Что такое ацп в информатике кратко

Обновлено: 05.07.2024

АПЦ - это Аналого-Цифровой Преобразователь. По английски ADC (Analog-to-Digital Converter). То есть специальное устройство, которое преобразует аналоговый сигнал в цифровой.

АЦП применяется в цифровой технике. В частности, почти все современные микроконтроллеры имеют встроенный АЦП.

Как вы уже наверняка знаете, микропроцессоры (как и компьютерные процессоры) не понимают ничего, кроме двоичных чисел. Из этого следует, что микропроцессор (который является основой любого микроконтроллера) не может напрямую обработать аналоговый сигнал.

Например, если вы создаёте программу для микроконтроллера, которая отслеживает температуру, то микропроцессор должен каким-то образом понять, что, например, напряжение 1В на его аналоговом входе соответствует температуре 10 градусов, а 5В - температуре 100 градусов (это просто пример, пока не обращайте внимание на числа).

Для того, чтобы объяснить это микропроцессору, который, как мы помним, понимает только двоичные числа, используется АЦП, который, как я уже сказал, преобразует аналоговый сигнал в двоичный код. Далее в общих чертах рассмотрим работу АЦП.

Принцип работы АЦП

Итак, мы узнали, что АЦП преобразует аналоговый сигнал в цифровой. Но как он это делает?

Я не буду рассказывать, как это происходит на уровне электронных схем - это тема для электронщиков. Разработчикам же устройств на микроконтроллерах (особенно начинающим), вполне достаточно знать общий принцип работы АЦП, чтобы понимать, как будет работать создаваемое ими устройство и достаточна ли будет точность измеряемого аналогового значения.

Итак, первым делом АЦП должен преобразовать аналоговый сигнал в дискретный. Для чего это нужно?

Как вы уже знаете, аналоговый сигнал - это непрерывный сигнал. То есть такой сигнал может принимать бесконечное количество значений, и ни у какого процессора не хватит “мозгов” для обработки всех этих значений.

Поэтому первая задача АЦП - это разбить измеряемый диапазон на какое-то конечное количество значений.

Например, мы хотим измерить напряжение в диапазоне от 0 до 9 В. Допустим, нам достаточно точности в 1В. Тогда мы разбиваем этот диапазон на 10 значений и получаем, что каждому значению напряжения соответствует такое же число. То есть 0 - это 0 В, 5 - 5 В и т.п.

А как же, например, напряжение 4,3 В? Да никак. Оно просто округляется, и АЦП преобразует его в число 4. Этот простой пример отображён на рисунке ниже.

Принцип работы АЦП (линейный график роста напряжения и дискретное его изменение).

Возникает вопрос - а как измерять большие напряжения? Или как повысить точность (например, если мы хотим измерять напряжение с точностью до 0,1В)?

Расскажу и об этом, но сначала о разрядности АЦП.

Разрядность АЦП

Разрядность АЦП - это разрядность его выходного сигнала. То есть количество битов в числе, которое получается на выходе АЦП.

Это значит, что измеряемый диапазон (сигнал на входе АЦП или на аналоговом входе микроконтроллера) мы можем разбить на 256 значений. Таким образом мы можем определить точность измеряемого значения, которую может обеспечить данный АЦП. Сделать это можно по формуле:

Где Р - это разрядность АЦП, Д - диапазон измеряемых значений, Х - точность (дискретность).

Например, если вам надо измерять напряжение в диапазоне 0. 9В, то Д = 10. А если в диапазоне -5. 15В, то Д = 21 (не забываем про ноль).

256 / 2 8 = 256 / 256 = 1 В

Если же мы хотим измерять напряжение с этим же АЦП в диапазоне 0. 15В, то точность измерений будет:

16 / 2 8 = 16 / 256 = 0,0625 В

Из этого следует, что для того, чтобы повысить точность, требуется либо сузить диапазон измеряемых значений, либо повысить разрядность АЦП. Например:

256 / 212 = 256 / 4096 = 0,0625 В

То есть 12-разрядный АЦП обеспечит уже довольно высокую точность даже при измерении сигналов с относительно большим диапазоном значений.

Разумеется, измерять можно не только напряжение, но и другие физические величины - это зависит от датчика, который подключен к АЦП. Но для АЦП безразлично, что измерять. Он всего лишь преобразует аналоговый сигнал в цифровой. А о том, как получить аналоговый сигнал нужной формы на входе АЦП, должен позаботиться разработчик устройства на микроконтроллере.

АЦП микроконтроллера обычно измеряет только напряжение в диапазоне от 0 до напряжения питания микроконтроллера.

Характеристики АЦП

АЦП бывают разные, с разными характеристиками. Основная характеристика - это разрядность. Однако есть и другие. Например, вид аналогового сигнала, который можно подключать к входу АЦП.

Все эти характеристики описаны в документации на АЦП (если он выполнен в виде отдельной микросхемы) или в документации на микроконтроллер (если АЦП встроен в микроконтроллер).

Кроме разрядности, о которой мы уже говорили, можно назвать ещё несколько основных характеристик.

Least significant bit (LSB) - младший значащий разряд (МЗР). Это наименьшее входное напряжение, которое может быть измерено АЦП. Определяется по формуле:

1 LSB = Uоп / 2 Р

Где Uоп - это опорное напряжение (указывается в характеристиках АЦП). Например, при опорном напряжении 1 В и разрядности 8 бит, получим:

1 LSB = 1 / 2 8 = 1 / 256 = 0,004 В

Integral Non-linearity - интегральная нелинейность выходного кода АЦП. Понятно, что любое преобразование вносит искажения. И эта характеристика определяет нелинейность выходного значения, то есть отклонение выходного значения АЦП от идеального линейного значения. Измеряется эта характеристика в LSB.

Иными словами, эта характеристика определяет, насколько “кривой” может быть линия на графике выходного сигнала, которая в идеале должна быть прямой (см. рис.).

Нелинейность выходного сигнала АЦП

Абсолютная точность. Также измеряется в LSB. Иными словами, это погрешность измерения. Например, если эта характеристика равна +/- 2 LSB, а LSB = 0,05 В, то это означает, что погрешность измерений может достигать +/- 2*0,05 = +/- 0,1В.

Есть у АЦП и другие характеристики. Но для начала и этого более чем достаточно.

Подключение АЦП

Напомню, что аналоговые сигналы, в основном, бывают двух видов: токовые и напряжения. Кроме того, сигналы могут иметь стандартный диапазон значений, и нестандартный. Стандартные диапазоны значений аналоговых сигналов описаны в ГОСТах (например, ГОСТ 26.011-80 и ГОСТ Р 51841-2001). Но, если в вашем устройстве используется какой-то самодельный датчик, то сигнал может и отличаться от стандартного (хотя я советую в любых случаях выбирать какой-нибудь стандартный сигнал - для совместимости со стандартными датчиками и другими устройствами).

АЦП в основном измеряют напряжение.

Попробую рассказать о том (в общих чертах), как подключить аналоговый датчик к АЦП и как потом разобраться с теми значениями, которые будет выдавать АЦП.

Итак, допустим, что мы хотим измерять температуру в диапазоне -40…+50 градусов с помощью специального датчика со стандартным выходом 0. 1В. Допустим, что у нас есть датчик, который может измерять температуру в диапазоне -50…+150 градусов.

Если температурный датчик имеет стандартный выход, то, как правило, напряжение (или ток) на выходе датчика изменяется по линейному закону. То есть мы можем легко определить, какое напряжение будет на выходе датчика при заданной температуре.

Что такое линейный закон? Это когда диапазон значений на графике выглядит как прямая линия (см. рис.). Зная, что температура от -50 до +150 даёт на выходе датчика напряжение, изменяемое по линейному закону, мы, как я уже сказал, можем вычислить это напряжение для любого значения температуры на заданном диапазоне.

Преобразование температуры в напряжение

В общем, чтобы в нашем случае диапазон температур преобразовать в диапазон напряжений, нам надо каким-то образом сопоставить две шкалы, одна из которых является диапазоном температур, а другая - диапазоном напряжений.

Определить напряжение по температуре визуально можно по графику (см. рис. выше). Но микроконтроллер глаз не имеет (хотя, конечно, можно поразвлекаться и создать устройство на микроконтроллере, способное распознавать образы и определять значение температуры по напряжению на графике, но оставим эти развлечения фанатам робототехники)))

Первым делом определяем диапазон температур. Он у нас от -50 до 150, то есть 201 градус (не забываем про ноль).

А диапазон измеряемых напряжений - от 0 до 1 В.

То есть в шкалу от 0 до 1 нам надо впихнуть диапазон от 0 до 200 (всего 201).

Находим коэффициент преобразования:

К = U / Tд = 1 / 200 = 0,005 (1)

То есть при изменении температуры на 1 градус напряжение на выходе датчика будет меняться на 0,005 В. Здесь Тд - это температурный диапазон. Не значения температуры, а количество единиц измерения (в нашем случае градусов) на температурной шкале, сопоставляемой со шкалой напряжения (ноль не учитываем для упрощения, так как в диапазоне напряжений тоже есть ноль).

Проверяем характеристики АЦП микроконтроллера, который мы планируем использовать. Значение LSB не должно быть более К (более 0,005 в нашем случае, точнее, это допустимо, если вас устроит погрешность более 1 единицы измерения - более 1 градуса в нашем случае).

По сути К - это вольт на градус, то есть так мы узнали, на какое значение изменяется напряжение при изменении температуры на 1 градус.

Теперь у нас есть все необходимые данные, чтобы в программе микроконтроллера преобразовать значение на выходе АЦП в значение температуры.

Мы помним, что мы сместили диапазон температур на 50 градусов. Это надо учитывать при преобразовании значения на выходе АЦП в температуру.

А формула будет такая:

Например, если на выходе АЦП 0,5 В, то

Т = (U / К) - 50 = (0,5 / 0,005) - 50 = 100 - 50 = 50 градусов

Теперь нам надо определить дискретность, то есть желаемую точность измерений.

Как вы помните, абсолютная погрешность может составлять несколько LSB. К тому же ещё существуют нелинейные искажения, которые обычно равны 0,5 LSB. То есть общая погрешность АЦП может доходить до 2-3 LSB.

В нашем случае это:

Uп = 3 LSB * 0,005 = 0,015 В

Если в вашем случае не так всё гладко, то снова используем формулу, выведенную из (1):

Тд = Uп / K = 0,015 / 0,005 = 3

Если погрешность в 3 градуса вас устраивает, то можно ничего не менять. Ну а если нет, то придётся подобрать АЦП с большей разрядностью либо подыскать другой датчик (с другим температурным диапазоном или с другим выходным напряжением).

Например, если вам удастся найти датчик с диапазоном -40…+50, как мы и хотели, и с таким же выходом 0. 1В, то

Тогда абсолютная погрешность будет:

Тд = Uп / K = 0,015 / 0,01 = 1,5 градуса.

Это уже более-менее приемлемо. Ну а если у вас будет датчик с выходом 0. 5В (это тоже стандартный сигнал), то

А абсолютная погрешность будет:

Тд = Uп / K = 0,015 / 0,05 = 0,3 градуса.

Это уже вообще ништяк.

Но! Не забывайте, что здесь мы рассматриваем только погрешность АЦП. Но и у самого датчика тоже есть погрешность, которую также надо учитывать.

Но всё это уже из области электроники и метрологии, поэтому данную статью я здесь и закончу.

А в конце на всякий случай приведу формулу обратного преобразования температуры в напряжение:

Разбираемся с АЦП и ЦАП, какие задачи они решают, в чем их достоинства и недостатки.

p, blockquote 1,0,0,0,0 -->

Аналого-цифровой преобразователь

Аналого-цифровой преобразователь или АЦП — это устройство, преобразующее входной аналоговый сигнал в дискретный цифровой код. АЦП осуществляет операции дискретизации и квантования. Напомню, при дискретизации, отсчеты непрерывного сигнала берутся только в определенные моменты или дискреты времени, а при квантовании значение сигнала в эти моменты времени округляется до одного из фиксированных уровней, квантованные уровни затем представляются в двоичном виде. Таким образом, мы получаем цифровой сигнал из аналогового.

p, blockquote 2,0,0,0,0 -->

АЦП

p, blockquote 3,0,0,0,0 -->

Как устроен АЦП

В большинстве АЦП есть устройство выборки и хранения, которые фиксируют и сохраняют значение напряжения на своем входе, в моменты замыкания ключа, а моменты замыкания ключа определяется задающим генератором, именно его частота и определяет частоту дискретизации выходного сигнала. Сигнал на выходе устройства выборки и хранения затем, округляется до одного из уровней квантования.

p, blockquote 4,0,0,0,0 -->

Устройство выборки и хранения

p, blockquote 5,0,0,0,0 -->

Как же АЦП понимает, с каким уровней квантования проассоциировать значение сигнала?

p, blockquote 6,0,0,0,0 -->

Рассмотрим простейший одноразрядный АЦП, компаратор. Он принимает на свой вход два значения напряжения, в том случае, если напряжение на первом входе больше чем на втором, он выдает логическую единицу, в противном случае 0.

p, blockquote 7,0,0,0,0 -->

Компаратор в АЦП

p, blockquote 8,0,0,0,0 -->

Допустим, мы зафиксировали значение на втором ходе, это наш пороговый уровень, и когда изменяющейся во времени сигнал на первом входе больше этого уровня, устройство показывает 1, когда меньше 0.

p, blockquote 9,0,0,0,0 -->

Теперь представим, что компараторов несколько, когда входной сигнал превышает определённый уровень, срабатывает соответствующий компаратор, выходы всех компараторов затем преобразуется схемой приоритетного кодера в двоичное представление. АЦП в которых каждом из уровней квантования соответствует компаратор называются АЦП прямого преобразования или флеш АЦП.

p, blockquote 10,0,1,0,0 -->

АЦП прямого преобразования

p, blockquote 11,0,0,0,0 -->

Характеристики АЦП

Во-первых, АЦП отличаются по частоте дискретизации, она определяется задающим генератором. В зависимости от назначения частота дискретизации может измеряться в килогерцах, мегагерцах и даже гигагерц.

p, blockquote 12,0,0,0,0 -->

Далее идет разрядность, то есть количество бит в коде, которыми мы представляем отсчеты сигнала. От количества бит, зависит количество уровней квантования, оно определяется, как 2 в степени количество бит, если у нас 3 бита, то это 8 возможных уровней квантования, если у нас 8 бит это 256 уровней.

p, blockquote 13,0,0,0,0 -->

Диапазон входного сигнала это минимальные и максимальные значения напряжения на входе АЦП при которых устройство работает корректно. Слишком маленький сигнал АЦП может не различить и принять за нулевой уровень, слишком большие могут вызвать искажения, которые приведут к потере информации. Обычно АЦП оперируют единицами вольт.

p, blockquote 14,0,0,0,0 -->

Отношение сигнал-шум об этом параметре есть подробная статья.

p, blockquote 15,0,0,0,0 -->

Передаточная характеристика — это по определению зависимость числового эквивалента выходного кода от величины входного аналогового сигнала, она имеет вид ступенчатой функции.

p, blockquote 16,0,0,0,0 -->

Передаточная характеристика

p, blockquote 17,0,0,0,0 -->

Посмотрим на рисунок выше, окрестность значения входного напряжения 0,5 вольт будет приравнено к четвертому уровню квантования, то есть значение к примеру 0,52 или 0,47 также будут представлены кодом 100.

p, blockquote 18,0,0,0,0 -->

Если мы рассматриваем АЦП с равномерным квантованием, то длина всех ступенек будет одинаковой, в некоторых АЦП специально используются неравномерное квантование, но их мы пока не рассматриваем. Неравномерность ступенек в АЦП с равномерным квантование это одна из характеристик неидеальности, мы называем ее нелинейностью.

p, blockquote 19,0,0,0,0 -->

Нелинейность АЦП

Нелинейность АЦП — это отличие реальной передаточной характеристики от линейной.

p, blockquote 20,1,0,0,0 -->

Линейная система передает входной сигнал на выход, без изменения его формы, возможно усиление или аттенюация.

p, blockquote 21,0,0,0,0 -->

линейная и нелинейная система ацп

p, blockquote 22,0,0,0,0 -->

Нелинейная система искажает форму выходного сигнала. В том случае, когда характеристика отличается от прямой линии, форма пиков сигнала изменяется это называется нелинейным искажением, крайне нежелательно явление. При искажениях мы безвозвратно теряем информацию.

p, blockquote 23,0,0,0,0 -->

Для АЦП, желательно, чтобы в рабочем диапазоне входных сигналов формы передаточных характеристик аппроксимировались прямой, но на практике небольшие отклонения все же присутствуют, поэтому для всех АЦП производитель указывает параметры интегральной и дифференциальной нелинейности.

p, blockquote 24,0,0,0,0 -->

формы передаточных характеристик

p, blockquote 25,0,0,0,0 -->

Шум квантования

В АЦП происходит округление реального значения аналогового сигнала. Точность представления, то насколько близок уровень квантования к реальному значению зависит от разрядности АЦП, количества бит.

p, blockquote 26,0,0,0,0 -->

источник шума квантования

p, blockquote 27,0,0,0,0 -->

Сигнал ошибки или разницы мы называем шумом квантования, хотя шумом его можно считать только в рамках математической модели, так как он зависит от сигнала.

p, blockquote 28,0,0,0,0 -->

Если мы квантуем непрерывный сигнал, то и шум квантования будет непрерывным. Если мы говорим о квантовании дискретного сигнала, то и на ошибки также будет дискретным. Понятно, что для того чтобы уменьшить шум квантования надо повышать разрядность АЦП, но из-за этого увеличивается стоимость, энергопотребление, могут понизиться другие характеристики.

p, blockquote 29,0,0,0,0 -->

квантование непрерывного сигнала

p, blockquote 30,0,0,1,0 -->

Существует техника уменьшения влияния шума квантования без увеличения разрядности, и с ними вы можете ознакомиться самостоятельно при желании.

p, blockquote 31,0,0,0,0 -->

Джиттер

Джиттер это фазовый шум вызванный нестабильностью задающего генератора. Когда мы рассматриваем идеальный процесс дискретизации непрерывного сигнала, шаг временной сетке или период дискретизации неизменен, но в реальности импульсы задающего генератора могут идти не через равные промежутки времени, это приводит к тому что мы передаем устройству выборки и хранения не совсем то значение, которое должны были бы передать в случае идеально ровной временной сетки.

p, blockquote 32,0,0,0,0 -->

фазовый шум вызванный нестабильностью задающего генератора

p, blockquote 33,0,0,0,0 -->

Эти отклонения, от так называемых реальных значений, также можно представить в виде дискретного шума. Нестабильность генераторов обычно измеряется в пика и фемпто секундах, поэтому на медленный АЦП она особо не влияет.

p, blockquote 34,0,0,0,0 -->

Шум квантования вносит гораздо больший вклад, но если сам сигнал изменяется очень быстро, если мы говорим о частотах дискретизации в сотни мегагерц и единицах гигагерц, то в этом случае уже джиттер может стать главной проблемой.

p, blockquote 35,0,0,0,0 -->

Цифро-аналоговый преобразователь

Цифро-аналоговый преобразователь — это устройство преобразующее входной цифровой сигнал в аналоговый.

p, blockquote 36,0,0,0,0 -->

Работа ЦАП

p, blockquote 37,0,0,0,0 -->

На вход устройства поступают дискретные отсчеты в виде цифрового кода, которые затем преобразуются в напряжение. Напряжение это соответствует набору уровней, как и случае с АЦП, многие ЦАП, используют равномерный уровни при преобразовании.

p, blockquote 38,0,0,0,0 -->

Уровень напряжения остается неизменным до момента прихода следующего отсчета на вход, таким образом формируется ступенчатый непрерывный сигнал, который в дальнейшем может быть сглажен фильтром нижних частот.

p, blockquote 39,0,0,0,0 --> p, blockquote 40,0,0,0,1 -->

Один из простейших видов ЦАП широтно-импульсный модулятор (ШИМ) он часто используется для управления скоростью электромоторов.

рис. 3.92
Что такое АЦП?

Аналого-цифровые преобразователи (АЦП) — это устройства, предназначенные для преобразования аналоговых сигналов в цифровые. Для такого преобразования необходимо осуществить квантование аналогового сигнала, т. е. мгновенные значения аналогового сигнала ограничить определенными уровнями, называемыми уровнями квантования.

Характеристика идеального квантования имеет вид, приведенный на рис. 3.92.

Васильев Дмитрий Петрович

Квантование представляет собой округление аналоговой величины до ближайшего уровня квантования, т. е. максимальная погрешность квантования равна ±0,5h (h — шаг квантования).

К основным характеристикам АЦП относят число разрядов, время преобразования, нелинейность и др. Число разрядов — количество разрядов кода, связанного с аналоговой величиной, которое может вырабатывать АЦП.

Абрамян Евгений Павлович

Часто говорят о разрешающей способности АЦП, которую определяют величиной, обратной максимальному числу кодовых комбинаций на выходе АЦП. Так, 10-разрядный АЦП имеет разрешающую способность (210 = 1024)−1, т. е. при шкале АЦП, соответствующей 10В, абсолютное значение шага квантования не превышает 10мВ. Время преобразования tпp — интервал времени от момента заданного изменения сигнала на входе АЦП до появления на его выходе соответствующего устойчивого кода.

Характерными методами преобразования являются следующие: параллельного преобразования аналоговой величины и последовательного преобразования.

АЦП с параллельным преобразованием входного аналогового сигнала

По параллельному методу входное напряжение одновременно сравниваются с n опорными напряжениями и определяют, между какими двумя опорными напряжениями оно лежит. При этом результат получают быстро, но схема оказывается достаточно сложной.

Принцип действия АЦП (рис. 3.93)

рис. 3.93

При Uвх = 0, поскольку для всех ОУ разность напряжений (U+ − U) 0,5U, но меньше 3/2U, лишь для нижнего ОУ (U+ − U) > 0 и лишь на его выходе появляется напряжение +Епит, что приводит к появлению на выходах КП следующих сигналов: Z0 = 1, Z2 = Zl = 0. Если Uвх > 3/2U, но меньше 5/2U, то на выходе двух нижних ОУ появляется напряжение +Епит, что приводит к появлению на выходах КП кода 010 и т. д.

Посмотрите интересное видео о работе АЦП:

АЦП с последовательным преобразованием входного сигнала

рис. 3.94

Это АЦП последовательного счета, который называют АЦП со следящей связью (рис. 3.94). В АЦП рассматриваемого типа используется ЦАП и реверсивный счетчик, сигнал с которого обеспечивает изменение напряжения на выходе ЦАП. Настройка схемы такова, что обеспечивается примерное равенство напряжений на входе Uвх и на выходе ЦАП −U. Если входное напряжение Uвх больше напряжения U на выходе ЦАП, то счетчик переводится в режим прямого счета и код на его выходе увеличивается, обеспечивая увеличение напряжения на выходе ЦАП. В момент равенства Uвх и U счет прекращается и с выхода реверсивного счетчика снимается код, соответствующий входному напряжению.

Метод последовательного преобразования реализуется и в АЦП время — импульсного преобразования (АЦП с генератором линейно изменяющегося напряжения (ГЛИН)).

рис. 3.95

Принцип действия рассматриваемого АЦП рис. 3.95) основан на подсчете числа импульсов в отрезке времени, в течение которого линейно изменяющееся напряжение (ЛИН), увеличиваясь от нулевого значения, достигает уровня входного напряжения Uвх. Использованы следующие обозначения: СС — схема сравнения, ГИ — генератор импульсов, Кл — электронный ключ, Сч — счетчик импульсов.

Васильев Дмитрий Петрович

Отмеченный во временной диаграмме момент времени t1 соответствует началу измерения входного напряжения, а момент времени t2 соответствует равенству входного напряжения и напряжения ГЛИН.

Погрешность измерения определяется шагом квантования времени. Ключ Кл подключает к счетчику генератор импульсов от момента начала измерения до момента равенства Uвх и Uглин. Через UСч обозначено напряжение на входе счетчика.

Код на выходе счетчика пропорционален входному напряжению. Одним из недостатков этой схемы является невысокое быстродействие.

рис. 3.96

АЦП с двойным интегрированием

Такой АЦП реализует метод последовательного преобразования входного сигнала (рис. 3.96). Использованы следующие обозначения: СУ — система управления, ГИ — генератор импульсов, Сч — счетчик импульсов.

рис. 3.97

Принцип действия АЦП состоит в определении отношения двух отрезков времени, в течение одного из которых выполняется интегрирование входного напряжения Uвх интегратором на основе ОУ (напряжение Uи на выходе интегратора изменяется от нуля до максимальной по модулю величины), а в течение следующего — интегрирование опорного напряжения Uоп (Uи меняется от максимальной по модулю величины до нуля) (рис. 3.97).
Пусть время t1 интегрирования входного сигнала постоянно, тогда чем больше второй отрезок времени t2 (отрезок времени, в течение которого интегрируется опорное напряжение), тем больше входное напряжение. Ключ КЗ предназначен для установки интегратора в исходное нулевое состояние.

В первый из указанных отрезков времени ключ К1 замкнут, ключ К2 разомкнут, а во второй, отрезок времени их состояние является обратным по отношению к указанному. Одновременно с замыканием ключа К2 импульсы с генератора импульсов ГИ начинают поступать через схему управления СУ на счетчик Сч.

Поступление этих импульсов заканчивается тогда, когда напряжение на выходе интегратора оказывается равным нулю.

Напряжение на выходе интегратора по истечении отрезка времени t1 определяется выражением

Используя аналогичное выражение для отрезка времени t2, получим

Код на выходе счетчика определяет величину входного напряжения.

Одним из основных преимуществ АЦП рассматриваемого типа является высокая помехозащищенность. Случайные выбросы входного напряжения, имеющие место в течение короткого времени, практически не оказывают влияния на погрешность преобразования. Недостаток АЦП — малое быстродействие.

табл. 3.3

Наиболее распространенными являются АЦП серий микросхем 572, 1107, 1138 и др. (табл. 3.3) Из таблицы видно, что наилучшим быстродействием обладает АЦП параллельного преобразования, а наихудшим — АЦП последовательного преобразования.

Предлагаем посмотреть ещё одно достойное видео о работе и устройстве АЦП:

В этой статье мы рассмотрим основные типы современных аналого-цифровых преобразователей (АЦП). Прочитав ее, вы сможете:

  • ознакомиться с технологиями, лежащими в основе каждого типа АЦП;
  • узнать об основных функциях и возможностях АЦП;
  • понять, какие типы АЦП лучше всего подходят для современных систем;
  • выяснить, какие два основных типа АЦП выбрала компания Dewesoft и почему.

Перейти к разделу

Что такое аналого-цифровой преобразователь (АЦП)?

Аналого-цифровые преобразователи (АЦП) являются одним из основных элементов современных систем сбора данных. Такие системы состоят из следующих базовых компонентов:

DAQ system shceme

АЦП играют большую роль в современных цифровых системах сбора данных

Главные функции аналого-цифровых преобразователей

Основное назначение АЦП в системе сбора данных заключается в преобразовании подготовленных аналоговых сигналов в поток цифровых данных, обрабатываемых системой сбора данных для отображения, хранения и анализа.

АЦП принимает аналоговый сигнал и преобразует его в цифровую форму

Основные типы аналого-цифровых преобразователей

Хотя на сегодняшний день существует пять основных типов АЦП, в сфере сбора данных все сводится к двум из них:

  • АЦП последовательного приближения и
  • дельта-сигма.

Другие типы тоже вполне эффективны, но лучше подходят для сфер применения, не связанных со сбором данных. Например, сдвоенные АЦП работают довольно медленно и поэтому применяются в основном в ручных вольтметрах.

Кроме того, существуют параллельные АЦП, которые обеспечивают чрезвычайно высокую частоту выборки, но их разрешение по амплитудной оси слишком низкое для нужд сбора данных. Конвейерные АЦП основаны на использовании нескольких параллельных преобразователей для повышения разрешения по амплитудной оси, но их возможности пока ограничены.

Сравнение основных типов АЦП

Тип АЦП Преимущества Недостатки Макс. разрешение Макс. частота выборки
Сдвоенный Низкая стоимость Низкая скорость 20 бит 100 Гц
Параллельный Очень быстрый Низкое битовое разрешение 12 бит 10 ГГц
Конвейерный Очень быстрый Ограниченное разрешение 16 бит 1 ГГц
Последовательного приближения (РПП) Хорошее соотношение скорости и разрешения Отсутствие внутренней защиты от искажения 18 бит 10 МГц
Дельта-сигма (ΔΣ) Высокая динамическая производительность, защита от искажения Отставание на искусственных сигналах 32 бита 1 МГц

Таким образом, специалисты в области сбора данных остановились на АЦП последовательного приближения (РПП) и дельта-сигма (ΔΣ) АЦП. Каждый из них имеет свои преимущества и недостатки и, следовательно, пригоден для решения определенных задач. Рассмотрим принцип работы каждого АЦП и сравним их:

АЦП последовательного приближения (РПП)

Блок-схема типичного РПП

Аналоговый вход большинства АЦП составляет 5 В, поэтому почти все интерфейсы формирования сигнала преобразовывают его одинаково. Типичный АЦП последовательного приближения использует схему выборки и хранения, которая принимает преобразованное аналоговое напряжение от интерфейса преобразования сигнала.

Встроенная система обработки данных создает аналоговое опорное напряжение, равное выходному сигналу цифрового кода устройства выборки-хранения. Оба сигнала передаются в компаратор, который отправляет результат сравнения в РПП. Этот процесс продолжается в течение n последовательных раз, причем n является битовым разрешением самого АЦП, пока не будет найдено значение, ближайшее к фактическому сигналу.

АЦП РПП — надежное решение для многих современных систем сбора данных. Они широко используются на рынке бюджетных устройств, поскольку их можно использовать в мультиплексном режиме, когда выборка по нескольким каналам осуществляется с помощью одного АЦП. Они также широко используются для устройств средней ценовой категории благодаря скорости и хорошему разрешению амплитудной оси.

Из-за ограниченного разрешения амплитудной оси они не подходят для высокодинамичных измерений, включая шум, звук, удар и вибрацию, балансировку, обработку синусоидальных сигналов и т.д. Для таких сфер применения следует обратить внимание на дельта-сигма АЦП, как рассказывается в следующем разделе.

Дельта-сигма АЦП (ΔΣ)

Более новая технология — это дельта-сигма АЦП, использующие преимущества технологии ЦОС для повышения разрешения амплитудной оси и уменьшения высокочастотного шума квантования, присущего РПП.

Сложные и мощные дельта-сигма АЦП идеальны для динамических измерений, требующих как можно большего разрешения амплитудной оси. Именно их применяют при работе со звуком и вибрациями, а также во многих передовых системах сбора данных.

Блок-схема типичного дельта-сигма АЦП

Реализация этих чипов в системах сбора данных обычно подразумевает интерфейсную фильтрацию-сглаживание, что практически исключает оцифровку ложных сигналов.

При интеграции на уровне аналогового интерфейса с максимально возможной частотой выборки по Найквисту, а затем динамически через ЦОС-процессор в соответствии с выбранной частотой выборки, производительность фильтрации-сглаживания этих АЦП просто превосходна.

Сдвоенные дельта-сигма АЦП — DualCoreADC®

Диаграмма DualCoreADC от компании Dewesoft

Этот метод значительно расширяет динамический диапазон, чего невозможно было бы достичь с помощью одного АЦП. Он увеличивает динамический диапазон до целых 160 дБ. Компания Dewesoft запатентовала эту технологию, которая на рынке известна как DualCoreADC.

Видео про DualCoreADC от компании Dewesoft

Интересно отметить, что даже при очень медленных сигналах, таких как от большинства термопар, максимально возможное разрешение амплитудной оси делает эти дельта-сигма АЦП предпочтительнее АЦП РПП.

Представьте себе термопару, способную измерять температуру в диапазоне 1500° — чем больше амплитудная ось на АЦП, тем большее разрешение будет иметь сигнал температуры. Учтите, что каждый бит эффективно удваивает разрешение вертикальной оси.

Что лучше? РПП или дельта-сигма?

Каждая технология АЦП имеет свои преимущества. И поскольку сферы применения слишком различны, нельзя сказать, что одна из них лучше другой в целом. Тем не менее, можно утверждать, что одна из них лучше другой по ряду критериев современных систем:

Подробнее о различных типах АЦ-преобразователей:

Полное руководство по аналого-цифровым преобразователям

Оптимальный инструмент для работы

Хотя знаковыми решениями Dewesoft являются 24-битные дельта-сигма АЦП и технология DualCoreADC, компания также использует 16-битные АЦП последовательного приближения для достижения максимальной частоты выборки 1 Мвыб./с в линейке систем сбора данных SIRIUS.

К ним относятся высокоскоростные преобразователи сигналов SIRIUS HS. В преобразователях сигналов стандартной и HD-серии используются 24-битные дельта-сигма АЦП.

Мощная фильтрация-сглаживание встроена во все 24-битные преобразователи сигналов АЦП от Dewesoft.

Ознакомьтесь с системами сбора данных компании Dewesoft с передовым преобразованием сигналов

Dewesoft DAQ Systems

Мультиплексирование или один АЦП на канал

Очень часто в недорогих системах сбора данных, таких как регистраторы данных или промышленные системы управления, используются мультиплексные АЦ-платы, поскольку они дешевле, чем реализация отдельных чипов АЦП на каждый входной канал.

В мультиплексной АЦП-системе один аналого-цифровой преобразователь используется для преобразования нескольких сигналов из аналоговой формы в цифровую. Это реализуется путем мультиплексирования аналоговых сигналов в АЦП по одному.

Это более экономичный подход, однако невозможно точно выровнять сигналы по оси времени, поскольку только один сигнал может быть преобразован за один раз. Поэтому между каналами всегда существует временной перекос. Если небольшие искажения некритичны в данной сфере применения, то это необязательно плохо. То же самое относится и к аналоговым устройствам, используемым в системе: важен выбор оптимального решения с учетом функциональности и срока службы.

Кроме того, поскольку максимальная частота выборки всегда делится на количество считываемых каналов, максимальная частота выборки на канал в мультиплексных системах обычно ниже, за исключением случаев, когда регистрируется только один или небольшое число каналов.

Что касается современных систем сбора данных, мультиплексные АЦП используются в основном в бюджетных решениях, где стоимость важнее точности или скорости.

Что такое частота выборки?

Скорость, с которой преобразуются сигналы, называется частотой выборки. Некоторые области применения, такие как большинство измерений температуры, не требуют высокой скорости, поскольку сигналы изменяются не очень быстро.

Однако при анализе напряжения и силы переменного тока, ударов и вибрации, а также во многих других сферах применения требуются частоты выборки, составляющие десятки или сотни тысяч выборок в секунду и более. Частота выборки обычно называется осью измерения T (или X).

Аналоговый сигнал, регистрируемый АЦП

Компания Dewesoft предлагает системы сбора данных с максимальными частотами выборки, как показано ниже:

Модель Вариант Интерфейс Макс. частота выборки (на канал)
SIRIUS Dual Core USB 200 квыб./с
SIRIUS MINI Dual Core USB 200 квыб./с
SIRIUS Dual Core EtherCAT 20 квыб./с
SIRIUS HD (высокая плотность) USB 200 квыб./с
SIRIUS HD (высокая плотность) EtherCAT 10 квыб./с
SIRIUS HS (высокая скорость) USB 1 Мвыб./с
DEWE-43A Стандартн. USB 200 квыб./с
KRYPTON Многоканальный EtherCAT 20 квыб./с
KRYPTON Одноканальный EtherCAT 40 квыб./с
IOLITE Стандартн. EtherCAT 20 квыб./с

Искажение и опасность недостаточной частоты выборки

Понимание характера сигналов и их максимально возможных частот является важной частью точных измерений. Предположим, мы хотим измерить выходной сигнал акселерометра.

Если мы ожидаем, что он будет испытывать колебания с максимальной частотой 100 Гц, мы должны установить частоту выборки по крайней мере в два раза больше (принцип Найквиста). На практике же для получения качественного сигнала лучше устанавливать частоту выборки в 10 раз больше. Поэтому в этом случае мы устанавливаем частоту выборки 1000 Гц и выполняем измерение.

Теоретически все как надо, но что, если частота сигнала при высокой амплитуде не увеличилась? Если это так, то наша система не сможет точно измерить или преобразовать сигнал. Кроме того, измеренные значения могут оказаться вовсе неверными.

Чтобы представить себе искажения из-за недостаточной частоты выборки, посмотрите старый фильм про проезжающий вагон, когда камеры еще снимали со скоростью 24 кадра в секунду: при разных скоростях это может выглядеть так, как будто колеса вращаются назад или же вообще не двигаются.

Это своего рода стробоскопический визуальный эффект, вызванный гармонической зависимостью между частотой вращения колеса и скоростью съемки камеры. Возможно, вам попадались видео, где кажется, что вертолет висит в воздухе, а его лопасти вообще не двигаются. Это происходит, если выдержка камеры была синхронизирована со скоростью вращения лопастей вертолета.

Это несущественно для кинематографии, но если мы занимаемся наукой, для нас невозможно серьезно полагать, что колеса автомобиля вращаются назад, а быстро вращающиеся лопасти вертолета не двигаются.

С точки зрения оцифровки сигналов напряжения с помощью АЦП важно, чтобы частота выборки была установлена соответствующим образом. Если задать слишком высокое значение, мы потратим впустую вычислительную мощность и в конечном итоге получим файлы данных, которые слишком велики и неудобочитаемы. Слишком низкая частота выборки, в свою очередь, порождает две проблемы:

  1. утрата важных компонентов динамического сигнала;
  2. получение ложных (искаженных) сигналов (если в системе отсутствует фильтрация-сглаживание).

Demonstration of a false signal (alias) in black, caused by sampling too infrequently compared to the original signal.

Наглядный пример слишком низкой частоты выборки: исходный сигнал и результат (в черном цвете) — ложный сигнал (шум).

Предотвращение искажения

Что такое битовое разрешение и почему оно важно?

Поскольку каждый бит разрешения эффективно удваивает разрешение преобразования, системы с 24-битными АЦП обеспечивают 2^24 = 16 777 216. Таким образом входной одновольтный сигнал можно разделить на более чем 16 миллионов шагов по оси Y.

16 777 216 шагов для 24-битного АЦП значительно лучше, чем максимальные теоретические 65 656 шагов для 16-битного АЦП. Таким образом, чем выше разрешение, тем лучше форма и точность волновых функций. То же самое применимо и к оси времени.

Сравните 24-битное разрешение (оранжевый) и 16-битное (серый)

Технология DualCoreADC® и почему она важна

Одной из давних инженерных проблем с амплитудной осью является динамический диапазон. Например: что делать, если у нас есть сигнал, который обычно составляет менее 5 вольт, но иногда может резко колебаться вверх? Если мы установим разрешение АЦП в расчете на 0–5 В, то система будет полностью перегружена, если сигнал превысит этот уровень.

Одним из решений было бы задействовать два канала, настроенных на разные коэффициенты усиления; и на один из них направлять данные 0–5 В, а на другой — с более высокой амплитудой. Но это очень неэффективно: мы не можем использовать два канала для каждого входного сигнала — это вдвое снизит производительность системы сбора данных. Также усложнится и затянется анализ данных после каждого измерения.

Технология DualCoreADC® от компании Dewesoft решает эту проблему путем использования двух отдельных 24-битных АЦП на канал, а также автоматического переключения между ними в режиме реального времени и создания единого непрерывного канала. Эти два АЦП всегда измеряют высокий и низкий коэффициент усиления входного сигнала. Благодаря этому достигается полное измерение диапазона датчика и предотвращается отсечение сигнала.

Видео, объясняющее технологию DualCoreADC от компании Dewesoft

Выводы

Выбор технологии АЦП должен основываться на условиях применения. Если вы в основном имеете дело со статическими и квазистатическими (медленными) сигналами, вам нужна не сверхскоростная система, а как можно большее разрешение амплитудной оси.

Фиксированные системы, используемые в промышленности, как правило, имеют стандартные требования, что упрощает задачу выбора.

Выбор в случае систем сбора данных сложнее: одна и та же система должна удовлетворять разным сферам применения. Прежде всего необходимо учитывать оптимальную производительность и защиту от шума, искажения и износа.

Ознакомьтесь с системами сбора данных компании Dewesoft с передовыми возможностями преобразования сигналов

Читайте также: