитания, умножения и деления. Известными функциями являются элементарные функции и специальные функции, значения которых можно вычислить, используя средства вычислительной техники.

Вот несколько примеров явного задания функции с независимой переменной x и зависимой переменной y :
;
;
.

Интервальный способ задания функции

При интервальном способе задания функции, область определения разбивается на несколько интервалов, и функция задается отдельно для каждого интервала.

Вот несколько примеров интервального способа задания функции:


Параметрический способ задания функции

При параметрическом способе, вводится новая переменная, которую называют параметром. Далее задают значения x и y как функции от параметра, используя явный способ задания:
(1)

Вот примеры параметрического способа задания функции, используя параметр t :


Также этот способ применяется для упрощения расчетов. Например, зависимость координат точек эллипса с полуосями a и b можно представить так:
.
В параметрическом виде этой зависимости можно придать более простую форму:
.

Уравнения (1) – это не единственный способ параметрического задания функции. Можно вводить не один, а несколько параметров, связав их дополнительными уравнениями. Например можно ввести два параметра и . Тогда задание функции будет выглядеть так:

Здесь появляется дополнительное уравнение , связывающее параметры. Если число параметров равно n , то должно быть n – 1 дополнительных уравнений.

Неявный способ задания функции

При неявном способе, значения функции определяется из решения уравнения .

Например, уравнение эллипса имеет вид:
(3) .
Это простое уравнение. Если мы рассматриваем только верхнюю часть эллипса, , то можно выразить переменную y как функцию от x явным способом:
(4) .
Но даже если можно свести (3) к явному способу задания функции (4), последней формулой не всегда удобно пользоваться. Например, чтобы найти производную , удобно дифференцировать уравнение (3), а не (4):
;
.

Задание функции рядом

Исключительно важным способом задания функции является ее представление в виде ряда, составленного из известных функций. Этот способ позволяет исследовать функцию математическими методами и вычислять ее значения для прикладных задач.

Самым распространенным представлением является задание функции с помощью степенного ряда. При этом используется ряд функций:
.
Также применяется ряд и с отрицательными степенями:
.
Например, функция синус имеет следующее разложение:
(5) .
Подобные разложения широко применяются в вычислительной технике, поскольку они позволяют свести вычисления к арифметическим операциям.

В качестве иллюстрации, вычислим значение синуса от 30°, используя разложение (5).
Переводим градусы в радианы:
.
Подставляем в (5):



.

В математике, на ряду со степенными рядами, широко применяются разложения в тригонометрические ряды по функциям и , а также по другим специальным функциям. С помощью рядов можно производить приближенные вычисления интегралов, уравнений (дифференциальных, интегральных, в частных производных) и исследовать их решения.

Табличный способ задания функции

При табличном способе задания функции мы имеем таблицу, которая содержит значения независимой переменной x и соответствующие им значения зависимой переменной y . Независимая и зависимая переменные могут иметь разные обозначения, но мы здесь используем x и y . Чтобы определить значение функции при заданном значении x , мы по таблице, находим значение x , наиболее близкое к нашему. После этого определяем соответствующее значение зависимой переменной y .

Для более точного определения значения функции, мы считаем, что функция между двумя соседними значениями x линейна, то есть имеет следующий вид:
.
Здесь – значения функции, найденные из таблицы, при соответствующих им значениях аргументов .
Рассмотрим пример. Пусть нам нужно найти значение функции при . Из таблицы находим:
.
Тогда

.
Точное значение:
.
Из этого примера видно, что применение линейной аппроксимации привело к повышению точности в определении значения функции.

Табличный способ применяется в прикладных науках. До развития вычислительной техники, он широко применялся в инженерных и других расчетах. Сейчас табличный способ применяется в статистике и экспериментальных науках для сбора и анализа экспериментальных данных.

Графический способ задания функции

При графическом способе, значение функции определяется из графика, по оси абсцисс которого откладываются значения независимой переменной, а по оси ординат – зависимой.

Графический способ дает наглядное представление о поведении функции. Результаты исследования функции часто иллюстрируют ее графиком. Из графика можно определить приближенное значение функции. Это позволяет использовать графический способ в прикладных и инженерных расчетах.

Функция %%y = f(x), x \in X%% задана явным аналитическим способом, если дана формула, указывающая последовательность математических действий, которые надо выполнить с аргументом %%x%%, чтобы получить значение %%f(x)%% этой функции.

Пример

  • %% y = 2 x^2 + 3x + 5, x \in \mathbb%%;
  • %% y = \frac, x \neq 5%%;
  • %% y = \sqrt, x \geq 0%%.

Так, например, в физике при равноускоренном прямолинейном движении скорость тела определяется формулой %%v = v_0 + a t%%, а формула для перемещения %%s%% тела при равномерно ускоренном движении на промежутке времени от %%0%% до %%t%% записывается в виде: %% s = s_0 + v_0 t + \frac %%.

Кусочно-заданные функции

Иногда рассматриваемая функция может быть задана несколькими формулами, действующими на различных участках области ее определения, в которой изменяется аргумент функции. Например: $$ y = \begin x ^ 2,~ если~x 0%%, т.е. %%D = (-1, 1)%%.

Преимущества явного аналитического задания функции

Отметим, что явный аналитический способ задания функции достаточно компактен (формула, как правило, занимает немного места), легко воспроизводим (формулу нетрудно записать) и наиболее приспособлен к выполнению над функциями математических действий и преобразований.

Некоторые из этих действий — алгебраические (сложение, умножение и др.) — хорошо известны из школьного курса математики, другие (дифференцирование, интегрирование) будем изучать в дальнейшем. Однако этот способ не всегда нагляден, так как не всегда четок характер зависимости функции от аргумента, а для нахождения значений функции (если они необходимы) требуются иногда громоздкие вычисления.

Неявное задание функции

Функция %%y = f(x)%% задана неявным аналитическим способом, если дано соотношение $$F(x,y) = 0, ~~~~~~~~~~(1)$$ связывающее значения функции %%y%% и аргумента %%x%%. Если задавать значения аргумента, то для нахождения значения %%y%%, соответствующего конкретному значению %%x%%, необходимо решить уравнение %%(1)%% относительно %%y%% при этом конкретном значении %%x%%.

При заданном значении %%x%% уравнение %%(1)%% может не иметь решения или иметь более одного решения. В первом случае заданное значение %%x%% не принадлежит области определения неявно заданной функции, а во втором случае задает многозначную функцию, имеющую при данном значении аргумента более одного значения.

Отметим, что если уравнение %%(1)%% удается явно разрешить относительно %%y = f(x)%%, то получаем ту же функцию, но уже заданную явным аналитическим способом. Так, уравнение %%x + y^5 - 1 = 0%%

и равенство %%y = \sqrt[5]%% определяют одну и ту же функцию.

Параметрическое задание функции

Когда зависимость %%y%% от %%x%% не задана непосредственно, а вместо этого даны зависимости обоих переменных %%x%% и %%y%% от некоторой третьей вспомогательной переменной %%t%% в виде

$$ \begin x = \varphi(t),\\ y = \psi(t), \end ~~~t \in T \subseteq \mathbb, ~~~~~~~~~~(2) $$то говорят о параметрическом способе задания функции;

тогда вспомогательную переменную %%t%% называют параметром.

Если из уравнений %%(2)%% удается исключить параметр %%t%%, то приходят к функции, заданной явной или неявной аналитической зависимостью %%y%% от %%x%%. Например, из соотношений $$ \begin x = 2 t + 5, \\ y = 4 t + 12, \end, ~~~t \in \mathbb, $$ исключением параметра %%t%% получим зависимость %%y = 2 x + 2%%, которая задает в плоскости %%xOy%% прямую.

Графический способ

Пример графического задания функции

Табличный способ

Отметим табличный способ задания функции, когда некоторые значения аргумента и соответствующие им значения функции в определенном порядке размещаются в таблице. Так построены известные таблицы тригонометрических функций, таблицы логарифмов и т.п. В виде таблицы обычно представляют зависимость между величинами, измеряемыми при экспериментальных исследованиях, наблюдениях, испытаниях.

Недостаток этого способа состоит в невозможности непосредственного определения значений функции для значений аргумента, не входящих в таблицу. Если есть уверенность, что непредставленные в таблице значения аргумента принадлежат области определения рассматриваемой функции, то соответствующие им значения функции могут быть вычислены приближенно при помощи интерполяции и экстраполяции.

Пример

Алгоритмический и словесный способы задания функций

Функцию можно задать алгоритмическим (или программным) способом, который широко используют при вычислениях на ЭВМ.

Наконец, можно отметить описательный (или словесный) способ задания функции, когда правило соответствия значений функции значениям аргумента выражено словами.

Читайте также: