Что такое электродный потенциал в химии кратко и понятно

Обновлено: 05.07.2024

Окислительно — восстановительный потенциал является частным, узким случаем понятия электродного потенциала. Рассмотрим подробнее эти понятия.

В ОВР передача электронов восстановителями окислителям происходит при непосредственном контакте частиц, и энергия химической реакции переходит в теплоту.

Энергия любой ОВР, протекающей в растворе электролита, может быть превращена в электрическую энергию, если, например, окислительно-восстановительные процессы разделить пространственно, т.е. передача электронов восстановителем будет происходить через проводник электричества.

Это реализовано в гальванических элементах, где электрическая энергия получается из химической энергии окислительно-восстановительной реакции.

Элемент Даниэля-Якоби

Рассмотрим гальванический элемент Даниэля-Якоби, в котором левый сосуд наполнен раствором сульфата цинка ZnSO4, с опущенной в него цинковой пластинкой, а правый сосуд – раствором сульфата меди CuSO4, с опущенным в него медной пластинкой.

гальванический элемент Даниэля-Якоби

гальванический элемент Даниэля-Якоби

Взаимодействие между раствором и пластиной, которая выступает в качестве электрода, способствует тому, чтобы электрод приобрел электрический заряд.

Возникающая на границе металл-раствор электролита разность потенциалов, называется электродным потенциалом. Значение и знак (+ или -) электродного потенциала определяются природой раствора и находящегося в нем металла.

При погружении металлов в растворы их солей более активные из них (Zn, Fe и др.) заряжаются отрицательно, а менее активные (Cu, Ag, Au и др.) положительно.

Результатом соединения цинковой и медной пластинки проводником электричества, является возникновение в цепи электрического тока за счет перетекания электронов с цинковой к медной пластинке по проводнику.

При этом происходит уменьшение количества электронов в цинке, что компенсируется переходом Zn 2+ в раствор т.е. происходит растворение цинкового электрода — анода (процесс окисления).

Zn — 2e — = Zn 2+

В свою очередь, рост количества электронов в меди компенсируется разряжением ионов меди, содержащихся в растворе, что приводит к накоплению меди на медном электроде – катоде (процесс восстановления):

Cu 2+ + 2e — = Cu

Таким образом, в элементе Даниэля-Якоби происходит такая реакция:

Zn + Cu 2+ = Zn 2+ + Cu

Zn + CuSO4 = ZnSO4 + Cu

Количественно охарактеризовать окислительно-восстановительные процессы позволяют электродные потенциалы, измеренные относительно нормального водородного электрода (его потенциал принят равным нулю).

Чтобы определить стандартные электродные потенциалы используют элемент, одним из электродов которого является испытуемый металл (или неметалл), а другим является водородный электрод. По найденной разности потенциалов на полюсах элемента определяют нормальный потенциал исследуемого металла.

Окислительно-восстановительный потенциал

Значениями окислительно-восстановительного потенциала пользуются в случае необходимости определения направления протекания реакции в водных или других растворах.

2Fe 3+ + 2I — = 2Fe 2+ + I2

таким образом, чтобы йодид-ионы и ионы железа обменивались своими электронами через проводник.

В сосуды, содержащие растворы Fe 3+ и I — , поместим инертные (платиновые или угольные) электроды и замкнем внутреннюю и внешнюю цепь. В цепи возникает электрический ток.

Йодид-ионы отдают свои электроны, которые будут перетекать по проводнику к инертному электроду, погруженному в раствор соли Fe 3+ :

2I — — 2e — = I2

2Fe 3+ + 2e — = 2Fe 2+

Процессы окисления-восстановления происходят у поверхности инертных электродов. Потенциал, который возникает на границе инертный электрод – раствор и содержит как окисленную, так восстановленную форму вещества, называется равновесным окислительно-восстановительным потенциалом.

Факторы, влияющие на значение окислительно-восстановительного потенциала

Значение окислительно-восстановительного потенциала зависит от многих факторов, в том числе и таких как:

1) Природа вещества (окислителя и восстановителя)

2) Концентрация окисленной и восстановленной форм.

При температуре 25°С и давлении 1 атм. величину окислительно-восстановительного потенциала рассчитывают с помощью уравнения Нернста:

E – окислительно-восстановительный потенциал данной пары;

E°- стандартный потенциал (измеренный при Cок = Cвос);

R – газовая постоянная (R = 8,314 Дж);

T – абсолютная температура, К

n – количество отдаваемых или получаемых электронов в окислительно-восстановительном процессе;

F – постоянная Фарадея (F = 96484,56 Кл/моль);

Cок – концентрация (активность) окисленной формы;

Cвос– концентрация (активность) восстановленной формы.

Подставляя в уравнение известные данные и перейдя к десятичному логарифму, получим следующий вид уравнения:

При Cок > Cвос, E > и наоборот, если Cок 2- , CrO4 2- , MnO4 — ) при уменьшении pH раствора окислительно-восстановительный потенциал возрастает, т.е. потенциал растет с ростом H + . И наоборот, окислительно-восстановительный потенциал падает с уменьшением H + .

4) Температура

При увеличении температуры окислительно-восстановительный потенциал данной пары также растет.

Стандартные окислительно-восстановительные потенциалы представлены в таблицах специальных справочников. Следует иметь ввиду, что рассматриваются только реакции в водных растворах при температуре ≈ 25°С.

Такие таблицы дают возможность сделать некоторые выводы:

Что можно определить по значению окислительно-восстановительного потенциала

  • Величина и знак стандартных окислительно-восстановительных потенциалов, позволяют предсказать какие свойства (окислительные или восстановительные) будут проявлять атомы, ионы или молекулы в химических реакциях, например

(F2/2F — ) = +2,87 В – сильнейший окислитель

(K + /K) = — 2,924 В – сильнейший восстановитель

Окислительно-восстановительная пара будет обладать тем большей восстановительной способностью, чем больше числовое значение ее отрицательного потенциала, а окислительная способность тем выше, чем больше положительный потенциал.

  • Возможно определить какое из соединений одного элемента будет обладать наиболее сильным окислительными или восстановительными свойствами.
  • Возможно предсказать направление ОВР. Известно, что работа гальванического элемента имеет место при условии, что разность потенциалов имеет положительное значение. Протекание ОВР в выбранном направлении также возможно, если разность потенциалов имеет положительное значение. ОВР протекает в сторону более слабых окислителей и восстановителей из более сильных, например, реакция

Sn 2+ + 2Fe 3+ = Sn 4+ + 2Fe 2+

практически протекает в прямом направлении, т.к.

(Sn 4+ /Sn 2+ ) = +0,15 В,

(Fe 3+ /Fe 2+ ) = +0,77 В,

т.е. (Sn 4+ /Sn 2+ ) 3+ /Fe 2+ ).

Cu + Fe 2+ = Cu 2+ + Fe

невозможна в прямом направлении и протекает только справа налево, т.к.

В процессе ОВР количество начальных веществ уменьшается, вследствие чего Е окислителя падает, а E восстановителя возрастает. При окончании реакции, т.е. при наступлении химического равновесия потенциалы обоих процессов выравниваются.

  • Если при данных условиях возможно протекание нескольких ОВР, то в первую очередь будет протекать та реакция, у которой разность окислительно-восстановительных потенциалов наибольшая.
  • Пользуясь справочными данными, можно определить ЭДС реакции.

Как определить электродвижущую силу (ЭДС) реакции?

Рассмотрим несколько примеров реакций и определим их ЭДС:

(Mg 2+ /Mg) = — 2,36 В

(Fe 2+ /Fe) = — 0,44 В

Чтобы определить ЭДС реакции, нужно найти разность потенциала окислителя и потенциала восстановителя

ЭДС = Е 0 ок — Е 0 восст

  1. ЭДС = — 0,44 — (- 2,36) = 1,92 В
  2. ЭДС = 0,00 — (- 2,36) = 2,36 В
  3. ЭДС = + 0,34 — (- 2,36) = 2,70 В

Все вышеуказанные реакции могут протекать в прямом направлении, т.к. их ЭДС > 0.

Связь константы равновесия и окислительно — восстановительного потенциала

Если возникает необходимость определения степени протекания реакции, то можно воспользоваться константой равновесия.

Например, для реакции

Zn + Cu 2+ = Zn 2+ + Cu

Применяя закон действующих масс, можно записать

Здесь константа равновесия К показывает равновесное соотношение концентраций ионов цинка и меди.

Значение константы равновесия можно вычислить, применив уравнение Нернста

Подставим в уравнение значения стандартных потенциалов пар Zn/Zn 2+ и Cu/Cu 2+ , находим

В состоянии равновесия E 0 Zn/Zn2+ = E 0 Cu/Cu2+, т.е.

-0,76 + (0,59/2)lgCZn2+ = +0,34 + (0,59/2)lgCCu2+, откуда получаем

Значение константы равновесия показывает, что реакция идет практически до конца, т.е. до того момента, пока концентрация ионов меди не станет в 10 37,7 раз меньше, чем концентрация ионов цинка.

Константа равновесия и окислительно-восстановительный потенциал связаны общей формулой:

lgK = (E1 0 -E2 0 )n/0,059, где

K — константа равновесия

E1 0 и E2 0 – стандартные потенциалы окислителя и восстановителя соответственно

n – число электронов, отдаваемых восстановителем или принимаемых окислителем.

Если E1 0 > E2 0 , то lgK > 0 и K > 1.

Следовательно, реакция протекает в прямом направлении (слева направо) и если разность (E1 0 — E2 0 ) достаточно велика, то она идет практически до конца.

Напротив, если E1 0 0 , то K будет очень мала.

Реакция протекает в обратном направлении, т.к. равновесие сильно смещено влево. Если разность (E1 0 — E2 0 ) незначительна, то и K ≈ 1 и данная реакция не идет до конца, если не создать необходимых для этого условий.

Зная значение константы равновесия, не прибегая к опытным данным, можно судить о глубине протекания химической реакции. Следует иметь ввиду, что данные значений стандартных потенциалов не позволяют определить скорость установления равновесия реакции.

По данным таблиц окислительно-восстановительных потенциалов возможно найти значения констант равновесия примерно для 85000 реакций.

Как составить схему гальванического элемента?

Приведем рекомендации ИЮПАК, которыми следует руководствоваться, чтобы правильно записать схемы гальванических элементов и протекающие в них реакции:

  1. ЭДС элемента — величина положительная, т.к. в гальваническом элементе работа производится.
  2. Значение ЭДС гальванической цепи – это сумма скачков потенциалов на границах раздела всех фаз, но, учитывая, что на аноде происходит окисление, то из значения потенциала катода вычитают значение потенциала анода.

Таким образом, при составлении схемы гальванического элемента слева записывают электрод, на котором происходит процесс окисления (анод), а справа – электрод, на котором происходит процесс восстановления (катод).

  1. Граница раздела фаз обозначается одной чертой — |
  2. Электролитный мостик на границе двух проводников обозначается двумя чертами — ||
  3. Растворы, в которые погружен электролитный мостик записываются слева и справа от него (если необходимо, здесь же указывается концентрация растворов). Компоненты одной фазы, при этом записываются через запятую.

Например, составим схему гальванического элемента, в котором осуществляется следующая реакция:

Fe 0 + Cd 2+ = Fe 2+ + Cd 0

В гальваническом элементе анодом является железный электрод, а катодом – кадмиевый.

Анод Fe 0 |Fe 2+ || Cd 2+ |Cd 0 Катод

Типичные задачи на составление схем гальванического элемента и вычисление ЭДС реакции с решениями вы найдете здесь.

Электроды– электрохимические системы, состоящие из металла или полупроводника, погруженного в раствор или расплав электролита. Фактически, это металлические или графитовые изделия (проводники первого рода), находящиеся в среде, проводящей электрический ток (проводники второго рода). Носителями свободных зарядов в проводниках первого рода являются электроны, а в проводниках второго рода – ионы обоих знаков.

Металлы, как правило, имеют кристаллическое строение. В узлах кристаллической решетки расположены положительные ионы (катионы), находящиеся в равновесии с электронным газом:

При погружении металла в раствор начинается сложное взаимодействие металла с компонентами раствора. Катионы металла выходят в электролит, а катионы электролита встраиваются в кристаллическую решетку металла. Со временем устанавливается равновесие между электродом и электролитом. В зависимости от того, куда смещено это равновесие, поверхность металла приобретает больший или меньший потенциал.

Потенциал электрода, опущенного в электролит, называется электродным потенциалом. Его значения зависят от многих факторов: материала электрода, состава электролита, температуры, давления и т. д. Величину электродного потенциала измеряют относительно некоторого выбранного электрода сравнения, потенциал которого принимают равным нулю. В качестве электрода сравнения обычно принимают стандартный водородный электрод.

Стандартным электродным потенциалом (j 0 )называется потенциал металла, погруженного в раствор собственной соли и измеренный относительно водородного электрода в стандартных условиях. Стандартные условия: концентрация ионов в растворе 1 моль/л, температура Т = 298 К, давление Р = 1,01325∙10 5 Па.

По результатам измерений получен ряд стандартных электродных потенциалов (табл. 9.1), который позволяет дать количественную характеристику электрохимической активности металлов. Чем меньше значение φ 0 , тем сильнее выражены восстановительные свойства металла, т. е. он легче отдает электроны, легче окисляется. Чем больше значение φ 0 , тем сильнее окислительные свойства катиона металла, находящегося в растворе.

Стандартные электродные потенциалы φ 0 некоторых металлов

Электрод Электродный потенциал, В Электрод Электродный потенциал, В
Li + /Li –3,05 Cd 2+ /Cd –0,40
Rb + /Rb –2,93 Co 2+ /Co –0,28
K + /K –2,92 Ni 2+ /Ni –0,25
Ba 2+ /Ba –2.90 Sn 2+ /Sn –0,136
Ca 2+ /Ca –2,87 Pb 2+ /Pb –0,127
Na + /Na –2,71 2H + /H 0,00
Mg 2+ /Mg –2,37 Sb 3+ /Sb +0,20
Al 3+ /Al –1,70 Bi 3+ /Bi +0,22
Ti 2+ /Ti –1,60 Cu 2+ /Cu +0,34
V 2+ /V –1,18 Ag + /Ag +0,85
Mn 2+ /Mn –1,18 Hg 2+ /Hg +0,85
Zn 2+ /Zn –0,76 Pt 2+ /Pt +1,19
Cr 3+ /Cr –0,74 Au 3+ /Au +1,5
Fe 2+ /Fe –0,44

Для вычисления электродных потенциалов в условиях, отличных от стандартных, используют уравнение Нернста:

где T – температура, К;

F – число Фарадея, равное 96 500 Кл/моль;

R – универсальная газовая постоянная, равная 8,314 Дж/(моль . К);

n – число электронов, принимающих участие в элементарном акте окислительно-восстановительного процесса;

– концентрация ионов металла в растворе, моль/л.

При T = 298 К формула Нернста приобретает вид:

Электроды– электрохимические системы, состоящие из металла или полупроводника, погруженного в раствор или расплав электролита. Фактически, это металлические или графитовые изделия (проводники первого рода), находящиеся в среде, проводящей электрический ток (проводники второго рода). Носителями свободных зарядов в проводниках первого рода являются электроны, а в проводниках второго рода – ионы обоих знаков.

Металлы, как правило, имеют кристаллическое строение. В узлах кристаллической решетки расположены положительные ионы (катионы), находящиеся в равновесии с электронным газом:

При погружении металла в раствор начинается сложное взаимодействие металла с компонентами раствора. Катионы металла выходят в электролит, а катионы электролита встраиваются в кристаллическую решетку металла. Со временем устанавливается равновесие между электродом и электролитом. В зависимости от того, куда смещено это равновесие, поверхность металла приобретает больший или меньший потенциал.




Потенциал электрода, опущенного в электролит, называется электродным потенциалом. Его значения зависят от многих факторов: материала электрода, состава электролита, температуры, давления и т. д. Величину электродного потенциала измеряют относительно некоторого выбранного электрода сравнения, потенциал которого принимают равным нулю. В качестве электрода сравнения обычно принимают стандартный водородный электрод.

Стандартным электродным потенциалом (j 0 )называется потенциал металла, погруженного в раствор собственной соли и измеренный относительно водородного электрода в стандартных условиях. Стандартные условия: концентрация ионов в растворе 1 моль/л, температура Т = 298 К, давление Р = 1,01325∙10 5 Па.

По результатам измерений получен ряд стандартных электродных потенциалов (табл. 9.1), который позволяет дать количественную характеристику электрохимической активности металлов. Чем меньше значение φ 0 , тем сильнее выражены восстановительные свойства металла, т. е. он легче отдает электроны, легче окисляется. Чем больше значение φ 0 , тем сильнее окислительные свойства катиона металла, находящегося в растворе.

Стандартные электродные потенциалы φ 0 некоторых металлов

Электрод Электродный потенциал, В Электрод Электродный потенциал, В
Li + /Li –3,05 Cd 2+ /Cd –0,40
Rb + /Rb –2,93 Co 2+ /Co –0,28
K + /K –2,92 Ni 2+ /Ni –0,25
Ba 2+ /Ba –2.90 Sn 2+ /Sn –0,136
Ca 2+ /Ca –2,87 Pb 2+ /Pb –0,127
Na + /Na –2,71 2H + /H 0,00
Mg 2+ /Mg –2,37 Sb 3+ /Sb +0,20
Al 3+ /Al –1,70 Bi 3+ /Bi +0,22
Ti 2+ /Ti –1,60 Cu 2+ /Cu +0,34
V 2+ /V –1,18 Ag + /Ag +0,85
Mn 2+ /Mn –1,18 Hg 2+ /Hg +0,85
Zn 2+ /Zn –0,76 Pt 2+ /Pt +1,19
Cr 3+ /Cr –0,74 Au 3+ /Au +1,5
Fe 2+ /Fe –0,44

Для вычисления электродных потенциалов в условиях, отличных от стандартных, используют уравнение Нернста:

где T – температура, К;

F – число Фарадея, равное 96 500 Кл/моль;

R – универсальная газовая постоянная, равная 8,314 Дж/(моль . К);

n – число электронов, принимающих участие в элементарном акте окислительно-восстановительного процесса;

Что такое электродный потенциал

Потенциал электрода или электродный потенциал металла - это разность потенциалов, которая возникает на границе раздела фаз металл-раствор при погружении металла в раствор электролита в результате взаимодействия поверхностных ион-атомов металла, находящихся в узлах кристаллической решетки, с полярными молекулами воды, ориентированными у поверхности электрода. Это связано с образованием двойного электрического слоя, то есть несимметричного распределения заряженных частиц у границы раздела фаз.

Явления растворения металлов в электролитах используются в химических источниках электроэнергии. Металлическая пластина, опушенная в раствор своей же соли, в той или иной мере стремится в ней раствориться. Это стремление иногда называется упругостью растворения металла.

Цинковая пластина, опущенная в раствор сернокислого цинка Zn SO4 , отдает в раствор частицы цинка в виде положительно заряженных ионов. Вследствие того, что атомы пинка уходят в виде положительно заряженных ионов, на цинковой пластине образуется избыток свободных электронов и она заряжается отрицательно, а в слое жидкости вблизи поверхности цинка образуется избыток положительных ионов и, следовательно, этот слой заряжается положительно. Таким путем на границе жидкости и металла возникает двойной электрический слой из пространственно разделенных зарядов противоположного знака.

Эти заряды будут противодействовать дальнейшему переходу металла в раствор — отрицательные пластины удерживают положительный ион металла, а положительный заряд электролита отталкивает ион металла назад на пластину. Иными словами, электрическое поле двойного слоя на границе металл — жидкость противодействует дальнейшему переходу ионов металла в раствор. Устанавливается равновесие между химическими по своей природе силами стремления металла перейти в раствор и электрическими силами, им противодействующими.

Схема образования двойного электрического слоя на границе металла и электролита

Таким образом, вследствие растворения в электролите металлический электрод приобретает по отношению к электролиту определенный электродный (иначе электрохимический) потенциал, зависящий от материала электрода и состава электролита.

Однако электродные потенциалы могут иметь положительное значение. Это имеет место в тех случаях, когда положительные ионы раствора переходят на электрод, заряжая его положительно, а слой электролита — отрицательно, например, когда медная пластина погружена в достаточно концентрированный раствор сернокислой меди (CuSO4).

Двойной электрический слой можно уподобить конденсатору, одна из обкладок которого представляет собой поверхность металла, а другая — слой ионов в растворе у поверхности металла. Между разноименно заряженными обкладками и возникает разность, или скачок, потенциала.

Скачок потенциала на границе электрод-раствор может служить мерой окислительно-восстановительной способности системы. Однако невозможно произвести измерение такого скачка потенциала или, что то же, разности потенциалов между двумя фазами. Но можно произвести измерение э. д. с. элементов, составленных из интересующих нас электродов и какого-нибудь одного (одинакового во всех случаях) электрода, потенциал которого условно принят за нуль.

Измеренная э. д. с. будет характеризовать окислительно-восстановительную способность интересующего нас электрода относительно некоторого условного нуля. Полученная таким способом величина называется собственным потенциалом металла.

Чтобы измерить электродный потенциал любого металла, необходимо поместить в электролит второй электрод, который и свою очередь будет обладать определенным электродным потенциалом, зависящим от его материала. Следовательно, непосредственно измерить можно только алгебраическую сумму двух электродных потенциалов.

По этой причине электродные потенциалы различных материалов определяются по отношению к стандартному (водородному электроду, потенциал которого условно принимают за нуль.

Для измерения могут применяться и другие электроды сравнения, потенциал которых относительно водородного стандартного электрода известен. Этот потенциал также находят на основании измерения э. д. с. цепи, составленной из выбранного электрода сравнения и стандартного водородного электрода.

Если изучаемый электрод в паре со стандартным водородным электродом является отрицательным, то собственному потенциалу приписывается знак "-", в противном случае - знак "+".

Например, измеренный таким образом в растворе соответствующей соли металла электродный потенциал цинка -0,76 В, меди +0,34 В, серебра +0,8 В. Э. д. с, которую дает элемент, определяется вычитанием потенциала более отрицательного из потенциала более положительного.

Если в соответствующий электролит помещены две пластины из металлов, имеющих различный электродный потенциал, например, в раствор серной кислоты (H2SO4) помещены цинковая (Zn) и медная (С u ) пластины, то вольтметр, присоединенный к этим пластинам, покажет между ними напряжение немного более 1 В.

Это напряжение, называемое в данном случае э. д. с. гальванической пары, будет обусловлено разностью электродных потенциалов меди, обладающей небольшим положительным потенциалам, и цинка, обладающего значительным отрицательным потенциалом. Такое устройство является простейшим гальваническим элементом — элементом Вольта.

В гальваническом элементе происходит превращение химической энергии в электрическую и с его помощью можно совершить электрическую работу за счет энергии химической реакции.

Измерение э. д. с. гальванических элементов необходимо производить при отсутствии тока в цепи элемента. В противном случае измеренная э. д. с. будет меньше, чем величина, определяемая как разность равновесных потенциалов обоих электродов. Действительно, равновесному потенциалу отвечает определенная концентрация электронов на электродах: на более положительном она ниже, на более отрицательном выше. Сообразно с этим различно и строение той части двойного слоя, которая расположена в растворе.

Измерение э. д. с. элемента без протекания тока обычно производится компенсационным методом. Для осуществления его необходимо иметь некоторый эталон э. д. с. Таким эталоном служит так называемый нормальный элемент. Чаще всего пользуются ртутно-кадмиевым нормальным элементом Вестона, э. д. с. которого равна 1,01830 В при 20 °С.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!


ЭЛЕКТРОДНЫЙ ПОТЕНЦИАЛ,разностьэлектростатич. потенциалов между электродоми находящимся с ним в контактеэлектролитом. Возникновение электродного потенциала обусловлено пространств.


разделениемзарядов противоположного знака на границе раздела фаз и образованиемдвойногоэлектрического слоя. На границе между металлич. электродоми р-ромэлектролитапространств.

разделение зарядов связано со след. явлениями:переносом ионовиз металлав р-р в ходе установления электрохим. равновесия,кулоновской адсорбциейионовиз р-ра на пов-сть металла, смещением электронногогазаза пределы положительно заряженного ионного остова кристаллич.

решетки,специфич. (некулоновской) адсорбциейионовили полярных молекулр-рителяна электродеи др. Последние два явления приводят к тому, что электродный потенциал неравен нулю даже при условиях, когда заряд пов-сти металларавен нулю (см.Потенциалнулевого заряда).Абс.


величину электродного потенциала отдельного электродаопределить невозможно, поэтому измеряют всегда разность потенциалов исследуемогоэлектродаи нек-рого стандартного электрода сравнения.Электродный потенциал равенэдс электрохим. цепи, составленной из исследуемого и стандартного электродов(диффузионный потенциалмежду разными электролитами, обусловленныйразличием скоростей движения ионов, при этом должен быть устранен). Дляводных р-ров в качестве стандартного электродаобычно используют водородныйэлектрод(Pt, Н2[0,101 МПа] | Н+[a= 1]), потенциалк-рого при давленииводорода0,101 МПа и термодинамич.

активностиаионовН+ в р-ре, равной 1, принимают условно равным нулю(водородная шкала электродных потенциалов). При схематич. изображении цепи водородный электродвсегда записывают слева; напр., потенциал медного электродав р-ре солимедиравен эдс цепи Pt, H2|HClCuCl2|Cu|Pt(две штриховые черты означают, что диффузионный потенциална фанице НС1и СuС12устранен).Если исследуемый электроднаходится встандартных условиях, когда активностивсех ионов, определяющих электродный потенциал,равны 1, а давлениегаза(для газовых электродов) равно 0,101 МПа, значениеэлектродного потенциала наз.

стандартным (обозначение E°).Оно связано со стандартным изменениемэнергии Гиббсаи константой равновесияКрэлектрохим. р-ции ур-нием:, где F – число Фарадея; п – число электронов, участвующихв р-ции; R – газовая постоянная; Т – абс. т-ра.


ЗначенияE°электрохим. систем по отношению к водородному электродуи протекающие наэлектродахр-ции сведены в спец. таблицы (подробнее см.

Стандартныйпотенциал).Зависимость электродного потенциала от термодинамич. активностейaiучастников электрохим. р-ции выражаетсяНернстауравнением:

где vi- стехиометрич. коэф. участника р-ции, причем для исходных в-в это отрицат.


величина, адля продуктов р-ции -положительная.Если через электродпротекает электрич. ток, электродный потенциал отклоняется от равновесного значения из-за конечной скоростипроцессов, происходящих непосредственно на границе электрод- электролит(см. Поляризация).Лит.: Корыта И., Дворжак И., БогачковаВ., Электрохимия, пер.

с чеш., М., 1977; Антропов Л.И., Теоретическаяэлектрохимия, 4 изд., М., 1984; Дамаскин Б. Б., Петрий О. А., Электрохимия,М., 1987; Багоцкий B.C., Основы электрохимии, М., 1988; Практикум по электрохимии,под ред.Б. Б.

Дамаскина, М., 1991.О. А. Петрий.АБВГДЕЖЗИКЛМНОПРСТУФХЦЧШЩЭЮЯ ___ЭЛЕКТРОДНЫЙ ПОТЕНЦИАЛ— разность электрических потенциалов (напряжений) между электродом и находящимся с ним в контакте электролитом.Появление Э. п.


вызвано образованием у поверхности электрода двойного электрического слоя.На практике используют значения так… … Большая политехническая энциклопедияЭЛЕКТРОДНЫЙ ПОТЕНЦИАЛ— в электрохимии разность электрических потенциалов на границе фаз электрод электролит. На практике пользуются значениями т. н.

относительного электродного потенциала, равного разности электродного потенциала, данного электрода и электрода… … Большой Энциклопедический словарьЭЛЕКТРОДНЫЙ ПОТЕНЦИАЛ— ЭЛЕКТРОДНЫЙ ПОТЕНЦИАЛ, мера способности электрода вступать в реакцию. Электрод из элемента М, помещенный в раствор его ионов (М+), представляет собой ПОЛУЭЛЕМЕНТ. Теоретически в ходе реакций типа ММ++е между электродом и раствором всегда… … Научно-технический энциклопедический словарьЭлектродный потенциал— мера способности электрода вступать в реакцию.Между электродом и раствором всегда образуется разность потенциалов.

Стандартные потенциалы электродов определяют относительно водородного электрода при определенных величинах температуры,… … Официальная терминологияэлектродный потенциал— — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electrode potentialelectrolytic potentialelectropolarization… … Справочник технического переводчикаэлектродный потенциал— [electrode potential] разность электрических потенциалов между электродами и находящимся с ним в контакте электролитом (чаще всего между металлом и раствором электролита).Практическое значение имеют относительные электродные потенциалы,… … Энциклопедический словарь по металлургииэлектродный потенциал— 3.8 электродный потенциал: Мера способности электрода вступать в реакцию. Между электродом и раствором всегда образуется разность потенциалов.


Стандартные потенциалы электродов определяют относительно водородного электрода при определенных… … Словарь-справочник терминов нормативно-технической документацииЭлектродный потенциал— У этого термина существуют и другие значения, см.Потенциал. Электродный потенциал разность электрических потенциалов между электродом и находящимся с ним в контакте электролитом (чаще всего между металлом и раствором электролита). Возникновение… … ВикипедияЭлектродный потенциал— Electrode potential Электродный потенциал.Потенциал электрода в электролизе измеренный относительно электрода сравнения.

В электродный потенциал не входят потери противодействия потенциалу, как в растворе, так и внешней цепи. Он представляет… … Словарь металлургических терминовэлектродный потенциал— elektrodo potencialas statusas T sritis Standartizacija ir metrologija apibrėžtis Dydis, išreiškiamas potencialų skirtumu, susidarančiu tarp joninės terpės (elektrolito tirpalo ar lydalo) ir į ją įdėto elektrodo.atitikmenys: angl. electrode… … Penkiakalbis aiškinamasis metrologijos terminų žodynasэлектродный потенциал— elektrodo potencialas statusas T sritis Standartizacija ir metrologija apibrėžtis Elektrodo potencialas kito kūno arba terpės, kurioje jis yra, atžvilgiu.

atitikmenys: angl.electrode potential vok. Elektrodenpotential, n rus. потенциал электрода … Penkiakalbis aiškinamasis metrologijos terminų žodynasравновесный (электродный) потенциал— — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров.Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN equilibrium (electrode) potential … Справочник технического переводчикаНормальный электродный потенциал— В электрохимии стандартный электродный потенциал, обозначаемый Eo, E0, или EO, является мерой индивидуального потенциала обратимого электрода (в равновесии) в стандартном состоянии, которое осуществляется в растворах при эффективной концентрации… … ВикипедияСтандартный электродный потенциал— В электрохимии стандартный электродный потенциал, обозначаемый Eo, E0, или EO, является мерой индивидуального потенциала обратимого электрода (в равновесии) в стандартном состоянии, которое осуществляется в растворах при эффективной концентрации… … ВикипедияОкислительно-восстановительный потенциал— равновесный Электродный потенциал, характеризующий данную электролитическую среду.


при постоянной температуре зависит только от состава среды и может быть сообщен ею погруженному в неё электронному проводнику (электроду), если… … Большая советская энциклопедияЭЛЕКТРОХИМИЯ— раздел физической химии, изучающий химические процессы, которые сопровождаются появлением электрического тока или, наоборот, возникают под действием электрического тока. Предметом электрохимических исследований также являются электролиты и… … Энциклопедия КольераЕ949— Водород / Hydrogenium (H) Атомный номер 1 Внешний вид простого вещества газ без цвета, вкуса и запаха Свойства атома … Википедияцементационный процесс— [electrolitic precipitation] процесс осаждения металлов, основанный на электрохимическом протекании реакции между металлом цементатором и ионом осаждаемого металла, имеющего более положительный электродный потенциал.Цементационный процесс… … Энциклопедический словарь по металлургииЭЛЕКТРООСАЖДЕНИЕ— выделение фазы (металла, сплава, оксида и др.) на пов сти электрода в результате протекания электрохим. р ции.

Э.металлов лежит в основе гидроэлектрометаллургии (см. Электролиз )и гальванотехники. Металлы Au, Ag, Cu, Bi, Pb, Sn, Cd, Co, Ni, Fe,… … Химическая энциклопедияЭЛЕКТРОХИМИЧЕСКИЕ СЕНСОРЫ— устройства, в к рых аналит.


сигнал обеспечивается протеканием электрохим. процесса. Предназначены для качеств.

и количеств. анализа хим. соед.

в жидких и газообразных средах. По сравнению с обычными аналит. приборами отличаются портативностью,… … Химическая энциклопедияВ электрохимиистандартный электродный потенциал, обозначаемый Eo, E0, или EO, является мерой индивидуального потенциала обратимого электрода (в равновесии) в стандартном состоянии, которое осуществляется в растворах при эффективной концентрации в 1 моль/кг и в газах при давлении в 1 атмосферу или 100 кПа (килопаскалей).


Объёмы чаще всего взяты при 25 °C.Основой для электрохимической ячейки, такой как гальваническая ячейка всегда является окислительно-восстановительная реакция, которая может быть разбита на две полуреакции: окислениена аноде (потеря электрона) и восстановлениена катоде (приобретение электрона). Электричествовырабатывается вследствие различия электростатического потенциаладвух электродов. Эта разность потенциалов создаётся в результате различий индивидуальных потенциалов двух металлов электродовпо отношению к электролиту.

Вычисление стандартных электродных потенциалов

Электродный потенциал не может быть получен эмпирически.


Так как электродные потенциалы традиционно определяют как восстановительные потенциалы, знак окисляющегося металлического электрода должен быть изменён на противоположный при подсчёте общего потенциала ячейки. Также нужно иметь в виду, что потенциалы не зависят от количества передаваемых электронов в полуреакциях (даже если оно различно), так как они рассчитаны на 1 моль переданных электронов. Отсюда при расчёте какого-либо электродного потенциала на основании двух других следует проявлять внимательность.

Fe3++ 3e−→ Fe(тв) −0.036 В


Fe2++ 2e−→ Fe(тв) −0.44 В

Для получения третьего уравнения:


следует умножить потенциал первого уравнения на 3, перевернуть второе уравнение(поменять знак) и умножить его потенциал на 2. Сложение этих двух потенциалов даст стандартный потенциал третьего уравнения.

Таблица стандартных электродных потенциалов

Основная статья: Таблица стандартных электродных потенциалов

Чем больше стандартные восстановительные потенциалы, тем легче их можно восстановить, другими словами, тем более сильными окислителями они являются. И наоборот: низкий отрицательный потенциал означает, что данная форма является сильным восстановителем.


Например, F2имеет 2,87 В, а Li+имеет −3,05 В, фтор — окислитель, литий — восстановитель. Таким образом, Zn2+, стандартный восстановительный потенциал которого равен −0,76 В, может быть окислен любым другим электродом, стандартный потенциал которого больше −0,76 В. (напр., H+(0 В), Cu2+(0,16 В), F2(2,87 В)) и может быть восстановлен любым электродом, стандартный потенциал которого меньше −0,76 В (напр., H−(−2,23 В), Na+(−2,71 В), Li+(−3,05 В)).

В гальванической ячейке, где самопроизвольная окислительно-восстановительная реакция заставляет ячейку производить электрический потенциал, Энергия ГиббсаΔGoдолжна быть отрицательной, в соответствии со следующим уравнением:

где nэто количество молейэлектронов на моль продуктов, а Fявляется постоянной Фарадея, ~96485 Кл/моль. Таким образом применимы следующие правила:


если E o яч> 0, тогда процесс самопроизвольный (гальваническая ячейка) если E o яч

Нестандартные условия

Стандартные электродные потенциалы даны при стандартных условиях. Однако, реальные ячейки могут действовать и при нестандартных условиях. При данном стандартном потенциале, потенциал при нестандартных эффективных концентрациях может быть вычислен с использованием уравнения Нернста:

Величины E0зависят от температуры (кроме стандартного водородного электрода) и обычно относятся к стандартному водородному электроду при этой температуре. Для конденсированных фаз величины потенциалов также зависят от давления.

См. также

    Таблица стандартных электродных потенциаловВосстановительный потенциалАбсолютный электродный потенциалЭлектрохимический потенциалРавновесный электродный потенциалУравнение НернстаЭлектрохимическая ячейкаГальваническая ячейка

Литература

    Zumdahl, Steven S., Zumdahl, Susan A (2000) Chemistry(5th ed.), Houghton Mifflin Company. ISBN 0-395-98583-8Atkins, Peter, Jones, Loretta (2005) Chemical Principles(3rd ed.), W.H. Freeman and Company. ISBN 0-7167-5701-XZu, Y, Couture, MM, Kolling, DR, Crofts, AR, Eltis, LD, Fee, JA, Hirst, J (2003) Biochemistry, 42, 12400-12408Shuttleworth, SJ (1820) Electrochemistry(50th ed.), Harper Collins.

Ссылки

Читайте также: