Что такое антибиотики с какой целью их применяют кратко

Обновлено: 05.07.2024

В борьбе за существование микроорганизмы создали и усовершенствовали оружие, которое позволяет им отстаивать свою среду обитания. Это оружие – специальные вещества, названные антибиотиками. Они безвредны для хозяина, но смертельно опасны для его врагов. С их помощью микроорганизмы успешно защищают, а при случае и расширяют “свои территории”. Наблюдение за жизнью микроорганизмов, позволившее человеку создать новый класс лекарств – антибиотики, заставило отступить многие ранее непобедимые болезни.

Считается, что открытие антибиотиков прибавило примерно 20 лет к средней продолжительности жизни человека в развитых странах. В каждой семье есть человек, который остался в живых благодаря антибиотикам. Микробиолог Зинаида Ермольева, получившая в 1942 году первые в СССР образцы пенициллина, объясняла значение антибиотиков так: “Если бы в XIX веке был пенициллин, Пушкин бы не умер от раны”.

История антибиотиков насчитывает чуть более 70 лет, хотя роль микроорганизмов в развитии инфекционных заболеваний была известна уже со второй половины XIX века. Начало этой истории положили наблюдения Флеминга за борьбой микроорганизмов между собой.

Термин “антибиотики” ввел в обращение американский микробиолог З. Ваксман, получивший в 1952 году Нобелевскую премию за открытие стрептомицина. Именно он предложил называть все вещества, вырабатываемые микроорганизмами для уничтожения или нарушения развития других микроорганизмов-противников, антибиотиками. Сам же термин антибиос (“анти” – против, “биос” – жизнь), отражающий форму сосуществования микроорганизмов в природе, когда один организм убивает или подавляет развитие “противника” путем выработки особых веществ, был придуман Л. Пастером, вложившим в него определенный смысл – “жизнь – против жизни” (а не “против жизни”).

Первый антибиотик – пенициллин – был выделен из плесневого гриба пенициллиум нотатум, чему и обязан своим названием. За его создание в 1945 году три ученых Флеминг, Флори и Чейн были удостоены Нобелевской премии. История создания первого в мире антибиотика довольно интересна. В 20-х годах в одной из лондонских больниц работал Александр Флеминг. Он готовил для учебника по бактериологии статью о стрептококках (вид бактерий) и ставил эксперименты. Однажды Флеминг обнаружил, что плесень, случайно попавшая на поверхность среды с культурой стрептококка, как бы растворила ее. Стало очевидным, что плесень вырабатывает какое-то удивительное вещество, с огромной силой действующее на бактерий. Это гипотетическое вещество Флеминг назвал пенициллином (от латинского penicillium – плесень). В 1929 году он опубликовал свое открытие, а в 1936 – рассказал о нем на II Международном конгрессе микробиологов. Однако научная общественность осталась равнодушной, отчасти может быть из-за того, что Флеминг, по признанию современников, был плохим оратором. Дальнейшая разработка пенициллина была связана с работой, так называемой Оксфордской группы, во главе которой стояли Говард Флори и Эрнст Чейн. Чейн занимался выделением пенициллина, а Флори – испытанием его на животных. В результате был получен малотоксичный и эффективный пенициллин. 12 февраля 1941 года пенициллин был впервые применен для лечения человека. Первым пациентом оказался лондонский полицейский, умиравший от заражения крови. После нескольких инъекций ему стало лучше, через день он уже ел без посторонней помощи. Но запас с таким трудом полученного пенициллина закончился, и больной скончался.

Промышленный выпуск препарата был налажен только в 1943 году в США, куда Флори передал технологию получения нового лекарства. Причем американский штамм (подвид) плесени был найден на одной из гнилых дынь, выброшенных на помойку.

В нашей стране пенициллин создали в 1942 году два биолога З.В. Ермольева и Т.И. Балезина с сотрудниками. В одном из московских подвалов они обнаружили штамм пенициллиум крустозум, который оказался продуктивнее английских и американских родичей. Это отметил и Флори, приезжавший в январе 1944 года в СССР с американским штаммом. Он был удивлен и восхищен тем, что у нас есть более продуктивный штамм и уже налажено промышленное производство пенициллина.

У пенициллина оказалось столько достоинств, что он до сих пор широко применяется в медицинской практике. Главные из них – высочайшая антибактериальная активность и безопасность для человека. Поначалу его действие вообще производило впечатление волшебной палочки: очищались гнойные раны, зарастали кожей ожоги и отступала гангрена. Так получилось, что изучение свойств пенициллина совпало по времени со второй мировой войной, и он быстро нашел применение для лечения раненых солдат. Введение пенициллина сразу после ранения позволяло предупреждать нагноение ран и заражение крови. В результате в строй возвращались свыше 70% раненых.

После того, как была доказана возможность получения антибиотиков из микроорганизмов, открытие новых препаратов стало вопросом времени. И, действительно, в 1939 году был выделен грамицидин, в 1942 – стрептомицин, в 1945 – хлортетрациклин, в 1947 – левомицетин (хлорамфеникол), а уже к 1950 году было описано более 100 антибиотиков. Многие антибиотики были выделены из микроорганизмов, обитающих в почве. Оказалось, что в земле живут смертельные враги многих болезнетворных для человека микроорганизмов – возбудителей тифа, холеры, дизентерии, туберкулеза и других. Так стрептомицин, который с успехом применяется до сих пор для лечения туберкулеза, тоже был выделен из почвенных микроорганизмов. При этом, чтобы отобрать нужный штамм, З. Ваксман (автор стрептомицина) исследовал за три года более 500 культур, прежде чем нашел подходящую – выделяющую в среду обитания достаточные количества (больше, чем другие) стрептомицина.

Поиск новых антибиотиков – процесс длительный, кропотливый и дорогостоящий. В ходе подобных исследований изучаются и отбраковываются сотни, а то и тысячи культур микроорганизмов. И только единицы отбираются для последующего изучения. Но это еще не значит, что они станут источником новых лекарств. Низкая продуктивность культур, сложность процессов выделения и очистки лекарственных веществ ставят дополнительные, порой непреодолимые барьеры на пути новых препаратов. Поэтому со временем, когда очевидные возможности были уже исчерпаны, разработка каждого нового природного препарата стала чрезвычайно сложной исследовательской и экономической задачей. А новые антибиотики были очень нужны. Выявлялись все новые возбудители инфекционных болезней, и спектр активности существующих препаратов становился недостаточным для борьбы с ними. К тому же микроорганизмы быстро приспосабливались и становились невосприимчивыми к действию казалось бы уже проверенных препаратов. Поэтому, наряду с поиском природных антибиотиков, активно велись работы по изучению структуры существующих веществ, с тем, чтобы модифицируя их, получать новые и новые, более эффективные и безопасные препараты. Таким образом, следующим этапом развития антибиотиков стало создание полусинтетических, сходных по строению и по действию с природными антибиотиками, веществ.

Сначала в 1957 году удалось получить феноксиметилпенициллин, устойчивый к действию желудочного сока, который можно принимать в виде таблеток. Природные пенициллины, полученные ранее феноксиметилпенициллина, были неэффективны при приеме внутрь, так как они разрушались в кислой среде желудка. Впоследствии был создан метод получения полусинтетических пенициллинов. Для этого молекулу пенициллина “разрезали” с помощью фермента пенициллиназы и, используя одну из частей, создавали новые соединения. Таким способом удалось получить препараты более широкого спектра действия (амоксициллин, ампициллин, карбенициллин), чем исходный пенициллин.

Другой антибиотик, цефалоспорин, выделенный в 1945 году из сточных вод на острове Сардиния, дал жизнь новой группе полусинтетических антибиотиков – цефалоспоринам, оказывающим сильнейшее антибактериальное действие и практически безопасным для человека. Цефалоспоринов получено уже более 100. Некоторые из них способны убивать и грамположительные, и грамотрицательные микроорганизмы, другие действуют на устойчивые штаммы бактерий.

В настоящее время число выделенных, синтезированных и изученных антибиотиков исчисляется десятками тысяч, около 1 тысячи применяются для лечения инфекционных болезней, а также для борьбы со злокачественными заболеваниями.

Использование антибиотиков отодвинуло на второй план многие ранее смертельные заболевания (туберкулез, дизентерия, холера, гнойные инфекции, воспаление легких и многие другие). С помощью антибиотиков удалось значительно снизить детскую смертность. Большую пользу приносят антибиотики в хирургии, помогая ослабленному операцией организму справляться с различными инфекциями. Знаменитый французский хирург XIX века А. Вельпо с горечью писал: “Укол иглой уже открывает дорогу смерти”. Эпидемии послеоперационной горячки уносили в могилу до 60% всех прооперированных, и такая огромная смертность тяжелым грузом лежала на совести хирургов. Теперь с большинством больничных инфекций можно успешно бороться при помощи антибиотиков. Так началось время, которое врачи справедливо называют “веком антибиотиков”.

Существуют антибиотики с антибактериальным, противогрибковым и противоопухолевым действием. В этом разделе мы рассматриваем антибиотики, влияющие преимущественно на бактерии.

В чем же главное отличие антибактериальной терапии от других видов медикаментозного лечения, и почему мы выделяем ее в отдельную тему? Отличие заключается в том, что антибактериальная терапия – это лечение, направленное на устранение причины заболевания (этиотропная терапия). В отличие от патогенетической, борющейся с развитием болезни, этиотропная терапия направлена на уничтожение возбудителя, вызвавшего конкретное заболевание.

Основные правила антибактериальной терапии можно сформулировать следующим образом:
1. Установить возбудителя заболевания.
2. Определить препараты, к которым возбудитель наиболее чувствителен.
3. При неизвестном возбудителе использовать либо препарат с широким спектром действия, либо комбинацию двух препаратов, суммарный спектр которых включает вероятных возбудителей.
4. Начинать лечение надо как можно раньше.
5. Дозы препаратов должны быть достаточными для того, чтобы обеспечить в клетках и тканях препятствующие размножению (бактериостатические) или уничтожающие бактерии (бактерицидные) концентрации.
6. Продолжительность лечения должна быть достаточной; снижение температуры тела и ослабление других симптомов не являются основанием для прекращения лечения.
7. Значительную роль играет выбор рациональных путей введения препаратов, учитывая, что некоторые из них не полностью всасываются из желудочно-кишечного тракта, плохо проникают из крови в мозг (через гематоэнцефалический барьер).
8. Комбинированное применение антибактериальных средств должно быть обоснованным, так как при неправильном сочетании может как ослабляться суммарная активность, так и суммироваться их токсические эффекты.

Каким же образом действуют антибиотики на микроорганизмы, убивая их или не позволяя им развиваться? Механизм действия многих противомикробных средств не вполне выяснен. Тем не менее, можно утверждать, что действие большинства антибиотиков заключается в нарушении проницаемости клеточной мембраны и угнетении синтеза веществ, образующих клеточные мембраны бактерии или белка внутри микробной клетки (в том числе и путем угнетения синтеза РНК). В первом случае страдает обмен веществ между бактериальной клеткой и внешней средой. Во втором, клетка, оставаясь без оболочки или с ослабленной оболочкой, растворяется в среде обитания и перестает существовать как живой организм. Наконец, в третьем, недостаточность белкового синтеза приводит к остановке процессов жизнедеятельности и микроорганизм “засыпает”. Во всех случаях микробная клетка перестает вырабатывать токсины и, следовательно, перестает быть болезнетворной. Основные точки приложения действия антибиотиков в микробной клетке приведены на рисунке 3.11.1.

Рисунок 3.11.1. Точки приложения действия антибактериальных средств

Ценность антибиотиков как лекарств ни у кого не вызывает сомнения. Но, казалось бы, зачем такое количество лекарств, если достаточно нескольких наиболее активных? А поиски новых антибиотиков все продолжаются и продолжаются. Тому есть несколько очень серьезных причин.

Во-первых, даже наиболее активные антибиотики действуют лишь на ограниченное число микробов, а поэтому могут применяться только при определенных болезнях. Набор микроорганизмов, которые обезвреживаются антибиотиком, называется спектром действия. И этот спектр не может быть бесконечным. Природный пенициллин, например, несмотря на высокую активность, действует лишь на небольшую часть бактерий (преимущественно на грамположительные бактерии). Есть в настоящее время препараты (например, некоторые полусинтетические пенициллины и цефалоспорины) с очень широким спектром действия, но и их возможности не безграничны. Значительная часть антибиотиков не поражает грибы, среди которых есть достаточное количество болезнетворных. По спектру действия основные группы и препараты антибиотиков можно представить следующим образом:

– влияющие преимущественно на грамположительные бактерии (бензилпенициллин, оксациллин, эритромицин, цефазолин);

– влияющие преимущественно на грамотрицательные бактерии (полимиксины, уреидопенициллины, монобактамы);

– широкого спектра действия (тетрациклины, хлорамфеникол, аминогликозиды, полусинтетические пенициллины и цефалоспорины, рифампицин).

Вторая причина заключается в том, что антибиотики не обладают абсолютной избирательностью действия. Они уничтожают не только наших врагов, но и союзников, которые охраняют рубежи нашего организма – на поверхности кожи, на слизистых оболочках, в пищеварительном тракте. Это может нанести значительный урон естественной микробной флоре человека. В результате развивается дисбактериоз – нарушение соотношения и состава нормальной микрофлоры. Дисбактериоз может проявиться сравнительно невинно – вздутием живота, небольшим поносом и другими симптомами, но может протекать тяжело и в отдельных случаях даже приводить к смертельному исходу. На фоне дисбактериоза могут проявиться ранее “дремавшие” в организме инфекции, в частности грибковые, устойчивые к антибактериальным средствам. Такие инфекции в ослабленном болезнью организме, в особенности у детей и пожилых пациентов, представляют серьезную проблему. Поэтому вместе с антибиотиками нередко назначают противогрибковые средства.

Третья причина – появление устойчивых к действию антибиотиков разновидностей микроорганизмов. Микробы, обладая очень хорошей приспособляемостью к быстро меняющимся условиям окружающей среды, “привыкают” к антибиотикам. При этом они становятся нечувствительными к антибиотику, в том числе вследствие выработки ферментов, разрушающих его. В основе этого явления, известного как устойчивость, или резистентность, возбудителей заболеваний, лежит естественный отбор. Когда бактерии сталкиваются с антибиотиком, они проходят через сито селекции: все бактерии, чувствительные к антибиотику, погибают, а те немногочисленные, которые в результате естественных мутаций оказались к нему невосприимчивы, выживают. Эти резистентные бактерии начинают стремительно размножаться на территории, освободившейся в результате гибели конкурентов. Так возникает резистентная разновидность (штамм). Резистентные бактерии быстро захватывают как отдельный организм, так и целую семью, летний лагерь, целые районы, и даже “путешествуют” из одной части света в другую. Это очень серьезная проблема химиотерапии, так как появление устойчивых видов обесценивает противомикробное средство. Разумеется, устойчивые штаммы появляются тем больше, чем шире (и длительнее) применяется препарат.

Многолетнее использование пенициллинов при различных заболеваниях привело к появлению микроорганизмов, продуцирующих специальный фермент – пенициллиназу, нейтрализующий пенициллины. Такие бактерии, например стафилококки, стали серьезной клинической проблемой и даже причиной гибели многих больных. Дело в том, что существует еще перекрестная резистентность, то есть микроорганизмы, научившиеся “справляться” с бензилпенициллином (природным антибиотиком), нередко устойчивы к полусинтетическим представителям этого ряда, а также к цефалоспоринам, карбапенемам. Перекрестная устойчивость, как правило, развивается в отношении препаратов с одинаковым механизмом действия. Можно отсрочить появление резистентных штаммов рациональным применением антибиотика, особенно нового, с оригинальным механизмом действия. Эти новые антибиотики оставляют в резерве (“группа резерва”) и стараются назначать только в критических случаях, когда не помогают известные химиопрепараты, к которым возбудитель инфекции устойчив. Одним из методов борьбы с устойчивостью микроорганизмов является создание комбинированных препаратов, содержащих антибиотик и средства, угнетающие активность микробного фермента, разрушающего этот антибиотик.

И, наконец, четвертая причина – побочные действия. Антибиотики, как и другие лекарства, являются чужеродными для человеческого организма веществами, поэтому при их применении возможны различные неблагоприятные реакции. Наиболее частая из них – аллергия: повышенная чувствительность организма к данному препарату, которая проявляется при повторном его применении. Чем дольше существует препарат, тем больше становится пациентов, которым он противопоказан по причине аллергии. Не менее серьезными могут быть и другие побочные эффекты антибиотиков. Например, тетрациклин обладает способностью связываться с кальцием, поэтому может накапливаться в растущих тканях костей и зубов детей. Это приводит к неправильному их развитию, увеличению склонности к кариесу и окрашиванию зубов в желтый или коричневый цвет. Стрептомицин, положивший начало победному наступлению на туберкулез, и другие аминогликозидные антибиотики (канамицин, гентамицин) могут вызвать поражение почек и ослабление слуха (вплоть до глухоты). Хлорамфеникол угнетает кроветворение, что может привести к развитию малокровия (анемии). Поэтому применение антибиотиков всегда проводится под наблюдением врача, что позволяет своевременно выявить побочные реакции и произвести корректировку дозы или отменить препарат.

Разнообразие форм микроорганизмов и их способность быстро приспосабливаться к внешним воздействиям обусловили появление большого числа антибиотиков, которые принято классифицировать по их молекулярной структуре (таблица 3.11.2). Представители одного класса действуют по аналогичному механизму, подвергаются в организме однотипным изменениям. Сходны и их побочные действия.

Антибиотики – это препараты, направленные на уничтожение живых болезнетворных бактерий, они вошли в нашу жизнь более полувека назад и прочно обосновались в ней.

История антибиотиков

Источники антибиотиков

Основными источниками получения антибиотиков являются актиномицеты (продуцируют около 80% природных антибиотиков), плесневые грибы и типичные бактерии, но являются далеко не единственными. На сегодняшний день науке известно около 30 000 антибиотиков природного происхождения, но это вовсе не означает, что все существующие ныне антибиотики продуцированы живыми клетками. Ученые химики еще с 60-х годов научились существенно улучшать противомикробные свойства антибиотиков, произведенных природными микроорганизмами, модифицируя их химическими методами. Полученные таким образом препараты относятся к полусинтетическим антибиотикам. Из всего многообразия антибиотиков в медицинских целях используют всего около ста.

Способы получения антибиотиков

  • Биологический синтез (культивация продуцентов и выделение ними антибиотиков в процессе своей жизнедеятельности)
  • Боисинтез с химическими модификациями (полусинтетические антибиотики)
  • Химический синтез (синтетические аналоги природных антибиотиков)

Классификация антибиотиков.jpg

Классификация антибиотиков

  • Бета-лактамы (пенициллины, цефалоспорины, карбапенемы, монобактамы)
  • Гликопептиды (ванкомицин, тейкопланин)
  • Аминогликозиды (стрептомицин, мономицин, канамицин, неомицин – I-го поколения; гентамицин и т.д. - II-го поколения)
  • Тетрациклины
  • Макролиды (и азалиды)
  • Линкозамиды
  • Левомицетин (хлорамфеникол)
  • Рифамицины
  • Полипептиды
  • Полиены
  • Разные антибиотики (фузидиевая кислота, фузафунжин и др.)
  • Антибактериальные антибиотики (самая многочисленная группа препаратов):
  • активные в отношении грамположительных микроорганизмов;
  • широкого спектра действия - действуют одновременно на грамположительные и грамотрицательные бактерии;
  • противотуберкулезные, противолепрозные, противосифилитические препараты;
  • противогрибковые
  • Противоопухолевые антибиотики
  • Антипротозойные и противовирусные антибиотики

Как действуют антибиотики?

Главной задачей антибиотика, когда он попадает в организм, является присоединение к бактерии с целью ее уничтожить либо лишить возможности размножаться, вследствие чего она самостоятельно погибнет. Для этого у каждого антибиотика есть своя мишень, как правило, это белок, фермент или часть ДНК патогенного микроорганизма, и механизм воздействия на бактерию. Именно поэтому назначают те или иные антибактериальные препараты в зависимости от возбудителя заболевания. В медицинской практике применяют лекарственные препараты, которые прицельно бьют по мишеням, не затрагивая клетки нашего организма.

Лечение антибиотиками

Самостоятельно назначать себе прием антибиотиков нельзя, такое назначение может делать только доктор. Антибактериальные препараты применяют для предотвращения и лечения воспалительных процессов, вызванных патогенными бактериями. Лечение вирусных заболеваний, например, ОРВИ будет не эффективно.

Антибиотики.jpg

Не следует сопровождать терапию антибиотиками другими лекарственными препаратами, способными повлиять на их действие, а также важно соблюдать равный интервал времени между приемами противомикробного средства и ни в коем случае не сочетать лечение с алкоголем. Не прекращайте прием антибиотиков, если вы почувствовали облегчение, курс лечения, назначенный квалифицированным специалистом, необходимо пройти в полном объеме. В случае если прием антибиотика не дает результата в течение 72 часов от начала лечения, необходимо обратиться к вашему лечащему врачу, с просьбой заменить назначенный препарат.

Нам с вами, чтобы быть готовыми к дальнейшему разговору, нужно сразу же разобраться с самыми главными. Их всего три.

АНТИБИОТИКИ ВЫЗЫВАЮТ ДИСБАКТЕРИОЗ

На самом деле нет. Добиться деконтаминации кишечника, то есть состояния, при котором антибиотики убивают ВСЮ флору в кишечнике и там может селиться кто угодно, крайне трудно.

Для этого антибиотики придется принимать месяцами и в достаточно больших дозировках.

В случаях, когда ребенок заболевает острой респираторной инфекцией, такие схемы не назначаются врачами никогда.

АНТИБИОТИКИ ПОДАВЛЯЮТ ИММУННУЮ СИСТЕМУ

На самом деле нет.

При повторном заражении этой же инфекцией клетки памяти начинают мгновенно размножаться и подавляют эту инфекцию быстро — часто быстрее, чем она может проявиться.

Так, кстати, работают прививки — создают клоны клеток памяти в ответ на введение убитых, расчлененных или вообще фальшивых инфекций.

Для создания клеток памяти достаточно контакта с возбудителем инфекции, полноценного заболевания вовсе не требуется.

24.9.jpg

ПРИ ЧАСТОМ ПРИМЕНЕНИИ АНТИБИОТИКОВ ФОРМИРУЕТСЯ ФЛОРА, КОТОРУЮ НЕЛЬЗЯ УБИТЬ НИЧЕМ

А вот это отчасти правда. Действительно, некоторые возбудители инфекций, например пневмококк или золотистый стафилококк, в результате длительного воздействия антибиотиков приобретают устойчивость практически к любым антибактериальным лекарственным препаратам, известным человечеству.

Таких возбудителей можно встретить в хирургических стационарах — особенно тех, которые работают десятилетиями, и врачи, столкнувшись с инфекцией, не сразу поддающейся лечению, обязательно спрашивают у пациента, не находился ли он на лечении в таком вот стационаре в течение длительного времени.

Почему они задают этот вопрос? Да потому, что взять подобный устойчивый ко всему микроорганизм больше просто негде. Вырастить у себя что-то подобное, постепенно притравливая какую-нибудь заразу аптечными антибиотиками, невозможно физически. Жизни не хватит.

p>За пять – десять дней любая внебольничная бактериальная инфекция погибает полностью на фоне курса обычного ампициллина или столь же обычного эритромицина — лишь бы доза антибиотика и сам препарат были правильно подобраны.

Человечеству устойчивые ко всему штаммы бактерий действительно грозят, но только в весьма отдаленной перспективе. Но каждый отдельный человек может спокойно принимать назначенные врачом антибиотики, не опасаясь столь уж глобальных последствий. Наверное, так писать безответственно, но факт остается фактом: этот потоп наступит уже после нас.

КАКИЕ БЫВАЮТ АНТИБИОТИКИ

Поколение, выросшее в 70-е годы, воспитано на олететрине.

Даже сейчас видно тех, кто в детстве его принимал часто, — по пожелтевшей эмали зубов (так называемая тетрациклиновая эмаль).

Но потом оказалось, что тетрациклин не только портит цвет зубов, но еще и очень нехорошо воздействует на печень. И от тетрациклина в педиатрии отказались, так же, как незадолго до него отказались от сульфадиметоксина.

Впрочем, педиатры и по сию пору выписывают бактрим — тоже препарат из начала 1970-х, а олететрин еще можно купить в аптеках за какие-то ну очень смешные деньги — кажется, за 150–160 рублей.

Но на самом деле внутрь детям сейчас назначают антибиотики всего-навсего четырех групп. Или двух. Или трех групп — здесь все зависит только от методики подсчета.

Первая группа антибиотиков — это пенициллины.

Отличаются они неприлично почтенным возрастом (пенициллин открыт в 1928 году), крайне низкой токсичностью (при некоторых заболеваниях врачи назначают просто гигантские дозы пенициллина — до 10 граммов в сутки) и замечательной эффективностью, которую они умудрились не утратить за все прошедшие годы.

КАКИЕ БЫВАЮТ АНТИБИОТИКИ ПЕНИЦИЛЛИНОВОЙ ГРУППЫ

Бензилпенициллин — старый добрый пенициллин, получаемый еще из плесневых грибков, то есть насквозь натуральный.

К сожалению, именно к ним бактерии научились вырабатывать устойчивость в первую очередь.

Оксициллин, ампициллин, амоксициллин — так называемые полусинтетические пенициллины, производство которых проще, чем производство бензилпенициллина, а эффективность выше — как раз из-за того, что к ним бактерии еще не успели приспособиться. По крайней мере, большинство бактерий, которые вызывают инфекции вне больниц.

К сожалению, сама клавулановая кислота далеко не безобидна и способна достаточно быстро раздражать кишечник, вызывая понос.

КАК РАБОТАЮТ ПЕНИЦИЛЛИНЫ

Большинство микробов имеет клеточную стенку — дополнительную защиту от внешней среды. У человека, кстати, нет в организме ни одной клетки, обладающей стенкой.

Это и понятно: мы — многоклеточные, а каждый микроб сам по себе. Когда микроб начинает делиться, антибиотик как раз и нарушает создание той самой клеточной стенки. И как результат микробы во время деления погибают.

Запомните, пожалуйста: пенициллины убивают микробов во время острой инфекции, в момент, когда микроорганизмы активно делятся.

ПОБОЧНЫЕ ЭФФЕКТЫ ПЕНИЦИЛЛИНОВ

Раздражение слизистой оболочки желудочно-кишечного тракта. Проявляется такой побочный эффект в виде тошноты, рвоты, а чаще всего — в виде жидкого стула, который родители путают с наступившим дисбактериозом кишечника (до которого еще очень и очень далеко).

Чтобы этого не случилось, некоторые производители выпускают пенициллины в виде растворимых шипучих таблеток. А врачи ничтоже сумняшеся просто переводят пациентов с таблеток на уколы.

Аллергия. Аллергические реакции довольно частые и проявляются, как правило, кожными высыпаниями. Если у вашего ребенка в ответ на прием антибиотиков появляется сыпь на коже, вам нужно как можно скорее сообщить об этом врачу для немедленной замены препарата.

Антибиотики (от анти… и греческого bios — жизнь) – это специфические химические вещества, образуемые микроорганизмами и способные в малых количествах оказывать избирательное токсическое действие на другие микроорганизмы и на клетки злокачественных опухолей.

Описано свыше 4 тыс. антибиотиков, но применяются лишь около 60.

Классификация антибиотиков.

По химической природе антибиотики принадлежат к различным группам соединений.

  • углеводородсодержащие антибиотики (аминогликозиды, группа ристомицина — ванкомицина и другие);
  • макроциклические лактоны (макролиды, полиены и другие);
  • хиноны и близкие к ним антибиотики (тетрациклины, антрациклины и другие);
  • пептиды;
  • пептолиды (пенициллины, цефалоспорины, грамицидин С, актиномицины)
  • и другие.

Антибиотики разделяются на:

  • антибактериальные, способные подавлять развитие бактерий (бактериостатическое действие) или убивать их (бактерицидное действие);
  • противоопухолевые (оливомицин, рубомицин, актиномицин, карминомицин и др.), которые задерживают размножение клеток злокачественных опухолей;
  • противогрибковые, подавляющие рост грибов (нистатин, гризеофульвин и другие).

По молекулярному механизму действия различают антибиотики, нарушающие:

  • синтез клеточной оболочки бактерий (пенициллины и другие);
  • синтезбелков (тетрациклины, макролиды, хлорамфеникол и другие);
  • нуклеиновых кислот в клетках (противоопухолевые антибиотики);
  • целостность цитоплазматической мембраны (полиены).

Антибактериальные антибиотики широкого спектра действия подавляют рост как грамположительных, так и грамотрицательных бактерий (тетрациклины, аминогликозиды, полусинтетические пенициллины, цефалоспорины и др.). Антибиотики узкого спектра действия активны в основном в отношении грамположительных микробов (пенициллины, макролиды, рифампицин и др.)

Мнения, насчёт применения антибактериальных препаратов разделились: кто-то считает, что антибактериальные препараты – современные средства, помогающие успешно противостоять инфекционным заболеваниям, другие уверены, что антибиотики сами по себе вызывают серьезные нарушения в человеческом организме, поэтому их прием представляет значительную опасность. Некоторые страны Европы призывают отказаться от лекарств в легких случаях недомогания. В Британии медики призывают лечить воспалённое горло медом и горячим чаем, чтобы снизить неоправданный прием лекарств. А в Нидерландах кашель вообще не считают заболеванием, и не выписывают лекарства. Некоторые страны просвещают жителей на тему приема препаратов, где-т о просто вводят на них жесткие ограничения.

Кроме того, современные антибиотики, относящиеся к группе синтетических, создаются на основе новейших разработок: их прием относительно безопасен, а концентрация активных антибактериальных компонентов в одной дозе препарата рассчитывается с максимально возможной точностью.

К сожалению, антибиотики способны вызывать побочные действия такие, как:

Таким образом, становится понятным, почему врачи настаивают на том, чтобы никогда и ни при каких условиях пациенты не занимались самолечением, тем более самолечением антибиотиками. Однако есть состояния, когда прием антибиотиков однозначно не нужен. Это следующие патологии: вирусные заболевания, включая грипп, которые врачи

Антибиотики – мощное и действенное лекарство, чье влияние на организм полностью зависит от того, насколько правильно оно используется.

Информация на сайт подготовлена сотрудником отдела ГОиВ Бабиченко Г.Г. с использованием материалов медицинских журналов и газет, медицинских Интернет-ресурсов, а также информации пресс-служб Роспотребнадзора РФ.

Читайте также: