Что такое мономеры и полимеры в биологии кратко

Обновлено: 05.07.2024

💥Что такое мономер? Мономер -это молекула ,которая может образовывать химическую связь с другим мономером,образуя полимер.То есть это простая молекула 💥Что такое полимер? Полимер-это соединение,состоящие из повторяющихся звеньев(мономеров) Полимер образуется в результате реакции полимеризации 💥Что такое полимеризация? Это реакция образования высокомолекулярных. Читать далее

Спасибо! Наконец-то понятно и главное по порядку разложено

Мономеры - это атомы, группы атомов или небольшие молекулы, способные образовывать устойчивые цепочки.

Полимеры - это вещества, молекулы которых состоят из большого количества одинаковых "звеньев" - мономеров.

Что такое полимеры и мономеры?

Одним из важнейших направлений в органической химии является изучение и создание полимерных материалов, из которых сегодня изготавливается множество изделий бытового и промышленного назначения.


Это сложная тема, но разобраться в ней хотя бы в общих чертах необходимо, чтобы лучше понимать свойства и особенности разных видов полимеров.

Что такое мономеры?

В качестве примера натуральных мономеров можно вспомнить аминокислоты, которые, полимеризуясь, образуют сложные белковые молекулы. Находящиеся в клеточном ядре нуклеотиды образуют чрезвычайно важные естественные полимеры – нуклеиновые кислоты РНК и ДНК. Но подавляющее большинство полимеров, используемых современной промышленностью, получены всё же путём органического синтеза на химических предприятиях, из акриламида и акриловой кислоты, этилена и ацетилена, винила хлорида и др.

Что такое полимеры?

Полимеры часто называют высокомолекулярными соединениями (ВМС), так как их молекулярный вес чрезвычайно высок и достигает сотен тысяч и даже миллионов единиц. Полимеры образуются в результате химических реакций поликонденсации и полимеризации.

Существует три типа формирования полимерных молекул:

– линейный, когда мономерные отрезки соединены друг с другом в виде длинной цепи двумя связями;

Что такое полимеры и мономеры?

– сетчатый, когда макромолекула образует сетчатую структуру, а каждый мономер связан с другими при помощи трёх или четырёх связей;

– разветвлённый, сочетающий в одной молекуле двухвалентные (с двумя связями) и трёх-четырёхвалентные мономеры.

Линейные и разветвлённые полимеры могут образовывать эластичные плёнки и анизотропные волокна, тогда как сетчатые полимеры отличаются высокой прочностью, твёрдостью и достаточно высокой термоустойчивостью. Но сильный нагрев, до температуры плавления, разрушает сетчатую структуру, после чего она не восстанавливается.

Если же нагревать линейный или разветвлённый полимер, то он превращается в пластичную массу, а после застывания восстанавливает свои свойства, поэтому они пригодны для многоразового использования.

Получение полимеров химическим путём

Полимеры образуются из отдельных мономеров в ходе процессов поликонденсации либо полимеризации. Поликонденсация возможна для мономеров, состоящих из двух или нескольких атомных групп. В макромолекуле полимера, как правило, элементарное звено отличается по составу от исходного мономера.

В процессе полимеризации единичные мономеры соединяются в молекулу полимера целиком, без потери атомов. При этом кратные связи в молекулах мономера преобразуются в одинарные, а валентные электроны вторых связей служат для установления связей между молекулами мономеров. Именно так из этилена образуется полиэтилен.

Природные и синтетические полимеры

Некоторые виды полимеров образуются естественным путём. Примерами натуральных полимеров могут служить таким распространённые вещества, как целлюлоза, крахмал, волокна шерсти, шёлка или хлопка, натуральный каучук, а также все виды белковых соединений.

Что такое полимеры и мономеры?

Большинство видов полимеров получают искусственным путём в ходе полимерного синтеза из дешёвых и доступных видов органического сырья – каменного угля, природного газа, различных фракций нефти и т.д. Это разнообразные пластмассы, синтетические волокна, вспененные материалы, синтетический каучук и т.д.

Многие синтетические полимеры по прочности, химической стойкости, водонепроницаемости и ряду других важных свойств существенно превосходят натуральные материалы. Кроме того, в производстве полимеры намного дешевле природных материалов, поэтому их широко используют во всех сферах промышленности и быта.

Макромолекула. Полимеры. Мономеры. Углеводы.

Простые органические молекулы часто служат исходным сырьем для синтеза более крупных макромолекул. Макромолекула представляет собой гигантскую молекулу, построенную из многих повторяющихся единиц.

Молекулы, построенные таким образом, называются полимерами, а звенья, из которых они состоят — мономерами. В процессе соединения отдельных звеньев друг с другом (при так называемой конденсации) происходит удаление воды.

Противоположный процесс — распад полимеров — осуществляется путем гидролиза, т. е. путем присоединения воды. В живых организмах существуют три главных типа макромолекул: полисахариды, белки и нуклеиновые кислоты. Мономерами для них соответственно служат моносахариды, аминокислоты и нуклеотиды.

Макромолекула. Полимеры. Мономеры. Углеводы.

Это означает, что в белках и нуклеиновых кислотах важна последовательность мономерных звеньев и в них она варьирует гораздо сильнее, чем в полисахаридах, состав которых ограничивается обычно одним или двумя различными видами субъединиц. Причины этого станут нам ясны позднее. В этой же главе мы подробно рассмотрим все три класса макромолекул и их субъединицы. К этому рассмотрению мы добавим еще и липиды — молекулы, как правило, значительно более мелкие, но также построенные из простых органических молекул.

Углеводы

Углеводы подразделяются на три главных класса: моносахариды, дисахариды и полисахариды.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

taurocholate-of-sodium-2901493_640.jpg


Молекулярный уровень — это начальный, самый низкий уровень организации жизни. На этом уровне проявляются реакции обмена веществ и энергии, реализация наследственной информации. Изучение процессов, протекающих на молекулярном уровне, позволяет разобраться, как могла появиться жизнь на планете Земля; даёт возможность понять, как осуществляется передача наследственных признаков и каковы механизмы обмена веществ.


В состав живых организмов входят такие же химические элементы, что и в состав неживых тел, но в других соотношениях. В живой природе самыми распространёнными являются органогенные неметаллы: углерод , кислород , водород и азот .

Главным элементом всех органических веществ является углерод. Атомы углерода соединяются друг с другом и с атомами других элементов, образуя цепи и циклы разных размеров, чем и обусловлено разнообразие органических соединений. Важнейшее значение имеют вещества, содержащиеся в живых клетках — белки , нуклеиновые кислоты , полисахариды . Эти вещества относятся к биологическим полимерам, или биополимерам.

Молекулы биополимеров могут быть образованы огромным количеством соединённых друг с другом мономерных звеньев, одинаковых или разных. Свойства биополимеров зависят от строения их мономеров. Главные вещества всего живого — белки и нуклеиновые кислоты.

adrenomedullin-872350_640.jpg

  • белки служат строительным материалом и регулируют процессы обмена веществ;
  • нуклеиновые кислоты хранят и передают наследственную информации (генетический код универсален, т. е. он одинаковый для всего живого);
  • полисахариды являются основными источниками необходимой для жизни энергии (процессы превращения разных видов энергии тоже универсальны — они протекают одинаково во всех живых организмах).

Все биополимеры построены по одному плану. Эти вещества образованы небольшим количеством повторяющихся звеньев (мономеров), одинаковых или разных. Так, в состав молекул белков входит \(20\) аминокислот, а в состав молекул нуклеиновых кислот — \(4\) вида нуклеотидов. Всё разнообразие биополимеров обусловлено разными сочетаниями этих мономеров, образующими огромное количество вариантов макромолекул. Такое строение биополимеров определяет всё разнообразие проявлений жизни на Земле.


Особые свойства биологических полимеров обнаруживаются, когда они находятся в живой клетке. В изолированном виде молекулы биополимеров являются неживыми.

Связь между молекулярным и более сложным клеточным уровнем обеспечивается тем, что биологические молекулы служат строительным материалом для клеточных структур.

Биология ЕГЭ 2021 | Examis

Биология ЕГЭ 2021 | Examis

Биология ЕГЭ 2021 | Examis запись закреплена

Полимеры и мономеры

🔎

Мономеры - это низкомолекулярные органические молекулы. Например: аминокислоты, нуклеотиды.

🔎

Полимеры - это высокомолекулярные соединения, молекулы которых состоят из большого количества периодически повторяющихся групп атомов - мономеров. Например: белки, полисахариды, нуклеиновые кислоты.

Таким образом мономеры служат "строительными блоками" для полимеров.

🔎

Полимеры образуются в результате реакций (со)полимеризации мономеров.

Читайте также: