Что такое космические зонды кратко

Обновлено: 16.05.2024

С каждым годом человечество все больше познает космическое пространство и не собирается на этом останавливаться. Интерес к Вселенной не угасает, ученые идут в своих открытиях все дальше и дальше. А незаменимым помощником во всевозможных исследованиях выступают автоматические межпланетные станции (АМС).

План урока:

Что такое АМС, их задачи

АМС – это космические аппараты, которые способны подниматься в космос без пилотов. Второе название межпланетных станций - космический зонд, от слова зондировать. Их запускают в межпланетное пространство с целью выполнения всевозможных заданий. Станции используют, как правило, для проведения комплексных исследований, изучения космического пространства и небесных тел. К основным задачам АМС относят:

  • участие в научно-исследовательских проектах;
  • изучение различных объектов Солнечной системы, в том числе планет, их искусственных спутников, комет;

Кроме этого АМС должны:

  • обеспечить себя электричеством при помощи системы электропитания;
  • уметь определить свое нахождение в пространстве при помощи системы ориентации;
  • при помощи бортового радиокомплекса принять команды и передать данные на Землю.

АМС занимаются фотографированием, сканированием рельефа. Также проводят измерения температуры, радиации, изучают магнитное поле космического объекта, сейсмические показатели. Исследуют химический состав атмосферы, грунта, межпланетного пространства.

Конструкция АМС

С развитием научно-технического прогресса происходит постоянное усовершенствование АМС. Эти устройства достаточно сложные и многофункциональные, ведь им приходится работать в непростых условиях нашей необъятной Вселенной. Каждый космический аппарат перед запуском проходит ряд испытаний.

Конструкции у некоторых видов АМС разные, но в основном они имеют много общего. Чтобы маневрировать в космическом пространстве, все они оснащаются ракетной двигательной установкой. Для всевозможных исследований оборудуются приборами, таким как телескоп, радар, лазер, спектрометр и др. Имеют полезную нагрузку (научно-исследовательские приборы) и средства вспомогательные (платформа АМС или служебная система).

В качестве источника питания, как правило, используются солнечные батареи или термоэлектрические радиоизотопные аккумуляторы. При сбоях в поставке электроэнергии, запас восполняется с помощью специальной аккумуляторной батареи. На АМС имеется приборный отсек, в котором находятся всевозможные приборы. Здесь поддерживается определенная температура. Это необходимо для бесперебойной работы оборудования и находящихся там устройств.

Для того чтобы предотвратить беспорядочное вращение космического аппарата и обеспечить правильную его ориентацию во время полета ученые используют гиродин. Он помогает корректировать ракетные двигатели. Именно они способствуют ускорению или торможению станции во время ее полёта.

Также на борту АМС есть разные виды антенн, с помощью которых осуществляется радиосвязь. Более современные и мощные межпланетные станции, которые есть на вооружении лишь у немногих стран мира, в том числе и России, имеют модульную конструкцию. Прибывая до места исследования, они сбрасывают на поверхность космические исследовательские аппараты, а часть, которая остается на орбите, выполняет функцию радиоретранслятора – связного устройства, соединяющего несколько радиопередатчиков, которые отдалены друг от друга на большие расстояния.

Связь во время полетов

Связь с космическими аппаратами поддерживается с Земли. На борту АМС находятся бортовые компьютеры, с помощью которых происходит управление объектом. Все собранные данные передаются при помощи двунаправленной радиосвязи. Именно ее наличие позволяет управлять АМС на дистанции. А каналом для передачи являются частоты в радиодиапазоне. Ученые постоянно работают над процессом ускорения передачи данных, так как станции выполняют свои задачи на достаточно отдаленных расстояниях. Для этого предполагают использовать лазеры, которые улучшат межпланетную связь.

Траектория межпланетных перелетов

После того как космический зонд покидает просторы земного пространства, он выходит на орбиту. По форме она близка к той, по которой вокруг Солнца вращается Земной шар. Чтобы совершить межпланетный перелет АМС требуется большое количество энергии. Для ее экономии станции двигаются по гомановской траектории. В небесной механике она представляет собой орбиту эллиптической формы, которая используется для перехода между двумя орбитами, расположившимися в одной плоскости. Чтобы совершить маневр работе двигателя нужно 2 импульса. Один – чтобы войти на гомановскую траекторию, второй – чтобы сойти с нее. Свое название траектория получила в честь ученого из Германии Вальтера Гомана, который в 1925 году описал ее в своей работе.

Чтобы более точно измерить траекторию полета АМС с поверхности Земного шара используют наземные станции и метод радиоинтерферометрии со сверхдлинной базой (РСДБ). Этот метод позволяет объединить наблюдения из нескольких радиотелескопов, расположившихся на большом расстоянии друг от друга (как правило, на разных континентах).

Наиболее известные АМС

Во всем мире самыми известными космическими станциями являются:

Современные исследования планет земной группы АМС

  • Фотографирование поверхности планет с разных расстояний.
  • Измерение давления и температурных показателей в атмосфере во время спуска. Для этих целей используют манометры, термометры сопротивления. Для измерения плотности пользуются плотномерами. Во время научного исследования планеты данные атмосферные параметры могут быть вычислены благодаря скорости снижения аппарата, так как его аэродинамические показатели уже известны.
  • Изучение химического состава атмосферы. Для этого необходимы газоанализаторы. Для каждого типа газа используется отдельный газоанализатор.
  • Исследование верхнего слоя атмосферы планеты происходит по методу радиопросвечивания – он основан на радиоволнах разной длины, проходящих через атмосферные слои, где происходит их преломление.
  • С помощью магнитометров АМС измеряется напряженность магнитного поля той или иной планеты.

Это далеко не все задачи современного исследования планет земной группы. Ученые постоянно работают над созданием новых методов и приборов, которые бы помогли получить полное представление о внутреннем и внешнем строении космических объектов.

Благодаря автоматическим космическим станциям у человечества появилась возможность исследовать ближний космос. Конечно, такая станция неспособна преодолеть расстояние, измеряемое световыми годами, но добраться до отдаленных участков нашей Солнечной системы шансы у нее есть. Кто знает, возможно, в будущем будет создан аппарат, который долетит до центра галактического пространства и откроет человечеству его самые тайные загадки.

КОСМИЧЕСКИЙ ЗОНД
автоматический космический аппарат для прямого изучения объектов Солнечной системы и пространства между ними. Космические зонды проводят исследования планет, пролетая мимо них, двигаясь вокруг них по орбите, влетая в их атмосферу или достигая их поверхности. Прямые исследования далеких объектов с помощью приборов, установленных на космических зондах, дополняются наблюдениями с поверхности Земли и ее искусственных спутников.
См. также
АСТРОНОМИЯ И АСТРОФИЗИКА;
РАДИОЛОКАЦИОННАЯ АСТРОНОМИЯ;
РАДИОАСТРОНОМИЯ;
ВНЕАТМОСФЕРНАЯ АСТРОНОМИЯ. Космические зонды могут сделать то, что недоступно приборам на Земле или на околоземной орбите: они могут получить изображения далеких объектов с близкого расстояния, измерить электромагнитные поля вокруг них, проделать прямой физический и химический анализ их атмосферы и поверхности, провести сейсмические исследования. В этой статье рассказано о развитии техники космического зондирования, а научные результаты описаны в статьях:
СОЛНЕЧНАЯ СИСТЕМА;
АСТЕРОИД;
КОМЕТА.
ПРЕДЫСТОРИЯ КОСМИЧЕСКИХ ПОЛЕТОВ
Начиная с Луциана Самосатского (ок. 120-180) (Икаро-Мениппус и Правдивая история) люди мечтали добраться до Луны и узнать ее тайну. Что же касается планет, то сама мысль об экспедиции к ним могла возникнуть лишь после того, как стало ясно, что это не божества и не просто движущиеся огоньки на ночном небе, а тела, подобно Земле обращающиеся вокруг Солнца. Окончательно это выяснилось в эпоху И.Ньютона (1643-1727), объяснившего характер движения планет в Солнечной системе и указавшего принципиальную возможность путешествия от одной планеты к другой. Однако до середины 20 в. не было технической возможности овладеть гигантской энергией, необходимой для преодоления земного тяготения. После произведений И.Кеплера "Сон, или Посмертное сочинение об астрономии Луны" (1634), Ф. Годвина "Человек на Луне" (1638) и С. де "Бержерака Иной свет, или Государства и империи Луны" (1657), экспедиции к Луне и планетам стали популярной литературной темой. К середине 20 в. тема космических путешествий прочно заняла место в беллетристике, на радио и в кино, вызывая у публики большой интерес. Однако вплоть до этого времени все фантазии о космических путешествиях имели одну общую деталь - во всех экспедициях присутствовал человек. Сама идея об автоматических механизмах, способных исследовать Луну и планеты, просто не приходила никому в голову. Толчок воображению мог дать только соответствующий уровень техники, который в те годы еще не позволял мечтать о беспилотных космических аппаратах. К концу Второй мировой войны многие ученые и инженеры поняли, что эра космических полетов приближается. Разработка мощных ракетных двигателей, легких и прочных материалов и конструкций, миниатюрных приборов и особенно развитие электроники сделали возможным практическое осуществление полетов вокруг Земли, к Луне и планетам.
СОЗДАНИЕ КОСМИЧЕСКОЙ ТЕХНИКИ
Удивительно, но для запуска полезной нагрузки на бесконечное расстояние от Земли (т.е. для ее разгона до второй космической скорости) нужно сообщить ей всего лишь вдвое большую энергию, чем для ее вывода на низкую околоземную орбиту. Поэтому первые космические зонды были запущены вскоре после первых искусственных спутников Земли.
См. также ОРБИТА. Все же необходимая для запуска зонда дополнительная энергия требует более мощной ракеты-носителя при той же полезной нагрузке либо меньшей нагрузки при той же ракете. Ограничение веса полезной нагрузки всегда довлеет над разработчиками космических зондов. Обычно для достижения необходимой зонду скорости ракету снабжают дополнительной ступенью. Разработка мощных и надежных многоступенчатых ракет - это долгое и дорогое дело. Носители для космических зондов должны быть особенно надежными, поскольку для запуска обычно отводится небольшое временное окно, когда взаимное положение Земли и намеченной цели таково, что перелет требует минимальных затрат энергии. В другое время затраты энергии возрастают настолько, что экспедиция становится практически невозможной. При полетах на Луну оптимальная ситуация возникает раз в месяц, но при полетах к далеким планетам ее нужно ждать многие месяцы и даже годы. Другой важный фактор - время перелета. Экспедиции к планетам длятся месяцы и годы. Поэтому все приборы зонда должны быть очень надежными, чтобы вблизи цели выполнить сложный комплекс исследований. Это создает нелегкие технические проблемы. Длительный перелет означает, что для питания бортовых систем электричеством нельзя использовать аккумуляторные батареи - необходим генератор, работающий без ограничений по времени. С этой целью при полетах к Луне и внутренним планетам - Меркурию, Венере и Марсу - применяют солнечные элементы. Но за орбитой Марса, вдали от Солнца, его свет слаб. Поэтому при полетах к Юпитеру и дальше используют изотопный генератор, вырабатывающий ток с помощью термоэлектрического преобразователя из тепла, выделяющегося при распаде радиоактивных изотопов, например плутония-238. Слежение за космическими зондами и управление ими значительно сложнее, чем спутниками. Для определения точного положения аппарата и передачи на борт команд управления, а также для приема с его борта данных необходимы мощные передатчики и большие антенны на Земле и на самом зонде. Для этих целей были созданы глобальные системы космического радиосопровождения. Например, Сеть дальней космической связи Национального управления по аэронавтике и исследованию космического пространства (НАСА) США, разработанная в Лаборатории реактивного движения (Пасадена, шт. Калифорния), служит для управления космическими зондами и объединяет станции в Голдстоуне (Калифорния), Тидбинбелла (вблизи Канберры, Австралия) и Робледо де Чевела (вблизи Мадрида, Испания). Для связи с космическими зондами используют также станции в Дармштадте (Германия), Усюде (Япония) и Евпатории (Украина).

СЕТЬ ДАЛЬНЕЙ КОСМИЧЕСКОЙ СВЯЗИ НАСА использует станции в различных точках Земли для связи с космическими зондами.


СЕТЬ ДАЛЬНЕЙ КОСМИЧЕСКОЙ СВЯЗИ НАСА использует станции в различных точках Земли для связи с космическими зондами.

СЕРВЕЙОР - МАРС-98


"СЕРВЕЙОР - МАРС-98"

ВОЯДЖЕР-1 И ВОЯДЖЕР-2 использовали принцип гравитационного маневра для пролета мимо всех планет-гигантов. На рисунке показаны траектории зондов и даты пролетов.


"ВОЯДЖЕР-1" И "ВОЯДЖЕР-2" использовали принцип гравитационного маневра для пролета мимо всех планет-гигантов. На рисунке показаны траектории зондов и даты пролетов.


В отличие от "Пионера-10 и -11", новые зонды "Вояджер-1 и -2" были стабилизированы по всем трем осям, что позволяло приборам и особенно видеосистеме ориентироваться в любом заданном направлении. Как и предшествующие аппараты, они питались от радиоизотопных источников и для связи имели большую радиоантенну, направленную на Землю. Аппараты "Вояджер-1 и -2" были запущены 20 августа и 5 сентября 1977. Двигаясь по более быстрой траектории, "Вояджер-1" должен был преодолеть магнитосферу Юпитера, пролететь как можно ближе к планете, чтобы получить качественные изображения атмосферы и особенно Большого Красного Пятна, пройти на небольшом расстоянии от четырех крупнейших (галилеевых) спутников Юпитера, пролететь за кольцами Сатурна и вблизи нескольких его спутников, включая крупнейший, покрытый облаками Титан, с которым он сблизился на 4000 км. Выполнив эту изумительную программу и встретившись с Юпитером 5 марта 1979 и с Сатурном 12 ноября 1980, зонд отправился в межзвездное пространство. После этого "Вояджеру-2" можно было ставить более сложную задачу. Пролетев Юпитер 9 июля 1979 и Сатурн 25 августа 1981, он встретился затем с Ураном 24 января 1986 и Нептуном 24 августа 1989, также отправившись затем к звездам. "Вояджеры" получили прекрасные изображения планет-гигантов и сделали множество открытий в отношении самих планет, их колец и спутников. Они продемонстрировали высокую надежность зондов и безупречное искусство наземного персонала управления.
"Галилео". Мысль послать к Юпитеру зонд "Галилео" появилась в НАСА в 1970-х годах. Его задачей была доставка спускаемого аппарата в атмосферу Юпитера и выход зонда на орбиту вокруг планеты для детального исследования ее магнитосферы, облачного покрова и спутников. Полагали, что "Галилео" станет первым планетным зондом, который будет выведен на орбиту космической транспортной системой "Шаттл", но запуск пришлось отложить более чем на 7 лет из-за задержки с разработкой разгонной ступени, а потом из-за ее аварии. После запуска "Галилео" 18 октября 1989 "зонтик" его остронаправленной антенны не смог полностью раскрыться, поэтому связь с Землей он поддерживал с помощью всенаправленной антенны, что существенно замедляет передачу изображений. "Галилео" сначала прошел мимо Венеры и два раза мимо Земли, увеличивая с помощью гравитационного маневра свою скорость, затем 29 октября 1991 встретился с астероидом Гаспра, а 28 августа 1993 - с астероидом Ида, 13 июля 1995 отделил от себя атмосферный зонд, и оба они 7 декабря 1995 прибыли к Юпитеру. Зонд вошел в атмосферу планеты, исследовал ее при спуске на парашюте и погиб, а орбитальный аппарат занялся внешним изучением планеты и ее спутников. В 1999 он еще активно действовал.

ВСТРЕЧА КОСМИЧЕСКОГО ЗОНДА ГАЛИЛЕО с Ио при полете к Юпитеру (декабрь 1995).


ВСТРЕЧА КОСМИЧЕСКОГО ЗОНДА "ГАЛИЛЕО" с Ио при полете к Юпитеру (декабрь 1995).


Кроме попутных встреч с астероидами планируются и специальные полеты к ним. NASA 17 февраля 1996 вывело на орбиту аппарат NEAR (Near Earth Asteroid Rendezvous - Рандеву с околоземным астероидом), который 27 июня 1997 с пролетной траектории исследовал астероид Матильда, а 9 января 1999 сблизился с малой планетой Эрос и вышел на орбиту вокруг нее с минимальной высотой 24 км над поверхностью.
КОМЕТЫ
В марте 1986, когда комета Галлея приблизилась к Солнцу, с ней встретилась международная флотилия космических аппаратов: 7 января и 18 августа 1985 японский Институт космических исследований запустил зонды "Сакигаке" и "Суйсей", пролетевшие довольно далеко от ядра кометы и не подвергавшиеся серьезному риску; Советский Союз запустил 15 и 21 декабря 1984 зонды "Вега-1 и -2", а Европейское космическое агентство (ЕКА) запустило 2 июля 1985 зонд "Джотто" - наиболее совершенный из всех, приблизившийся к ядру на 605 км и передавший изображения этой темной, фонтанирующей газопылевой глыбы. Полет международной флотилии выразительно продемонстрировал конец монополии США и СССР в запуске космических зондов, поскольку Япония и Западная Европа создали свои мощные носители. Тем не менее США стали первыми, кто послал зонд к комете. Запущенный в 1978 зонд ISEE-3 изучал взаимодействие солнечного ветра с Землей на орбите, удаленной на 1,5 млн. км от Земли, а затем с помощью гравитационного маневра и оставшегося на борту запаса ракетного топлива изменил орбиту и прошел через хвост кометы Джакобини - Циннера 11 сентября 1985.
СОЛНЕЧНЫЕ ЗОНДЫ
Полет зонда к Солнцу требует решения многих инженерных проблем, связанных с поддержанием в нем температуры, при которой могут работать электронные приборы.
"Гелиос". Два западногерманских зонда "Гелиос" были запущены американскими ракетами "Титан-Центавр" 10 декабря 1974 и 15 января 1976 на орбиту вокруг Солнца для его изучения с относительно близкого расстояния. Это был совместный проект НАСА и ЕКА; каждое из них установило на зондах по 11 приборов для всестороннего изучения Солнца.
"Улисс". Особым солнечным зондом стал "Улисс", также совместно созданный НАСА и ЕКА. Этот аппарат, запущенный 6 октября 1990, предназначен для изучения Солнца и межпланетной среды над и под солнечными полюсами. Для этого его орбита должна существенно выходить из плоскости эклиптики, что требует гораздо больших затрат энергии. Эта дополнительная энергия была получена путем гравитационного маневра при сближении с Юпитером в феврале 1992. При первом облете Солнца "Улисс" прошел в 80,2° к югу и к северу от солнечного экватора, соответственно 13 сентября 1994 и 31 июля 1995, и получил уникальную информацию, поскольку с Земли невозможно исследовать эти области.
SOHO (Solar and Heliospheric Observatory). Запущенный 2 декабря 1995 совместно НАСА и ЕКА на околосолнечную орбиту в точку Лагранжа L1 системы Земля - Солнце, этот зонд получает великолепные изображения Солнца в различных диапазонах спектра, а также изучает солнечную корону, используя внезатменный коронограф (с помощью которого уже было открыто несколько комет, влетевших в атмосферу Солнца).
В МЕЖПЛАНЕТНОМ ПРОСТРАНСТВЕ
Пространство между большими планетами Солнечной системы почти пусто, но и оно может немало рассказать о метеороидах, солнечном магнитном поле и заряженных частицах - электронах и протонах. Первым зондом для исследования этих областей был американский "Пионер-5", запущенный 11 марта 1960. Он двигался по орбите между Землей и Венерой, передавая данные об условиях в межпланетном пространстве, пока не удалился от Земли на рекордное для тех лет расстояние в 36,2 млн. км. В начале 1960-х годов в НАСА разработали простые и легкие (63 кг), стабилизированные вращением зонды для исследования межпланетного пространства, которые выводились относительно дешевой ракетой "Дельта". На орбиту вокруг Солнца вывели четыре аппарата: "Пионер-6, -7, -8 и -9" (запущены 16 декабря 1965, 17 августа 1966, 13 декабря 1967 и 8 ноября 1968), причем два между орбитами Венеры и Земли и два между Землей и Марсом. Связь с ними была прекращена лишь в марте 1997. Кроме научных исследований, эти зонды решали важную практическую задачу, предупреждая о мощных солнечных вспышках, которые могли быть опасны для астронавтов "Аполлона".


КОСМИЧЕСКИЙ ЗОНД, автоматический космический аппарат для прямого изучения объектов Солнечной системы и пространства между ними. Космические зонды проводят исследования планет, пролетая мимо них, двигаясь вокруг них по орбите, влетая в их атмосферу или достигая их поверхности. Прямые исследования далеких объектов с помощью приборов, установленных на космических зондах, дополняются наблюдениями с поверхности Земли и ее искусственных спутников. Космические зонды могут сделать то, что недоступно приборам на Земле или на околоземной орбите: они могут получить изображения далеких объектов с близкого расстояния, измерить электромагнитные поля вокруг них, проделать прямой физический и химический анализ их атмосферы и поверхности, провести сейсмические исследования.

КОСМИЧЕСКИЙ ЗОНД, автоматический космический аппарат для прямого изучения объектов Солнечной системы и пространства между ними. Космические зонды проводят исследования планет, пролетая мимо них, двигаясь вокруг них по орбите, влетая в их атмосферу или достигая их поверхности. Прямые исследования далеких объектов с помощью приборов, установленных на космических зондах, дополняются наблюдениями с поверхности Земли и ее искусственных спутников

Ну почему сюда а не в гугль


Смотри как отвечают тупышка )))

КОСМИЧЕСКИЙ ЗОНД, автоматический космический аппарат для прямого изучения объектов Солнечной системы и пространства между ними. Космические зонды проводят исследования планет, пролетая мимо них, двигаясь вокруг них по орбите, влетая в их атмосферу или достигая их поверхности. Прямые исследования далеких объектов с помощью приборов, установленных на космических зондах, дополняются наблюдениями с поверхности Земли и ее искусственных спутников.Космические зонды могут сделать то, что недоступно приборам на Земле или на околоземной орбите: они могут получить изображения далеких объектов с близкого расстояния, измерить электромагнитные поля вокруг них, проделать прямой физический и химический анализ их атмосферы и поверхности, провести сейсмические исследования.

Rodnoi© Просветленный (24994) Это ты у нас тупой,Что не знаешь ответа на такой детсадовский вопрос.КАк и на все остальные.В школу то хоть ходил?

Космический зонд, это хорошая силиконавая трубка, позволяющая осуществить всеобщую Силиконизацию Сельсковагогаго Хозяйства, когда Г. но ПОТИЧЁТ по трубам на поля!

Космический зонд - это космический аппарат, который не нуждается в управлении человеком. Космические зонды предназначены для проведения исследований малоизученных или отдаленных планет, астероидов, комет и иных космических тел.

Космический зонд оснащен сверхсовременной и мощной исследовательской аппаратурой, которая располагается в нутрии тела зонда. Как правило, внутри зонда располагаются фотоаппараты; сканеры, позволяющие получить точные данные о рельефе исследуемой поверхности планеты; приборы для измерения радиации; приборы для измерения температуры окружающей среды; телескопы (чаще радиотелескопы); устройства, для определения химического состава атмосферы и почвы планеты.

Читайте также: