Что такое капиллярность в физике определение кратко

Обновлено: 05.07.2024

Капиллярность — явление изменения уровня жидкости (подъём или опускание) в узких трубках, пористых телах.

Смачивающие жидкости (вода в стеклянной трубке) поднимаются над общим уровнем в капиллярах и имеют вогнутый мениск, не смачивающие (ртуть в стеклянной трубке) опускаются ниже общего уровня жидкости и имеют выгнутый мениск.

Природные капилляры — пористые тела и материалы, например, древесина, почва, известняк. Многие строительные материалы содержат капилляры, например, кирпич, блоки, вата. По этой причине все эти материалы быстро намокают, т.к. при соприкосновении с водой, происходит ее распространение по капиллярам. Как быстро намокает поролоновая мочалка, упав в ванну с водой? Очень быстро! Потому что поролон — пористый материал.

Среди процессов, которые можно объяснить с помощью поверхностного натяжения и смачивания жидкостей, стоит особо выделить капиллярные явления. Физика – это загадочная и необыкновенная наука, без которой жизнь на Земле была бы невозможна. Давайте рассмотрим наиболее яркий пример этой важной дисциплины.

В жизненной практике такие интересные с точки зрения физики процессы, как капиллярные явления, встречаются весьма часто. Все дело в том, что в повседневной жизни нас окружает много тел, которые легко впитывают в себя жидкость. Причина этому – их пористая структура и элементарные законы физики, а результат – капиллярные явления.

Узкие трубки

Капилляр – это очень узкая трубка, в которой жидкость ведет себя особым образом. Примеров таких сосудов много в природе – капилляры кровеносной системы, пористых тел, почвы, растений и т. д.

капиллярные явления

Капиллярным явлением называется подъем или опускание жидкостей по узким трубкам. Такие процессы наблюдаются в естественных каналах человека, растений и других тел, а также в специальных узких сосудах из стекла. На картинке видно, что в сообщающихся трубках разной толщины установился разный уровень воды. Отмечено, что чем тоньше сосуд, тем выше уровень воды.

Эти явления лежат в основе впитывающих свойств полотенца, питания растений, движения чернил по стержню и многих других процессов.

Капиллярные явления в природе

Описанный выше процесс чрезвычайно важен для поддержания жизнедеятельности растений. Почва довольно рыхлая, между ее частицами существуют промежутки, которые представляют собой капиллярную сеть. По этим каналам поднимается вода, питая корневую систему растений влагой и всеми необходимыми веществами.

капиллярные явления в природе

По этим же капиллярам жидкость активно испаряется, поэтому необходимо производить вспахивание земли, которое разрушит каналы и удержит питательные вещества. И наоборот, прижатая земля быстрее испарит влагу. Этим обусловлена важность перепашки земли для удержания подпочвенной жидкости.

В растениях капиллярная система обеспечивает подъем влаги от мелких корешков до самых верхних частей, а через листья она испаряется во внешнюю среду.

Поверхностное натяжение и смачивание

В основе вопроса о поведении жидкости в сосудах лежат такие физические процессы, как поверхностное натяжение и смачивание. Капиллярные явления, обусловленные ими, изучаются в комплексе.

капиллярные явления физика

Под действием силы поверхностного натяжения смачивающая жидкость в капиллярах находится выше уровня, на котором она должна находиться согласно закону сообщающихся сосудов. И наоборот, несмачивающая субстанция располагается ниже этого уровня.

смачивание капиллярные явления

Так, вода в стеклянной трубке (смачивающая жидкость) поднимается на тем большую высоту, чем тоньше сосуд. Напротив, ртуть в стеклянной пробирке (несмачивающая жидкость) опускается тем ниже, чем тоньше эта емкость. Кроме того, как указано на картинке, смачивающая жидкость образует вогнутую форму мениска, а несмачивающая – выпуклую.

Смачивание

Это явление, которое происходит на границе, где жидкость соприкасается с твердым телом (другой жидкостью, газами). Оно возникает по причине особого взаимодействия молекул на границе их контакта.

поверхностное натяжение капиллярные явления

Полное смачивание означает, что капля растекается по поверхности твердого тела, а несмачивание преобразует ее в сферу. На практике чаще всего встречается та или иная степень смачивания, нежели крайние варианты.

Сила поверхностного натяжения

Поверхность капли имеет шарообразную форму и причина этому закон, действующий на жидкости, – поверхностное натяжение.

жидкости капиллярные явления

Капиллярные явления связаны с тем, что вогнутая сторона жидкости в трубке стремится выпрямиться до плоского состояния благодаря силам поверхностного натяжения. Это сопровождается тем, что наружные частицы увлекают за собой вверх тела, находящиеся под ними, и субстанция поднимается вверх по трубке. Однако жидкость в капилляре не может принимать плоскую форму поверхности, и этот процесс подъема продолжается до определенного момента равновесия. Чтобы рассчитать высоту, на которую поднимется (опустится) столб воды, нужно воспользоваться формулами, которые будут представлены ниже.

Расчет высоты подъема столба воды

Момент остановки подъема воды в узкой трубке наступает, когда сила тяжести Ртяж субстанции уравновесит силу поверхностного натяжения F. Этот момент определяет высоту подъема жидкости. Капиллярные явления обусловлены двумя разнонаправленными силами:

  • сила тяжести Ртяж заставляет жидкость опускаться вниз;
  • сила поверхностного натяжения F двигает воду вверх.

примеры капиллярных явлений

Сила поверхностного натяжения, действующая по окружности, где жидкость соприкасается со стенками трубки, равна:

где r – радиус трубки.

Сила тяжести, действующая на жидкость в трубке равна:

где ρ – плотность жидкости; h – высота столба жидкости в трубке;

Итак, субстанция прекратит подниматься при условии, что Ртяж = F, а это значит, что

отсюда высота жидкости в трубке равна:

Точно так же для несмачивающей жидкости:

h – это высота опускания субстанции в трубке. Как видно из формул, высота, на которую поднимется вода в узком сосуде (опустится) обратно пропорционально радиусу емкости и плотности жидкости. Это касается смачивающей жидкости и несмачивающей. При других условиях нужно делать поправку по форме мениска, что будет представлено в следующей главе.

Лапласовское давление

Как уже отмечалось, жидкость в узких трубках ведет себя так, что создается впечатление нарушения закона сообщающихся сосудов. Этот факт всегда сопровождает капиллярные явления. Физика объясняет это с помощью лапласовского давления, которое при смачивающей жидкости направлено вверх. Опуская очень узкую трубку в воду, наблюдаем, как жидкость втягивается на определенный уровень h. По закону сообщающихся сосудов, она должна была уравновеситься с внешним уровнем воды.

капиллярные явления в технике

Это несоответствие объясняется направлением лапласовского давления pл:

В данном случае оно направлено вверх. Вода втягивается в трубку до уровня, где приходит уравновешивание с гидростатическим давлением pг столба воды:

а если pл=pг, то можно приравнять и две части уравнения:

Теперь высоту h легко вывести в виде формулы:

Когда смачивание полное, тогда мениск, который образует вогнутая поверхность воды, имеет форму полусферы, где Ɵ=0. В таком случае радиус сферы R будет равен внутреннему радиусу капилляра r. Отсюда получаем:

А в случае неполного смачивания, когда Ɵ≠0, радиус сферы можно вычислить по формуле:

Тогда искомая высота, имеющая поправку на угол, будет равна:

Из представленных уравнений видно, что высота h обратно пропорциональна внутреннему радиусу трубки r. Наибольшей высоты вода достигает в сосудах, имеющих диаметр человеческого волоса, которые и называются капиллярами. Как известно, смачивающая жидкость втягивается вверх, а несмачивающая – выталкивается вниз.

капиллярные явления

Можно провести эксперимент, взяв сообщающиеся сосуды, где один из них широкий, а другой – очень узкий. Налив туда воду, можно отметить разный уровень жидкости, причем в варианте со смачивающей субстанцией уровень в узкой трубке выше, а с несмачивающей – ниже.

Важность капиллярных явлений

Без капиллярных явлений существование живых организмов просто невозможно. Именно по мельчайшим сосудам человеческое тело получает кислород и питательные вещества. Корни растений – это сеть капилляров, которая вытягивает влагу из земли, донося ее до самых верхних листьев.

Простая бытовая уборка невозможна без капиллярных явлений, ведь по этому принципу ткань впитывает воду. Полотенце, чернила, фитиль в масляной лампе и множество устройств работает на этой основе. Капиллярные явления в технике играют важную роль при сушке пористых тел и других процессах.

капиллярные явления в природе

Порой эти же явления дают нежелательные последствия, например, поры кирпича впитывают влагу. Чтобы избежать отсыревания зданий под воздействием грунтовых вод, нужно защитить фундамент с помощью гидроизолирующих материалов – битума, рубероида или толя.

Промокание одежды во время дождя, к примеру, брюк до самых колен от ходьбы по лужам также обязано капиллярным явлениям. Вокруг нас множество примеров этого природного феномена.

Эксперимент с цветами

Примеры капиллярных явлений можно найти в природе, особенно если говорить о растениях. Их стволы имеют внутри множество мелких сосудов. Можно провести эксперимент с окрашиванием цветка в какой-либо яркий цвет в результате капиллярных явлений.

примеры капиллярных явлений

Нужно взять ярко окрашенную воду и белый цветок (или лист пекинской капусты, стебель сельдерея) и поставить в стакан с этой жидкостью. Через какое-то время на листьях пекинской капусты можно наблюдать, как краска продвигается вверх. Цвет растения постепенно изменится соответственно краске, в которую он помещен. Это обусловлено движением субстанции вверх по стеблям согласно тем законам, которые были рассмотрены нами в этой статье.

Капиллярные явления

Уверены ли вы, что понимаете, каким образом работает обычное полотенце? Или почему клей склеивает поверхности? Или почему горит свечка? А почему с мылом руки мыть намного эффективнее, чем без мыла? Ответы на все эти вопросы вы получите на данном уроке. Потому что все они, так или иначе, связаны со смачиванием поверхностей и капиллярными явлениями.

На границе раздела жидкости с твердым телом возникают явления смачивания или несмачивания, обусловленные взаимодействием молекул жидкости с молекулами твердого тела:

  1. Если силы притяжения между молекулами жидкости и твердого тела больше сил притяжения между молекулами жидкости . то жидкость будет растекаться по поверхности твердого тела(рис.1, а). Это явление называют смачиванием.
  2. Если сила притяжения между молекулами жидкости и твердого тела меньше сил притяжения между молекулами жидкости , то жидкость не будет растекаться по поверхности твердого тела, а будет собираться в каплю, стремясь уменьшить свою свободную поверхность (рис.1, б). Такое явление называют несмачиванием.

Явления смачивания (а) и несмачивания (б) жидкостью поверхности твердого тела

Рис.1 Явления смачивания (а) и несмачивания (б) жидкостью поверхности твердого тела ( — краевой угол)

Так как явления смачивания и несмачивания определяются относительными свойствами веществ жидкости и твердого тела, одна и та же жидкость может быть смачивающей для одного твердого тела и несмачивающей для другого. Например, вода смачивает стекло и не смачивает парафин.

Количественной мерой смачивания является краевой угол угол, образуемый поверхностью твердого тела и касательной, проведенной к поверхности жидкости в точке соприкосновения (жидкость находится внутри угла).

0\le \theta \le <90></p>
<p>При смачивании ^\circ
и чем меньше угол тем сильнее смачивание. Если краевой угол равен нулю, смачивание называют полным или идеальным. К случаю идеального смачивания можно приближенно отнести растекание спирта по чистой поверхности стекла. В этом случае жидкость растекается по поверхности твердого тела до тех пор, пока не покроет всю поверхность.

При несмачивании ^\circ\le \theta \le ^\circ" width="122" height="17" />
и чем угол , тем сильнее несмачивание. При значении краевого угла ^\circ" width="70" height="15" />
наблюдается полное несмачивание. В этом случае жидкость не прилипает к поверхности твердого тела и легко скатывается с нее. Подобное явление можно наблюдать, когда мы пытаемся вымыть жирную поверхность холодной водой. Моющие свойства мыла и синтетических порошков объясняются тем, что мыльный раствор имеет меньшее поверхностное натяжение, чем вода. Большое поверхностное натяжение воды мешает ей проникать в мелкие поры и промежутки между волокнами ткани.

Явления смачивания и несмачивания играют важную роль в жизни человека. При таких производственных процессах, как склеивание, покраска, пайка очень важно обеспечить смачивание поверхностей. В то время, как обеспечение несмачивания очень важно при создании гидроизоляции, синтезе непромокаемых материалов. В медицине явления смачивания важны для обеспечения движения крови по капиллярам, дыхания и других биологических процессов.

Явления смачивания и несмачивания ярко проявляются в узких трубках – капиллярах.

Капиллярные явления

Капиллярные явления – это подъем или опускание жидкости в капиллярах по сравнению с уровнем жидкости в широких трубках.

Смачивающая жидкость поднимается по капилляру. Жидкость, не смачивающая стенки сосуда, опускается в капилляре.

Высота h поднятия жидкости по капилляру определяется соотношением:

\[h=\frac<2\sigma></p>
<p>\]

где коэффициент поверхностного натяжения жидкости; плотность жидкости; радиус капилляра, ускорение свободного падения.

Глубина , на которую опускается жидкость в капилляре, вычисляется по той же формуле.

Под вогнутым мениском смачивающей жидкости давление меньше, чем под плоской поверхностью. Поэтому жидкость в капилляре поднимается до тех пор. пока гидростатическое давление поднятой в капилляре жидкости на уровне плоской поверхности не скомпенсирует разность давлений. Под выпуклым мениском несмачивающей жидкости давление больше, чем под плоской поверхностью, это приводит к опусканию жидкости в капилляре.

Капиллярные явления мы можем наблюдать и в природе, и в быту. Например, почва имеет рыхлое строение и между ее отдельными частицами находятся промежутки, представляющие собой капилляры. При поливе по капиллярам вода поднимается к корневой системе растений, снабжая их влагой. Также находящаяся в почве вода, поднимаясь по капиллярам. испаряется. Чтобы уменьшить эффективность испарения, тем самым сократив потери влаги, почву разрыхляют, разрушая капилляры. В быту капиллярные явления используются при промокании влажной поверхности бумажным полотенцем или салфеткой.

Примеры решения задач

Задание В капиллярной трубке радиусом 0,5 мм жидкость поднялась на 11 мм. Найти плотность данной жидкости, если ее коэффициент поверхностного натяжения 22\ <mN>/
.
Решение Высота поднятия жидкости по капилляру определяется формулой:

\[h=\frac<2\sigma></p>
<p>\]

откуда плотность жидкости:

\[\rho =\frac<2\sigma></p>
<p>\]

Переведем единицы в систему СИ: радиус трубки ^m" width="203" height="20" />
; высота поднятия жидкости ^\ m" width="219" height="20" />
; коэффициент поверхностного натяжения жидкости /=2,2\cdot ^/" width="266" height="21" />
.

g=9,8\ <m></p>
<p>Ускорение свободного падения /
.

\[\rho =\frac<2\cdot 2,2\cdot </p>
<p>^>^\cdot 9,8\cdot 5\cdot ^>=816\ /\]

Задание Найти массу воды, поднявшейся по капиллярной трубке диаметром 0,5 мм.
Решение Высота поднятия жидкости по капилляру определяется формулой:

\[h=\frac<2\sigma></p>
<p>\ \]

\[\rho =\frac<m></p>
<p>\ \]

<\pi d^2></p>
<p>Объем столба жидкости, поднявшейся по капилляру, считаем как объем цилиндра с высотой  и площадью основания /
:

\[V=\frac<\pi d^2h></p>
<p>\ \]

подставив соотношение для объема столба жидкости в формулу для плотности жидкости, получим:

\[\rho =\frac<4m></p>
<p><\pi d^2h>\ \]

r=<d></p>
<p>С учетом последнего соотношения, а также того, что радиус капилляра /
, высота поднятия жидкости по капилляру:

\[h=\frac<2\sigma></p>
<p><\pi d^2h>\cdot g\cdot \frac>=\frac<\pi dh\sigma>\ \]

\[mgh=\frac<\pi dh\sigma></p>
<p>\]

Из последнего соотношения находим массу жидкости:

\[m=\frac<\pi d\sigma></p>
<p>\ \]

d=0,5\ mm=5\cdot <10></p>
<p>Переведем единицы в систему СИ: диаметр трубки ^\ m
.

g=9,8\ <m></p>
<p>Ускорение свободного падения /
.

\sigma =7,3\cdot <10></p>
<p>Коэффициент поверхностного натяжения воды ^\ /
.

\[m=\frac<\pi \cdot 5\cdot </p>
<p>^\cdot 7,3\cdot ^>=1,2\cdot ^\ kg\]

Задание В двух капиллярных трубках разного диаметра, опущенных в воду, установилась разность уровней 2,6 см. При опускании этих же трубок в спирт разность уровней оказалась 1 см. Зная коэффициент поверхностного натяжения воды, найти коэффициент поверхностного натяжения спирта.
Решение Высота поднятия жидкости в капилляре определяется формулой:

\[h=\frac<2\sigma></p>
<p>\ \]

Разность уровней в трубках при опускании их в воду:

\[\triangle h_aq=h_1-h_2=\frac<2<\sigma></p>
<p>_aq>_g>\left(\frac-\frac\right)\]

Аналогично при опускании трубок в спирт разность уровней составит:

\[\triangle h_</p>
<p>=h_1-h_2=\frac_>_g>\left(\frac-\frac\right)\]

Разделив первое уравнение на второе, получим:

\[\frac<\triangle h_</p>
<p>>>=\frac__><__>\]

откуда коэффициент поверхностного натяжения спирта:

\[<\sigma></p>
<p>_=\frac__><_>\cdot \frac<\triangle h_><\triangle h_>\]

Плотность воды _=1000\ /" width="152" height="22" />
плотность спирта _=789\ /" width="147" height="21" />
коэффициент поверхностного натяжения воды _=7,3\cdot ^\ /" width="177" height="22" />
.

\[<\sigma></p>
<p>_=\frac^\cdot 789>\cdot \frac=2,2\cdot ^\ /\]

Читайте также: