Что такое фрактальная геометрия в искусстве определение кратко

Обновлено: 05.07.2024

Фракталы этого типа строятся поэтапно. Сначала изображается основа. Затем некоторые части основы заменяются на фрагмент. На каждом следующем этапе части уже построенной фигуры, аналогичные замененным частям основы, вновь заменяются на фрагмент, взятый в подходящем масштабе. Всякий раз масштаб уменьшается. Когда изменения становятся визуально незаметными, считают, что построенная фигура хорошо приближает фрактал и дает представление о его форме. Для получения самого фрактала нужно бесконечное число этапов. Меняя основу и фрагмент, можно получить много разных геометрических фракталов.

Что такое фракталы? Мир вокруг нас. Часть первая

Что такое фрактал? Как устроен мир вокруг нас? Что лежит в основе всего? Почему наша Галактика по форме похожа на раковину Наутилуса, человеческий глаз на космическую туманность, а клетки мозга на всю нашу Вселенную?

Кому из вас не доводилось видеть похожие формы в живых и неживых объектах? Будто одна и та же формула, пронизывает всё вокруг.

Мир вокруг нас: Вселенная и клетки мозга, рождение звезды и деление клетки, глаза человека и туманности

Рис. 1. Фотография Вселенной, клетки мозга, рождение звезды, деление клетки, глаз человека и туманности

Схожие формы встречаются повсюду, от микро- до макромира: в минералах, растениях и животном мире, в структуре ДНК, в природных явлениях (циклоны, молнии, береговые линии), планетарных системах и звёздных скоплениях. Они присутствуют и в живых организмах.

Каковы закономерности и в чём причина такого сходства? Объяснением этому является фрактал. Фрактальность также прослеживается как в самом человеке, так и во взаимоотношениях в семье, коллективе и обществе в целом.

Фракталы в природе: клетки лука и эзоосмическая решётка

Рис. 2. Пример фракталов: клетки лука и эзоосмическая решётка

Можно сказать, что фрактал – это узор, который повторяет сам себя в разных масштабах до бесконечно малого или/и бесконечно большого. Он рождается не просто повторением форм, а скорее повторением процесса, который применяется к форме. Бесконечная цепочка самопостроения.

Она имеет сложное строение. Если мы возьмем нож, отрежем один бутончик и присмотримся, то увидим – это та же капуста только меньшего размера. Можно продолжить эксперимент и резать дальше – получаются более мелкие образцы капусты.

История открытия фракталов

Опираясь на найденные интересные артефакты, мы видим, что знаниями о фракталах располагали люди ещё в древности. Их изображение мы находим на керамике Трипольской культуры (с 5450 по 2700 год. до н. э.), в очертаниях построения селений и городищ, архитектуре зданий. Более подробно об этом будет рассказано во второй части статьи.

К примеру, выдающемуся зодчему Древнего Египта Имхотепу удалось возвести первую в той стране ступенчатую пирамиду – грандиозное фрактальное сооружение с чёткими математическими пропорциями. К слову сказать, группа близких Имхотепу людей называли Бога не иначе как Великим Зодчим Мироздания. А во времена существования ордена Тамплиеров по всей Европе получил широкое распространение готический стиль архитектуры – воплощение сакральной геометрии и фрактальных узоров в камне.

Однако, со временем учёные выбрали другой, материалистический путь развития науки, который увёл нас далеко от этих знаний, и божественные законы были забыты.

В области изучения фракталов ещё в конце ХIX – начале ХХ веков работали многие учёные: Пьер Фату, Жюль Анри Пуанкаре, Георг Кантор, Феликс Хаусдорф, Гастон Жюлиа. Они и заложили математическую базу для появления теории фракталов.

Появление вычислительных устройств позволило ускоренно проводить итерации (многократно повторяющийся процесс вычисления) и визуализировать формулы. А сама идея ввести формулу Гастона Жюлиа в компьютер и с его помощью произвести громоздкие расчеты пришла в голову Мандельброту приблизительно в 1977 году. Раз за разом, меняя переменную C, он получал новые удивительные изображения. Таким образом, множества Жюлиа приобрели геометрические формы. (см. Множества Жюлиа). В 1980 г. программа отпечатала нечто похожее на кляксу. (см. фрактал Мандельброта). Это простое на первый взгляд изображение при приближении выявляет в себе новые и новые отображения множеств Жюлиа, которым нет предела.

Фрактал Мандельброта. Множество Жюлиа

Рис. 4. Изображения фракталов. Фрактал Мандельброта. Множество Жюлиа

Много современных учёных успешно работали в данном направлении. Заслуга Бенуа заключается в том, что он первым визуализировал уже имеющиеся формулы, показав всему миру их невероятную красоту, и дал ныне существующее название этому явлению.

Виды фракталов

Фракталы бывают разных видов, рассмотрим некоторые из них:

  • геометрические;
  • алгебраические;
  • стохастические;
  • концептуальные (социокультурные, непространственные и т.д.)

Геометрические виды фракталов являются самыми наглядными и простыми в строении. Увидеть их может любой человек. Множество таких фракталов можно нарисовать на обычном листке бумаги в клетку. Примером являются: Треугольник Серпинского, Снежинка Коха, Н-фрактал, Т-фрактал, Дракон, Кривая Леви, Дерево Пифагора.

Примеры геометрических видов фракталов

Рис. 5. Примеры геометрических фракталов

Он строится путём многократного разделения отрезка линии на 3 равные части и замены средней части на 2 новых отрезка той же длины. Число сторон каждый раз учетверяется, вследствие чего становится бесконечно великим. Периметр снежинки имеет бесконечную длину, но площадь при этом конечна, так как фигура является замкнутой.

Пример построения фракталов. Снежинка Коха

Фрактальные антенны

Рис. 7. Примеры фрактальных антенн

Возьмём равносторонний треугольник, отметим середины его сторон.

Соединим срединные точки прямыми линиями. Образовались 4 треугольника.

Теперь повторим эту операцию с каждым из вновь образовавшихся треугольников. И так до бесконечности.

Треугольник Серпинского: пример построения

Рис. 8. Построение треугольника Серпинского

Из этого примера легко увидеть, что количество треугольников увеличивается, и сумма их периметров (сумма сторон треугольников) стремится к бесконечности, а сумма площадей – к нулю.

Это самая крупная группа фракталов, которая базируется на основе разных алгебраических формул. Ярким примером является фрактал Мандельброта. В настоящее время их принято отображать в цвете. Получаются красивейшие необычные орнаменты, которые используют, например, в дизайне одежды.

Примеры алгебраических видов фракталов

Рис. 9. Изображения алгебраических фракталов

Не менее популярным является способ построения, основанный на комплексной динамике. В результате образуются фракталы, напоминающие живые организмы – биоморфы. (рис.10).

Биоморфы – примеры способа построения фракталов

  • Молния
  • Ионосфера
  • Северное сияние
  • Пламя

Стохастические фракталы

Рис. 11. Стохастические фракталы

Концептуальные (социокультурные, непространственные) фракталы

Дедка, бабка, внучка.

Дедка, бабка, внучка, Жучка и т.д.

Фрактальность наблюдается в организации человеческих поселений (страна – город – квартал); в распределении общества на группы (народ – социокультурная группа – семья – человек). Сюда же отнесём фрактальность взаимоотношений, которые начинаются с самого человека. Меняется человек, его восприятие, внутреннее состояние – изменяется взаимоотношение в семье, коллективе, в итоге преобразуется всё общество. Прослеживается фрактальность в иерархических системах управления.

ФРАКТАЛЬНЫЕ ФОРМЫ В ПРИРОДЕ

Фракталы – это молнии и природные ландшафты, снежинки и корень растения, фигуры Лихтенберга

Рис. 12. Фракталы в природе

Один из наглядных примеров фрактальной формы – береговые линии, которые отличаются друг от друга степенью своей изрезанности. Нет абсолютно одинаковых протоков, но их общие очертания как будто нарисованы одним лекалом. Эти очертания независимо от размера очень похожи. Маленький проток – это уменьшенная копия большого. Если увеличить верхний правый угол картинки, то она будет аналогична всей картине, изображенной на рисунке.

Фракталы в природе – береговые линии

Рис. 13. Береговые линии

Растительный мир нашей зелёной планеты богат и разнообразен. На первый взгляд кажется, что в нём нет никакой закономерности: растения в лесу расположены беспорядочно, ветки с листьями на растениях тоже. Но возьмём, к примеру, дерево. Если рассматривать дерево поднимаясь от основания к вершине, то видно, как от ствола отходят большие ветви, на больших ветвях идёт такое же разветвление меньших веток, и дальше форма разветвления в любой части дерева будет повторяться, лишь уменьшаясь в размере к вершине. И зная принципы построения фракталов, изучив все закономерности расположения веток на вершине дерева, нетрудно догадаться, как выглядит это же дерево у своего основания.

Крона – это видимая часть дерева, которая является отражением корневой системы. А корни, в свою очередь, тоже имеют ярко выраженное фрактальное строение. (рис.14, б).

Примеры фракталов: развилки на стволах дерева, корневой системе дерева

Рис. 14. Фракталы в природе на примере дерева

Самое интересное, что прожилки на листьях тоже образуют фрактальный рисунок, очень похожий на плоское миниатюрное дерево (рис.15). Нет листьев с одинаковым рисунком, так же как нет людей с одинаковым отпечатком пальца. Рисунок на каждом листе уникален.

Фрактальность в листьях

Рис. 15. Фрактальность в листьях

Комнатное растение (королевская бегония) – яркий пример проявления фракталов в рисунке листьев. Маленькие листочки по форме и сочетанию цветов аналогичны большим, хотя и не являются их точной копией (рис.16).

Бегония королевская – примеры фракталов в природе

Рис. 16. Листья королевской бегонии

Один из самых старых видов наземных растений – папоротники. Учёные полагают, что они существуют более 350 млн. лет. Строение листа этого растения очень похоже на компьютерный фрактал (рис.17). Именно это растение является ярким доказательством того, что чем древнее биологическая форма, тем чётче в ней прослеживается фрактал, то есть форма организма строится по простым правилам.

Фракталы на примере листьев папоротника

Рис. 17. Листья папоротников

Съедобные растения тоже несут в себе формы самоподобия. Красная капуста в продольном срезе имеет фрактальный рисунок. (рис.18)

Разные сорты капусты – фракталы

Рис. 18. Фото разных сортов капусты

Казалось бы, тугой кочан капусты, а его красота может вдохновить даже художника. Белые утолщения центральных черенков плотно прижатых листьев образуют волшебный фрактальный лабиринт.

Лишайники так же как папоротники и мхи – это самые древние представители растительного мира, поэтому фракталы в них выражены особенно ярко. В их узлах содержатся те же фрактальные формы, что и по краям.

Лишайники

Фрактальность мироустройства, энергии.
Спираль как фрактал

Мир вокруг нас разнообразен. Многие объекты, существующие в природе, являются фракталами. В их основе лежит Божественная пропорция (число Фи) – это Золотое сечение и золотая спираль, благодаря которой мы воспринимаем красоту и гармонию природы, пропорциональность строения человека, древней архитектуры, классических произведений искусства.

Золотая спираль строится фрактальным способом: прямоугольник с золотой пропорцией. 1,618 (число Фи) разбивают на малые квадраты и проводят дугу. То есть в спиралях большая дуга переходит в подобную меньшую и т.д.

Пример золотого сечения

Рис. 20. Золотое сечение

Спираль сама по себе является фракталом, в котором каждый новый виток копирует предыдущие, но в новом масштабе. Прямая взаимосвязь между мироустройством микро- и макромира и формой спирали свидетельствует о фрактальном устройстве Вселенной.

Здесь же мы читаем, что в мифологии древних народов основные моменты о сотворении мира схожи. Говорится, что из мира Бога появился Первичный Звук, который породил Вселенную в форме шара. А на его поверхности под действием сил Аллата (первичной энергии, порождающей жизненное движение) стала образовываться материя, которая благодаря тем же силам начала взаимодействовать между собой.

Весь мир создан по математическим пропорциям, и древние об этом знали и отразили своё знание в мифах о сотворении мира. Спираль и последовательность Фибоначчи – это тоже фракталы.

Понятие о двух противодействующих силах Вселенной запечатлены на артефактах разных культур и эпох символом спиралей, закрученных в разные стороны.

Спирали на артефактах культур мира

Рис. 20. Артефакты с символом спираль в культурах мира

Науке уже известно о спиральных структурах и спиралевидном движении энергии. В этом движении также обнаруживаются фрактальные свойства. Их можно увидеть в космосе, в теле человека, в растениях и природных явлениях (облака, циклоны, водовороты).

Физики наблюдали, как в турбулентных потоках большие вихри порождают вихри поменьше, а те ещё меньше, и такое деление спиралевидных энергий наблюдалось до тех видимых пределов, которые технически были доступны учёным.

Фрактальные свойства присутствуют в структуре и движении энергии электрического разряда, воды, в росте растений и т.д.

Чем полезны знания о фракталах

Понимание фрактального устройства упростило многие сферы научных исследований. Удивительная особенность фракталов – повторение аналогичного паттерна в разных масштабах – позволяет нам, изучив малую часть какого-либо события или явления, предполагать об устройстве целого.

Это свойство позволило более точно рассчитывать площади неровных изломанных поверхностей. Например географических, таких как береговые линии, облака, или биологических – внутренняя поверхность лёгких или нервных волокон.

Строение человеческого организма. Пример фракталов лёгочной системы

Рис. 21. Изображение структуры лёгких

Фрактальное строение ландшафта позволило создавать 3D модели гор, облаков, берега, что широко используется в компьютерной графике кинематографа, программ обучения водителей, лётчиков, а также в компьютерных играх. По факту, это есть создание иллюзорной копии нашего мира (иллюзии внутри иллюзии).

В технической сфере мы научились производить фрактальные антенны, которые позволяют значительно уменьшить размеры конструкции, и расширить диапазон принимаемых частот без увеличения объёма и громоздкости.

Применение фрактального свойства в архитектуре привело к появлению новых необычных форм с увеличением прочности строений.

Знания о фракталах нашли применение во всех сферах жизни человека – в физике, экономике, культуре, биологии, геологии и т.д.

Но главное – это реальный шанс по-новому взглянуть на мироустройство, которое пронизано фракталами вдоль, поперёк и насквозь. Например, изучение галактики, позволило учёным приблизиться к пониманию о строении Вселенной и о параллельных мирах.

ЗАКЛЮЧЕНИЕ

Как видим, фракталы – это не нечто обособленное и непонятное. Они наполняют нашу жизнь. Знания о фрактальном построении мира имелись у людей издревле. Мы провели небольшое исследование и нашли интересные факты, связанные с древностью фракталов, способами их применения в архитектуре и проявлений как в самом человеке, так и в обществе.

Во второй части нас ждёт захватывающее путешествие в историю, архитектуру, музыку. У нас будет возможность понять, как изменения в неизмеримо малом могут привести к глобальным трансформациям. И что может сделать человек как единица общества, чтобы наступило золотое тысячелетие, о котором люди мечтают с давних пор.

Конец первой части

Список литературы:

Смирнова А. С., Готический стиль в архитектуре и психология. (Научные труды Института Непрерывного Профессионального Образования. №4/2014.

Cтатья из Вестника Брестского гос. техн. унив-та. 2015 №1: Колосовская А.Н. Архитектурные сооружения духовно-рыцарский орденов.

Г.М. Вдовин Г.М., Трубецков Д.И., Столетие фрактальной геометрии: От Жюлиа и Фату через Хаусдорфа и Безиковича к Мандельброту. Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского. Россия. 2020.

Так как многие объекты в природе обладают свойствами фрактала: например, побережья, облака, кроны деревьев, снежинки, кровеносная система, система альвеол человека или животных, их можно генерировать на компьютере

Фракталы, особенно на плоскости, стали популярны благодаря сочетанию фантастически красивых и очень сложных структур с простотой построения их при помощи компьютера.

Оригинал взят у vasily_sergeev в Фрактальная цифровая художница ccdigitalfx

Фракталы у нее получаются фантастически красивыми и захватывающими. Вглядываясь в них, вдруг отчетливо понимаешь, насколько хрупка грань между пространством и временем, а фракталы и есть те самые проводники в иные миры и измерения и насколько красивы эти переходы.
1


Относительно молодой и оригинальный вид искусства, создаваемый математическими формулами, завоевывает все больше поклонников. Для его создания не нужны ни рисунки ни фотографии, все проще и сложнее одновременно.

PUBLISHED by catsmob.com

Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Слово фрактал образовано от латинского fractus и в переводе означает состоящий из фрагментов. Оно было предложено Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта `The Fractal Geometry of Nature'. В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф). Но только в наше время удалось объединить их работы в единую систему.


Роль фракталов в машинной графике сегодня достаточно велика. Они приходят на помощь, например, когда требуется, с помощью нескольких коэффициентов, задать линии и поверхности очень сложной формы. С точки зрения машинной графики, фрактальная геометрия незаменима при генерации искусственных облаков, гор, поверхности моря. Фактически найден способ легкого представления сложных неевклидовых объектов, образы которых весьма похожи на природные.

Одним из основных свойств фракталов является самоподобие. В самом простом случае небольшая часть фрактала содержит информацию о всем фрактале.

Определение фрактала, данное Мандельбротом, звучит так: "Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому"

Читайте также: