Что такое мозговой метаболизм кратко

Обновлено: 08.07.2024

Что такое метаболизм?

Эволюционно организм человека стремится поддерживать идеальный с точки зрения выживания вес и процент жира, которые задает генетика. Это защищает человека от любых крайностей: как от истощения, так и от ожирения. И то, и другое снижает шансы передать свои гены потомству в дикой природе.

Если человек ел непривычно много для себя в течение одного или нескольких дней, его аппетит сам по себе снижается в последующие дни. Человек будет есть меньше, сам того не замечая. Заодно он будет более подвижным и активным. И даже если он все же наберет лишний вес за отпуск или праздники, он быстро от него избавится, как только вернется к обычной жизни, ничего специального для похудения не делая. Гипоталамус отрегулирует аппетит и уровень активности так, чтобы вернуть систему в равновесие.

И обратная ситуация. Тот же человек вдруг стал есть непривычно мало для себя: сел на диету, перестал есть из-за стресса, занятости. В ответ на это гипоталамус в следующие дни увеличивает аппетит, чтобы наверстать среднюю калорийность. Заодно он снижает активность — человек становится более вялым, сонным, двигается меньше и при первой возможности хочет посидеть или полежать.

Выходит, что человек со здоровым обменом веществ может иметь примерно один и тот же вес долгие годы, ничего специального не делая.

Как гипоталамус делает это?

Аппетитом мозг управляет с помощью самых разных механизмов.

  • Снижают аппетит лептин, глюкагон, обестатин, нейропептиды S и FF, холецистокинин, нейротензин, энтеростатин, тиреолиберин и другие гормоны.
  • Аминокислоты и глюкоза в крови — это признак того, что человек поел.
  • Заполненный желудок: в нем есть датчики на механическое растяжение. Они сообщают гипоталамусу о еде внутри.
  • Сокращение желчного пузыря и выработка им желчи после еды.
  • Наполнение кишечника.

Усиливают голод и толкают человека на поиски еды и тягу к определенным продуктам, особенно калорийным, следующие химические вещества: грелин, нейропептид Y, орексин, галанин, ноницептин, мотилин, В-эндорфины и др. А так же низкий уровень глюкозы и аминокислот, пустой желудок.

Человек начинает получать большее наслаждение от еды — от ее вкуса, запаха. Еда становится источником удовольствия. За это отвечают дофамин и эндорфины, которые выбрасываются каждый раз, когда человек поел.

Это отличный механизм защиты от голодания и истощения: если бы мы были равнодушны к еде и не замотивированы ее искать, не могли бы получать от нее почти наркотическое удовольствие, дела с выживанием были бы плохи. Хотя, сегодня это играет против нас: еду больше не нужно искать. Самая вкусная, жирная и сладкая еда — в избытке на расстоянии вытянутой руки. Из-за этого дофаминовые и эндорфиновые рецепторы бомбардируются чаще, сильнее и больше, чем заложено природой. Это сбивает все внутренние настройки организма в плане пищевого поведения.

Быстрый и медленный метаболизм

1

Описанная выше ситуация с обменом веществ — идеальная. В жизни же иногда все как-будто наоборот: чем больше человек ест и меньше двигается, тем меньше хочется двигаться и больше есть. А кто-то — худой, очень мало ест и больше есть не может.

Чтобы понять про быстрый и медленный обмен веществ, нужно знать вот что. Нервная система человека состоит из двух отделов. Первый — центральная нервная система. Она состоит из головного и спинного мозга. Второй — вегетативная нервная система. Это главный регулятор метаболизма. Она контролирует работу желез, органов, пищеварение, управляет питательными веществами, поступившими с едой, и делает другие важные для жизни вещи.

Вегетативная нервная система имеет две ветви: симпатическую и парасимпатическую.

В зависимости от ситуации — стресс или восстановление — у любого человека включается либо та, либо другая ветвь. Но у некоторых людей каждая из них может доминировать большую часть времени. Это и определяет скорость метаболизма.

Важно понимать: говоря про быстрый и медленный метаболизм, мы не говорим о заболеваниях обмена веществ, которые нужно лечить у врача. Все остальное — пределы нормы здорового человека, но с отклонениями в одну или другую сторону.

Быстрый обмен веществ

быстрый метаболизм

Люди с доминирующей симпатической нервной системой, — счастливчики для тех, кто всю жизнь пытается худеть. Они стройные и не имеют проблем с лишним весом.

Это обычно живые, активные, эмоциональные люди, с быстрыми, резкими движениями. Пульс их более частый, а давление — повышенное. У них более активно работает щитовидная желез. Они всегда немного нервные, возбужденные по жизни и тратят много энергии в течение дня. Они не толстеют, но и с трудом набирают мышцы.

Медленный обмен веществ

медленный обмен веществ

Люди с доминирующей парасимпатической нервной системой набирают вес легко, а худеют — с трудом. Это малоподвижные, спокойные, расслабленные, а в крайних проявлениях — апатичные, вялые люди. Они быстро усваивают питательные вещества, что на фоне очень хорошего аппетита создает проблемы с лишним весом.

В ответ на лишнюю еду гипоталамус может не снижать аппетит в следующие дни, как могло быть в идеальной ситуации. Одна из проблем обмена веществ — плохая чувствительность мозга к лептину.

Лептин — гормон, который вырабатывает жировая ткань. С его помощью гипоталамус видит количество запасенной энергии (жира) в организме. Много жира = много лептина. Гипоталамус снижает аппетит и повышает активность, ведь бояться голодной смерти не нужно. Мало жира = мало лептина, значит энергии мало, аппетит нужно увеличить, а желание двигаться — снизить.

Но иногда гипоталамус не видит лептин, даже если и его, и жира много. А это означает постоянный голод и снижение активности. Человек начинает есть со временем все больше и больше.

Иногда плохая чувствительность к лептину — приобретенная, из-за плохого образа жизни и лишнего веса. А иногда — генетическая, когда мутация в самой структуре гормона или в рецепторах гипоталамуса мешает правильно принимать сигнал.

Если человек с медленным обменом веществ решит вдруг сесть на голодную диету, его ждут большие мучения: аппетит становится просто зверским. Начинает тянуть на все самое жирное, сладкое или соленое. Активность падает очень сильно и переводит его в режим амебы с постоянными мыслями о еде, плохим настроением, отсутствием сил и либидо. Работа щитовидной железы еще больше ухудшается.

К этому добавляется низкая чувствительность мышечных клеток к инсулину, что делает отложение жира более легким.

С эволюционной точки зрения выживали именно те, кто мог запасать больше жира, чтобы пережить голод, долгие зимы и передать свои гены потомству. Теперь это уже больше не эволюционное преимущество, но многие из нас носят эти гены и всю жизнь борются с лишним весом.

Изменение скорости метаболизма

изменение скорости метаболизма

До этого речь шла о вещах отчасти генетических. Но человек — система не замкнутая. На нас очень влияет окружающая среда. Еще сто лет назад метаболизм был менее зависим от нее. Но сегодня у нас изобилие еды — жирной, сладкой, калорийной, всегда доступной. Мы двигаемся меньше — у нас есть машины, метро, самолеты, а всякая техника упрощает жизнь.

Малоподвижный образ жизни, плохое питание, стрессы, недостаток сна – все это сбивает систему саморегуляции веса, нарушает пищевое поведение. Гипоталамус перестает правильно воспринимать сигналы организма, мышцы теряют чувствительность к инсулину. В худшем сценарии развивается метаболический синдром — диабет 2 типа, гипертония и атеросклероз, которые часто идут вместе и усиливают друг друга.

И если с генетикой бороться трудно, с образом жизни можно сделать многое. Даже самый безнадежный с точки зрения генетики человек способен на большие перемены.

1

Вы похудеете, восстановите чувствительность клеток к инсулину с помощью диеты и силовых тренировок, и обмен веществ придет в норму, насколько это возможно. Вы научитесь есть, когда голодны и не есть, когда сыты, перестанете бомбардировать мозг эндорфинами от калорийной еды, улучшите чувствительность к лептину.

Обращаем ваше внимание, что вся информация, размещённая на сайте Prowellness предоставлена исключительно в ознакомительных целях и не является персональной программой, прямой рекомендацией к действию или врачебными советами. Не используйте данные материалы для диагностики, лечения или проведения любых медицинских манипуляций. Перед применением любой методики или употреблением любого продукта проконсультируйтесь с врачом. Данный сайт не является специализированным медицинским порталом и не заменяет профессиональной консультации специалиста. Владелец Сайта не несет никакой ответственности ни перед какой стороной, понесший косвенный или прямой ущерб в результате неправильного использования материалов, размещенных на данном ресурсе.

В организме человека происходят разные процессы, влияющие на его жизнедеятельность. Одним из них является мозговой метаболизм. Что это и как он работает?

Для реализации своей функции мозг нуждается в кислороде и питательных веществах. Их поступление и оборот обеспечивает мозговой метаболизм. Что это такое и как он работает?

Что такое мозговой метаболизм?

Это процессы в мозге, которые протекают под воздействием разного рода факторов. Чем лучше метаболизм, тем более здоровым ощущает себя человек.

Он проходит ряд изменений в определенные периоды, поэтому за его состоянием следует особо тщательно следить. Когда это происходит?

  1. Раннее детство. Метаболизм мозга может нарушаться у малышей, которые появились на свет путем кесарева сечения. Также не редки случаи родовых травм.
  2. Первый поход в школу. От ребенка начинают требовать усваивать и анализировать информацию в больших объемах. Перегрузка информацией может отрицательно сказаться на мозговом кровообращении и умственной активности.
  3. Зрелый возраст. Ближе к пенсионному возрасту у человека начинают возникать проблемы со здоровьем. На процесс мозгового кровообращения могут повлиять следующие заболевания: атеросклероз, остеохондроз, опухолевые процессы, тромбы в области артерий, ранее перенесенные травмы и тяжелые заболевания.
  4. Период старости. Процессы в организме протекают вяло. Это может стать причиной мозговой недостаточности.

Почему нарушается кровоток мозга?

Почему нарушается кровоток мозга?


Хронобиологическая защита клеток мозга


Neurovision

Инновационная программа для активной работы мозга и поддержания острого зрения: высокие дозировки и максимальная усвояемость активных веществ.


Гинкго билоба и байкальский шлемник

Растительный комплекс нормализует мозговое кровообращение, способствует укреплению памяти и активизации мозговой деятельности.


Витамин D3

  • пожилой возраст (после 50 лет);
  • наследственная предрасположенность;
  • ранее перенесенные черепно-мозговые травмы;
  • избыточная масса тела;
  • высокие показатели холестерина;
  • отсутствие физической активности;
  • излишняя истеричность, эмоциональность;
  • нарушения и заболевания эндокринной системы;
  • хронически повышенное кровяное давление;
  • пороки сердца.

Симптомы нарушения мозгового метаболизма

На ухудшение кровотока в области мозга могут указывать следующие симптомы:

  1. Частые и резкие головные боли.
  2. Приступы головокружения.
  3. Покалывания в конечностях без видимой причины.
  4. Полная или частичная парализация тела.
  5. Нарушения слуха, зрения.
  6. Трудности с произнесением слов.
  7. Затруднительное чтение и письмо.
  8. Трудности в понимании речи больного.
  9. Припадки, которые могут напоминать эпилептические.
  10. Нарушение интеллектуальных, когнитивных способностей.
  11. Провалы в памяти.
  12. Невозможность сосредоточиться на цели.
  13. Рассеянность, забывчивость.

Есть специальные лекарственные препараты, помогающие наладить метаболизм мозга. Они продаются в аптеках, но употреблять их можно только по назначению лечащего врача. Самостоятельно больной может предпринять следующее:

  1. Полностью отказаться от употребления спиртных напитков.
  2. Пить чай на основе ягод боярышника.
  3. Каждое утро выпивать столовую ложку смеси лимонного сока, натурального меда и тертого чеснока.
  4. Есть свежие ягоды шелковицы или пить отвар из них.
  5. Приготовить витаминную смесь из перетертых ягод клюквы, хрена и меда. Принимать ее утром и вечером.
  6. Стараться придерживаться принципов правильного питания: есть меньше жирного, сладкого, ограничить употребление соли.
  7. Посетить массажиста для осуществления процедур на шейном отделе позвоночника.
  8. Выполнять гимнастику, уделяя особое внимание шее.
  9. Выбрать для сна удобную подушку, стараться спать преимущественно на боку.
  10. Регулярно выполнять лечебную физкультуру (посильные упражнения).

От мозгового метаболизма во многом зависит самочувствие человека, его работоспособность и образ жизни. За этим процессом нужно следить и вовремя корректировать.

Отказ от ответсвенности

Обращаем ваше внимание, что вся информация, размещённая на сайте Prowellness предоставлена исключительно в ознакомительных целях и не является персональной программой, прямой рекомендацией к действию или врачебными советами. Не используйте данные материалы для диагностики, лечения или проведения любых медицинских манипуляций. Перед применением любой методики или употреблением любого продукта проконсультируйтесь с врачом. Данный сайт не является специализированным медицинским порталом и не заменяет профессиональной консультации специалиста. Владелец Сайта не несет никакой ответственности ни перед какой стороной, понесший косвенный или прямой ущерб в результате неправильного использования материалов, размещенных на данном ресурсе.


Для своего адекватного функционирования мозг требует энергии. Основное питательное вещество для мозга - глюкоза, которая в процессе оксиления до диоксида углерода ( СО2) и воды дает энергию. Этот процесс включает в себя образование аденозин трифосфата ( ATP) из аденозин дифосфата ( ADP). Кроме того, мозг может использовать для получения энергии w-окисление (омега-окисление) жирных кислот.

Глюкоза накапливается в организме в форме полисахарида гликогена. Гликоген в мозге накапливается главным образом в астроцитах и , в дальнейшем, выделяет энергию для нейронов посредством пирувата и лактата. Гликоген включается в процесс энергетического обмена достаточно быстро , что совпадает с синаптической активностью. Глюкоза поступает в клетки с помощью транспортеров , а утилизацию глюкозы происходит в первую очередь в астроцитах и в меньшей степени в нейронах. Некоторые нейротрансмиттеры, например, такие как моноамины, являются гликогенолитиками и выделяют энергию для астроцитов. Метаболизм глюкозы в тканях мозга связан с функциональной активностью нейронов и глии. Данная особенность используется в функциональной нейровизуализации ( РЕТ) и функциональной магнитно - резонасной томографии ( fMRI).

Окисление одной молекулы глюкозы в общем дает 36-38 молекул АТР. Принято считать, что АТР играет центральную роль в клеточном метаболизме, как "энергетическая валюта" клетки, обеспечивающая энергией большинство биохимических реакций клетки. АТP - трифосфонуклеотид, состоящий из азотного основания ( аденин) , пятиуглеродного сахара рибозы и прикрепленной фосфатной группы. Энергия АТР используется для процессов биосинтеза, транспорта молекул, поддержания разности потенциалов между внутренней и внешней поверхностями клеточной мембраны, . В первом случае это необходимо для движения зарядов через мебрану клетки и внутриклеточного транспорта молекул. Биосинтез необходим для образования простых и сложных ( комплексных) молекул , необходимых для реализации функций клеток , а также для накопления такой молекулы как гликоген. Связанная молекула представляет собой 3,5- монофосфат ( циклическая АМР) , который имеет одну фосфатную молекулу и формирует кольцевую структуру , связывая сахар и фосфат молекулы. Они формируются из АТР в результате реакции , которая утилизируется аденилциклазой , как катализатором. Они активируются адреналином и как известно включены через посредника фосфорилазы в активации гликогена. В дальнейшем, циклическая АМР становится посредником во многих клеточных реакциях , включая тех, которые стимулируются гормонами или нейротрансмиттерами.

Химические реакции тела облегчаются энзимами , причем одни активируют себясами посредством ко - энзимов , которые перемещают ( трансфер) атомы или группы атомов из одной молекулы в другие. Количество активных энзимов представляет обычный ингредиент, который обусловливает уровень биохимических реакций в соответствующих субстратов , активируя или подавляя энзимы , регулирующие метаболитическую активность клетки. Один из методов ингибирования ряда метаболических реакций представляет собой обратную связь от конечных метаболитов ( feedback ingibition).

В результате катаболизма глюкозы и гликогена образуется ATP посредством хорошо - известного цикла трикарбоксиловой кислоты ( Krebs). Глюкоза первоначально фосфорилируется гексокиназой до глюкозо - 6 - фосфата. Конвертация происходит с помощью промежуточных этапов гликолиза , до молочной кислоты. Для этого необходимо участие двух молекул ATP ( глюкоза + 2 ADP + 2 фосфата - 2 молочной кислоты + 2 АТР + 2 воды. Молочная кислота конвертируется до ацетил - коэнзима А посредством пировиноградной кислоты и образуется с помощью оксидации триуглекислой кислоты до цитрата и наконец, оксалоацетата , который собственно инкорпорируется с ацетил коэнзимом А до цитрата. Атомы водорода соединяются с кислородом до образования воды и далее генерируются молекулы АТР. Первоначально продукты пищеварения поддвергаются катаболизму и также утилизируются триуглекксиловой кислоты ( цикл ) , что дает 2/3 всей энергии , реализованной в данном цикле.


Обзор

Автор
Редакторы


Происхождение подхода

С середины ХХ века известно, что головной мозг потребляет значительную часть энергоресурсов всего организма: четверть всей глюкозы и ⅕ всего кислорода в случае высшего примата [1–5]. Это вдохновило Уильяма Леви и Роберта Бакстера из Массачусетского технологического института (США) на проведение теоретического анализа энергетической эффективности кодирования информации в биологических нейронных сетях (рис. 1) [6]. В основе исследования лежит следующая гипотеза. Поскольку энергопотребление мозга велико, ему выгодно иметь такие нейроны, которые работают наиболее эффективно — передают только полезную информацию и затрачивают при этом минимум энергии.

Два нейрона

Что такое интернейроны?

Нейроны центральной нервной системы разделяются на активирующие (образуют активирующие синапсы) и тормозящие (образуют тормозящие синапсы). Последние в значительной степени представлены интернейронами, или промежуточными нейронами. В коре больших полушарий и гиппокампе они ответственны за формирование гамма-ритмов мозга [15], которые обеспечивают слаженную, синхронную работу других нейронов. Это крайне важно для моторных функций, восприятия сенсорной информации, формирования памяти [9], [11].

За последнее время этот подход нашел множество подтверждений [10], [22], [24–26]. Он позволил по-новому взглянуть на устройство мозга на самых разных уровнях организации — от молекулярно-биофизического [20], [26] до органного [23]. Он помогает понять, каковы компромиссы между выполняемой функцией нейрона и ее энергетической ценой и в какой степени они выражены.

Как же работает этот подход?

Положим, у нас есть модель нейрона, описывающая его электрофизиологические свойства: потенциал действия (ПД) и постсинаптические потенциалы (ПСП) (об этих терминах — ниже). Мы хотим понять, эффективно ли он работает, не тратит ли неоправданно много энергии. Для этого нужно вычислить значения параметров модели (например, плотность каналов в мембране, скорость их открывания и закрывания), при которых: (а) достигается максимум отношения полезной информации к энергозатратам и в то же время (б) сохраняются реалистичные характеристики передаваемых сигналов [6], [19].

Поиск оптимума

Потенциал действия

Разные типы нейронов генерируют различные сигналы

Большое разнообразие сигналов обусловлено огромным количеством комбинаций разных типов ионных каналов, синаптических контактов, а также морфологией нейронов [28], [29]. Поскольку в основе сигнальных процессов нейрона лежат ионные токи, стоит ожидать, что разные ПД требуют различных энергозатрат [20], [27], [30].

Что такое потенциал действия?

  1. Мембрана и ионы. Плазматическая мембрана нейрона поддерживает неравномерное распределение веществ между клеткой и внеклеточной средой (рис. 3б) [31–33]. В числе этих веществ есть и маленькие ионы, из которых для описания ПД важны К + и Nа + .
    Ионов Na + внутри клетки мало, снаружи — много. Из-за этого они постоянно стремятся попасть в клетку. Напротив, ионов К + много внутри клетки, и они норовят из нее выйти. Самостоятельно ионы этого сделать не могут, потому что мембрана для них непроницаема. Для прохождения ионов через мембрану необходимо открывание специальных белков — ионных каналов мембраны.

Нейрон, ионные каналы и потенциал действия

Рисунок 3. Нейрон, ионные каналы и потенциал действия. а — Реконструкция клетки-канделябра коры головного мозга крысы. Синим окрашены дендриты и тело нейрона (синее пятно в центре), красным — аксон (у многих типов нейронов аксон разветвлен намного больше, чем дендриты [8], [11], [35]). Зеленые и малиновые стрелки указывают направление потока информации: дендриты и тело нейрона принимают ее, аксон — отправляет ее к другим нейронам. б — Мембрана нейрона, как и любой другой клетки, содержит ионные каналы. Зеленые кружки — ионы Na + , синие — ионы К + . в — Изменение мембранного потенциала при генерации потенциала действия (ПД) нейроном Пуркинье. Зеленая область: Na-каналы открыты, в нейрон входят ионы Na + , происходит деполяризация. Синяя область: открыты К-каналы, К + выходит, происходит реполяризация. Перекрывание зеленой и синей областей соответствует периоду, когда происходит одновременный вход Na + и выход К + .

ПД — это относительно сильное по амплитуде скачкообразное изменение мембранного потенциала.

Анализ разных типов нейронов (рис. 4) показал, что нейроны беспозвоночных не очень энергоэффективны, а некоторые нейроны позвоночных почти совершенны [20]. По результатам этого исследования, наиболее энергоэффективными оказались интернейроны гиппокампа, участвующего в формировании памяти и эмоций, а также таламокортикальные релейные нейроны, несущие основной поток сенсорной информации от таламуса к коре больших полушарий.

Разные нейроны эффективны по-разному

Рисунок 4. Разные нейроны эффективны по-разному. На рисунке представлено сравнение энергозатрат разных типов нейронов. Энергозатраты рассчитаны в моделях как с исходными (реальными) значениями параметров (черные столбцы), так и с оптимальными, при которых с одной стороны нейрон выполняет положенную ему функцию, с другой — затрачивает при этом минимум энергии (серые столбцы). Самыми эффективными из представленных оказались два типа нейронов позвоночных: интернейроны гиппокампа (rat hippocampal interneuron, RHI) и таламокортикальные нейроны (mouse thalamocortical relay cell, MTCR), так как для них энергозатраты в исходной модели наиболее близки к энергозатратам оптимизированной. Напротив, нейроны беспозвоночных менее эффективны. Условные обозначения: SA (squid axon) — гигантский аксон кальмара; CA (crab axon) — аксон краба; MFS (mouse fast spiking cortical interneuron) — быстрый кортикальный интернейрон мыши; BK (honeybee mushroom body Kenyon cell) — грибовидная клетка Кеньона пчелы.

Кстати, интернейроны гораздо более активны, чем большинство других нейронов мозга. В то же время они крайне важны для слаженной, синхронной работы нейронов, с которыми образуют небольшие локальные сети [9], [16]. Вероятно, высокая энергетическая эффективность ПД интернейронов является некой адаптацией к их высокой активности и роли в координации работы других нейронов [20].

Синапс

Передача сигнала от одного нейрона к другому происходит в специальном контакте между нейронами, в синапсе [12]. Мы рассмотрим только химические синапсы (есть еще электрические), поскольку они весьма распространены в нервной системе и важны для регуляции клеточного метаболизма, доставки питательных веществ [5].

Такие синапсы называются возбуждающими: они способствуют активации нейрона и генерации ПД. Существуют также и тормозящие синапсы. Они, наоборот, способствуют торможению и препятствуют генерации ПД. Часто на одном нейроне есть и те, и другие синапсы. Определенное соотношение между торможением и возбуждением важно для нормальной работы мозга, формирования мозговых ритмов, сопровождающих высшие когнитивные функции [49].

Что еще?

Энергетическая эффективность клеток мозга исследуется также и в отношении их морфологии [35], [52–54]. Исследования показывают, что ветвление дендритов и аксона не хаотично и тоже экономит энергию [52], [54]. Например, аксон ветвится так, чтобы суммарная длина пути, который проходит ПД, была наименьшей. В таком случае энергозатраты на проведение ПД вдоль аксона минимальны.

Снижение энергозатрат нейрона достигается также при определенном соотношении тормозящих и возбуждающих синапсов [55]. Это имеет прямое отношение, например, к ишемии (патологическому состоянию, вызванному нарушением кровотока в сосудах) головного мозга. При этой патологии, вероятнее всего, первыми выходят из строя наиболее метаболически активные нейроны [9], [16]. В коре они представлены ингибиторными интернейронами, образующими тормозящие синапсы на множестве других пирамидальных нейронов [9], [16], [49]. В результате гибели интернейронов, снижается торможение пирамидальных. Как следствие, возрастает общий уровень активности последних (чаще срабатывают активирующие синапсы, чаще генерируются ПД). За этим немедленно следует рост их энергопотребления, что в условиях ишемии может привести к гибели нейронов.

Еще раз обо всем

В конце ХХ века зародился подход к изучению мозга, в котором одновременно рассматривают две важные характеристики: сколько нейрон (или нейронная сеть, или синапс) кодирует и передает полезной информации и сколько энергии при этом тратит [6], [18], [19]. Их соотношение является своего рода критерием энергетической эффективности нейронов, нейронных сетей и синапсов.

Использование этого критерия в вычислительной нейробиологии дало существенный прирост к знаниям относительно роли некоторых явлений, процессов [6], [18–20], [26], [30], [43], [55]. В частности, малая вероятность выброса нейромедиатора в синапсе [18], [19], определенный баланс между торможением и возбуждением нейрона [55], выделение только определенного рода приходящей информации благодаря определенной комбинации рецепторов [50] — все это способствует экономии ценных энергетических ресурсов.

Более того, само по себе определение энергозатрат сигнальных процессов (например, генерация, проведение ПД, синаптическая передача) позволяет выяснить, какой из них пострадает в первую очередь при патологическом нарушении доставки питательных веществ [10], [25], [56]. Так как больше всего энергии требуется для работы синапсов, именно они первыми выйдут из строя при таких патологиях, как ишемия, болезни Альцгеймера и Хантингтона [19], [25]. Схожим образом определение энергозатрат разных типов нейронов помогает выяснить, какой из них погибнет раньше других в случае патологии. Например, при той же ишемии, в первую очередь выйдут из строя интернейроны коры [9], [16]. Эти же нейроны из-за интенсивного метаболизма — наиболее уязвимые клетки и при старении, болезни Альцгеймера и шизофрении [16].

В общем, подход к определению энергетически эффективных механизмов работы мозга является мощным направлением для развития и фундаментальной нейронауки, и ее медицинских аспектов [5], [14], [16], [20], [26], [55], [64].

Благодарности

Читайте также: