Что представляет собой диаграмма спектральный класс светимость звезд кратко

Обновлено: 05.07.2024

Спектра́льные кла́ссы — классификация звёзд по спектру излучения, в первую очередь, по температуре фотосферы.

В начальном приближении, сплошной спектр излучения звезды близок к излучению абсолютно чёрного тела с температурой, равной температуре её фотосферы, которую можно оценить по закону смещения Вина, но для удалённых звёзд этот метод неприменим из-за неравномерного поглощения света различных участков спектра межзвёздной средой. Более точным методом является оптическая спектроскопия, позволяющая наблюдать в спектрах звёзд линии поглощения , имеющие различную интенсивность в зависимости от температуры и типа звезды. Для некоторых типов звёзд в спектрах наблюдаются и линии испускания.

Основная (гарвардская) спектральная классификация

Современная (гарвардская) спектральная классификация звёзд, разработанная в Гарвардской обсерватории в 1890—1924 гг. является температурной классификацией, основанной на виде и относительной интенсивности линий поглощения и испускания спектров звёзд.

Интенсивности групп линий в спектрах звёзд различных спектральных классов.


Диаграмма спектральный класс—светимость (Диаграмма Герцшпрунга — Рассела)

Основная (гарвардская) спектральная классификация звёзд:

Класс Температура
(Кельвин)
Цвет звезды Особенноси спектров
O 30 000—60 000 K Голубые Линии HI, HeI, HeII, многократно ионизованных SiIV, CIV, CIII, NIII
B 10 000—30 000 K Бело-голубые Линии HeI, HI, усиливающиеся к классу A. Слабые линии H, K, CaII
A 7500—10 000 K Белые Интенсивные линии HI, линии H, K CaII, усиливающиеся к классу F, cлабые линии металлов (Fe, Mg)
F 6000—7500 K Желтовато-белые Линии H и K CaII и линии металлов, усиливающиеся к классу G, линии HI ослабевают. Появляется линия CaI и полоса G (линии Fe, Ca, Ti)
G 5000—6000 K Жёлтые Интенсивные линии H и K CaII, CaI, линии FeI и FeII. Многочисленные линии др. металлов, интенсивная полоса G. Линии HI слабеют к классу K
K 3500—5000 K Оранжевые Наибольшая интенсивность линий H и K CaII, интенсивная линия CaI, линии металлов и полоса G. С подкласса K5 появляются полосы поглощения TiO
M 2000—3500 K Красные Интенсивные полосы поглощения TiO и др. молекулярные полосы, линии металлов, H и K CaII, CaI, полоса G слабеет. У переменных типа о Кита имеются линии излучения HI

Внутри класса звёзды делятся на подклассы от 0 (самые горячие) до 9 (самые холодные). Солнце имеет спектральный класс G2 и эквивалентную температуру фотосферы 5780 K.

Для запоминания последовательности существуют мнемонические формулы:

  • на английском: Oh Be AFine Girl, Kiss Me Right Now Sweetheart (Выше указаны не все существующие классы)(здесь [1] есть множество вариантов этой последовательности)
  • и на русском: Один Бритый Англичанин Финики Жевал Как Морковь

Йеркская классификация с учётом светимости (МКК)

Дополнительным фактором, влияющим на вид спектра, является плотность внешних слоёв звезды, зависящая, в свою очередь от её массы и плотности, то есть, в конечном итоге, от светимости. Особенно сильно зависят от светимости Sr II, Ba II, Fe II, Ti II, что приводит к различию в спектрах звёзд-гигантов и карликов одинаковых гарвардских спектральных классов.

Зависимость вида спектра от светимости отражена в более новой йеркской классификации, разработанной в Йеркской обсерватории ( Yerkes Observatory ) У. Морганом , Ф. Кинаном и Э. Келман , называемой также МКК по инициалам её авторов.

В соответствии с этой классификацией звезде приписывают гарвардский спектральный класс и класс светимости:

  • I — сверхгиганты
  • II — яркие гиганты
  • III — гиганты
  • IV — субгиганты
  • V — карлики (звезды главной последовательности)
  • VI — субкарлики
  • VII — белые карлики

Таким образом, если гарвардская классификация определяет диаграммы Герцшпрунга — Рассела, то йеркская — положение звезды на этой диаграмме. Дополнительным преимуществом йеркской классификации является возможность по виду спектра звезды оценить её светимость и, соответственно, по видимой величине — расстояние (метод спектрального параллакса).

Солнце, будучи жёлтым карликом, имеет йеркский спектральный класс G2V.

Дополнительные спектральные классы

Выделяют также дополнительные спектральные классы для некоторых классов звёзд:

  • W — звёзды Вольфа — Райе, очень тяжёлые яркие звёзды с температурой порядка 70000 K и интенсивными эмиссионными линиями в спектрах.
  • L и T — коричневые карлики, объекты, переходные между звёздами и планетами, с температурой 1500—2000 K и около 1000 K соответственно.
  • C — углеродные звёзды, гиганты с повышенным содержанием углерода
  • S — циркониевые звёзды
  • D — белые карлики

Это заготовка статьи по астрономии. Вы можете помочь проекту, исправив и дополнив её.

cs:Spektrální klasifikace da:Spektralklasse de:Spektralklasse es:Clasificación estelar ga:Aicme speictreach gl:Clasificación estelar pl:Typ widmowy ro:Spectru stelar sv:Spektraltyp vi:Phân loại sao

Солнце по физическим параметрам относится к средним звездам — оно имеет среднюю температуру, среднюю светимость и т. д. По статистике, среди множества различных тел больше всего таких, которые имеют средние параметры. Например, если измерить рост и массу большого количества людей различного возраста, то больше будет людей со средними величинами этих параметров. Астрономы решили проверить, много ли в космосе таких звезд, как наше Солнце. Для этой цели Э. Герцшпрунг (1873—1967) и Г. Рессел (1877—1955) предложили диаграмму, на которой можно обозначить место каждой звезды, если известны ее температура и светимость. Ее назвали диаграмма спектр-светимость, или диаграмма Герцшпрунга-Рессела. Она имеет вид графика, на котором по оси абсцисс отмечают спектральный класс или температуру звезды, а по оси ординат — светимость (рис. 13.6).


Рис. 13.6. Диаграмма Герцшпрунга-Рессела. По оси абсцисс отмечена температура звезд, по оси ординат — светимость. Солнце имеет температуру 5780 К и светимость 1. Холодные звезды на диаграмме расположены справа (красного цвета), а более горячие — слева (синего цвета). Звезды, излучающие больше энергии, находятся выше Солнца, а звезды-карлики — ниже. Большинство звезд, к которым относится и Солнце, находятся в узкой полосе, которую называют главной последовательностью звезд

Если Солнце — средняя звезда, то на диаграмме должно быть скопление точек вблизи того места, которое занимает Солнце. То есть большинство звезд должны быть желтого цвета с такой же светимостью, как Солнце. Каково же было удивление астрономов, когда оказалось, что в космосе не нашли звезды, которую можно считать копией Солнца. Большинство звезд на диаграмме оказались в узкой полосе, которую называют главной последовательностью. Диаметры звезд главной последовательности отличаются в несколько раз, а их светимость по закону Стефана-Больцмана (см. § 13) определяется температурой поверхности. В эту полосу вошли Солнце и Сириус. Существенная разница в температуре на поверхности звезд различных спектральных классов объясняется разной массой этих светил: чем больше масса звезды, тем больше ее светимость. Например, звезды главной последовательности спектральных классов О и В в несколько раз массивнее Солнца, а красные карлики имеют массу в десятки раз меньшую, чем солнечная.

Белые карлики — звезды, имеющие радиус в сотни раз меньший солнечного и плотность в миллионы раз большую плотности воды. Красные карлики — звезды с массой меньшей, чем у Солнца, но большей, чем у Юпитера. Температура и светимость этих звезд остаются постоянными на протяжении десятков миллиардов лет. Красные гиганты — звезды, имеющие температуру 3000-4000 К и радиус в десятки раз больший солнечного. Масса этих звезд не намного больше массы Солнца. Такие звезды не находятся в состоянии равновесия

Отдельно от главной последовательности на диаграмме находятся белые карлики (слева внизу) и красные сверхгиганты (справа сверху), которые имеют примерно одинаковую массу, но значительно отличаются по размерам. Гиганты спектрального класса М имеют почти такую же массу, как белые карлики спектрального класса В, поэтому средние плотности этих звезд существенно различаются. Например, радиус красного гиганта Бетельгейзе в 400 раз больший радиуса Солнца, но масса этих звезд почти одинакова, поэтому красные гиганты спектрального класса М имеют среднюю плотность в миллионы раз меньшую, чем плотность земной атмосферы. Типичным представителем белых карликов является спутник Сириуса.

Главная загадка диаграммы спектр-светимость заключается в том, что в космосе астрономы еще не нашли хотя бы две звезды с одинаковыми физическими параметрами — массой, температурой, светимостью, радиусом. Наверное, в течение эволюции звезды меняют свои физические параметры, поэтому маловероятно, что мы сможем отыскать в космосе еще одну звезду, которая зародилась одновременно с нашим Солнцем, имея тождественные начальные параметры.

Физические характеристики звезд: светимость, температура, радиус, плотность — существенно разнятся между собой. Между этими характеристиками существует взаимосвязь, отражающая эволюционный путь звезды. Солнце по своим параметрам относится к желтым звездам, находящимся в состоянии равновесия, и не меняющим своих размеров в течение миллиардов лет. В космосе существуют звезды-гиганты, которые в тысячи раз больше Солнца, и звезды-карлики, радиус которых меньший радиуса Земли.




Внесолнечные планеты

Сколько всего открыто экзопланет?

Задания

Солнце по физическим параметрам относится к средним звездам — оно имеет среднюю температуру, среднюю светимость и т. д. По статистике, среди множества различных тел больше всего таких, которые имеют средние параметры. Например, если измерить рост и массу большого количества людей различного возраста, то больше будет людей со средними величинами этих параметров. Астрономы решили проверить, много ли в космосе таких звезд, как наше Солнце. Для этой цели Э. Герцшпрунг (1873—1967) и Г. Рессел (1877—1955) предложили диаграмму, на которой можно обозначить место каждой звезды, если известны ее температура и светимость. Ее назвали диаграмма спектр-светимость, или диаграмма Герцшпрунга-Рессела. Она имеет вид графика, на котором по оси абсцисс отмечают спектральный класс или температуру звезды, а по оси ординат — светимость (рис. 13.6).


Рис. 13.6. Диаграмма Герцшпрунга-Рессела. По оси абсцисс отмечена температура звезд, по оси ординат — светимость. Солнце имеет температуру 5780 К и светимость 1. Холодные звезды на диаграмме расположены справа (красного цвета), а более горячие — слева (синего цвета). Звезды, излучающие больше энергии, находятся выше Солнца, а звезды-карлики — ниже. Большинство звезд, к которым относится и Солнце, находятся в узкой полосе, которую называют главной последовательностью звезд

Если Солнце — средняя звезда, то на диаграмме должно быть скопление точек вблизи того места, которое занимает Солнце. То есть большинство звезд должны быть желтого цвета с такой же светимостью, как Солнце. Каково же было удивление астрономов, когда оказалось, что в космосе не нашли звезды, которую можно считать копией Солнца. Большинство звезд на диаграмме оказались в узкой полосе, которую называют главной последовательностью. Диаметры звезд главной последовательности отличаются в несколько раз, а их светимость по закону Стефана-Больцмана (см. § 13) определяется температурой поверхности. В эту полосу вошли Солнце и Сириус. Существенная разница в температуре на поверхности звезд различных спектральных классов объясняется разной массой этих светил: чем больше масса звезды, тем больше ее светимость. Например, звезды главной последовательности спектральных классов О и В в несколько раз массивнее Солнца, а красные карлики имеют массу в десятки раз меньшую, чем солнечная.

Белые карлики — звезды, имеющие радиус в сотни раз меньший солнечного и плотность в миллионы раз большую плотности воды. Красные карлики — звезды с массой меньшей, чем у Солнца, но большей, чем у Юпитера. Температура и светимость этих звезд остаются постоянными на протяжении десятков миллиардов лет. Красные гиганты — звезды, имеющие температуру 3000-4000 К и радиус в десятки раз больший солнечного. Масса этих звезд не намного больше массы Солнца. Такие звезды не находятся в состоянии равновесия

Отдельно от главной последовательности на диаграмме находятся белые карлики (слева внизу) и красные сверхгиганты (справа сверху), которые имеют примерно одинаковую массу, но значительно отличаются по размерам. Гиганты спектрального класса М имеют почти такую же массу, как белые карлики спектрального класса В, поэтому средние плотности этих звезд существенно различаются. Например, радиус красного гиганта Бетельгейзе в 400 раз больший радиуса Солнца, но масса этих звезд почти одинакова, поэтому красные гиганты спектрального класса М имеют среднюю плотность в миллионы раз меньшую, чем плотность земной атмосферы. Типичным представителем белых карликов является спутник Сириуса.

Главная загадка диаграммы спектр-светимость заключается в том, что в космосе астрономы еще не нашли хотя бы две звезды с одинаковыми физическими параметрами — массой, температурой, светимостью, радиусом. Наверное, в течение эволюции звезды меняют свои физические параметры, поэтому маловероятно, что мы сможем отыскать в космосе еще одну звезду, которая зародилась одновременно с нашим Солнцем, имея тождественные начальные параметры.

Физические характеристики звезд: светимость, температура, радиус, плотность — существенно разнятся между собой. Между этими характеристиками существует взаимосвязь, отражающая эволюционный путь звезды. Солнце по своим параметрам относится к желтым звездам, находящимся в состоянии равновесия, и не меняющим своих размеров в течение миллиардов лет. В космосе существуют звезды-гиганты, которые в тысячи раз больше Солнца, и звезды-карлики, радиус которых меньший радиуса Земли.

Внесолнечные планеты

Сколько всего открыто экзопланет?

Существует зависимость между основными физическими характеристиками звёзд. На основе наблюдений определяются спектральные классы звёзд, а по известному расстоянию — абсолютные звёздные величины, или светимости звёзд.

В левой нижней части диаграммы располагается последовательность белых карликов. Это горячие звёзды со слабой светимостью, которые имеют размеры, приблизительно равные размерам Земли, и массы близки к массе Солнца.

3. Дайте краткую характеристику звездам: сверхгигантам, красным гигантам, белым карликам, красным карликам.

Сверхгиганты — это горячие звёзды, чья масса намного превышает солнечную. Температура и давление в недрах выше, чем у звёзд более поздних спектральных классов. Имеет ускоренное выделение термоядерной энергии. Светимость у них больше, и эволюционировать они должны быстрее.

Красные гиганты имеют массы ненамного превосходящие солнечную (1.3 раза), радиусы у таких звёзд больше приблизительно в 20 раз, светимость — в 220 раз. Эти звёзды имеют неоднородную структуру. По мере выгорания водорода внутри звезды образуется гелиевое ядро, а оболочка разрастается.

Белый карлик — звезда небольших размеров с массой, равной примерно массе Солнца, имеет радиус примерно в 100 раз меньше Солнца. Плотность таких звёз в 100 тыс. раз выше плотности воды.

Красные карлики — звёзды с массой, меньшей, чем у Солнца. Звёзды остаются полностью конвективными всегда, если их масса не превышает 0.3 массы Солнца. Не имеют лучистого ядро. Температура в центре таких звёзд мала для того, чтобы полностью работал протон-протонный цикл. Он обрывается на образовании изотопа $^3\mathrm,$ а сам $^4\mathrm$ уже не синтезируется.

4. Что понимают под эволюцией звёзд?

Эволюция звёзд — постепенное изменение с течением времени физических характеристик, внутреннего строения и химического состава.

5. Опишите в общих чертах процесс образования звёзд.

Звёзды образуются в результате сжатия вещества межзвёздной среды. Звёзды рождаются группами из гигантских газопылевых комплексов размерами до 100 пк и массой в десятки, а иногда и сотни тысяч солнечных масс. Газ в этих комплексах находится в молекулярном состоянии с температурой около 10 К.

В газопылевом облаке случайно или под действием внешних причин возникают гравитационно-неустойчивые фрагменты, которые продолжают сжиматься. Также запустить процесс образования могут столкновения молекулярных облаков; звёздный ветер от молодых горячих звёзд; ударные волны, порождённые вспышками сверхновых звёзд.

6. Что понимают под классами светимости?

Классы светимости — звёздные группы, учитывающие особенности спектральных линий и светимость звёзд.

� 148. Диаграмма спектр � светимость

В самом начале XX в. датский астроном Герцшпрунг и несколько позже американский астрофизик Рессел установили существование зависимости между видом спектра (т.е. температурой) и светимостью звезд. Эта зависимость иллюстрируется графиком, по одной оси которого откладывается спектральный класс, а по другой � абсолютная звездная величина. Такой график называется диаграммой спектр � светимость или диаграммой Герцшпрунга � Рессела (рис. 194).

Вместо абсолютной звездной величины можно откладывать светимость (обычно в логарифмической шкале), а вместо спектральных классов � показатели цвета или непосредственно эффективную температуру.

Положение каждой звезды в той или иной точке диаграммы определяется ее физической природой и стадией эволюции. Поэтому на диаграмме Герцшпрунга � Рессела как бы запечатлена вся история рассматриваемой системы звезд. В этом огромное значение диаграммы спектр � светимость, изучение которой является одним из важнейших методов звездной астрономии. Оно позволяет выделить различные группы звезд, объединенные общими физическими свойствами, и установить зависимость между некоторыми их физическими характеристиками, а также помогает в решении ряда других проблем (например, в исследовании химического состава, и эволюции звезд).

На рис. 194 верхняя часть диаграммы соответствует звездам большой светимости, которые при данном значении температуры отличаются большими размерами. Нижнюю часть диаграммы занимают звезды малой светимости. В левой части диаграммы располагаются горячие звезды более ранних спектральных классов, а в правой � более холодные звезды, соответствующие поздним спектральным классам.


В верхней части диаграммы находятся звезды, обладающие наибольшей светимостью ( гиганты и сверхгиганты), отличающиеся высокой светимостью. Звезды в нижней половине диаграммы обладают низкой светимостью и называются карликами. Наиболее богатую звездами диагональ, идущую слева вниз направо, называют главной последовательностью. Вдоль нее расположены звезды, начиная от самых горячих (в верхней части) до наиболее холодных (в нижней).

Как видно из рис. 194, в целом звезды распределяются на диаграмме Герцшпрунга � Рессела весьма неравномерно, что соответствует существованию определенной зависимости между светимостями и температурами всех звезд. Наиболее четко это выражено для звезд главной последовательности. Однако внимательное изучение диаграммы позволяет выделить на ней ряд других последовательностей, правда, обладающих значительно большей дисперсией, чем главная. Эти последовательности говорят о наличии у некоторых определенных групп звезд индивидуальной зависимости светимости от температуры.


Рассмотренные последовательности называются классами светимости и обозначаются римскими цифрами от I до VII , проставленными после наименования спектрального класса. Таким образом, полная классификация звезд оказывается зависящей от двух параметров, один из которых характеризует спектр (температуру), а другой � светимость. Солнце, например, относящееся к главной последовательности, попадает в V класс светимости и обозначение его спектра G 2 V . Эта принятая в настоящее время классификация звезд называется МКК (Моргана, Кинана, Кельман).

Классы светимости схематически изображены на рис. 195.

Класс светимости I � сверхгиганты; эти звезды занимают на диаграмме спектр � светимость верхнюю часть и разделяются на несколько последовательностей.

Класс светимости II � яркие гиганты.

Класс светимости III � гиганты.

Класс светимости IV � субгиганты. Последние три класса расположены на диаграмме между областью сверхгигантов и главной последовательностью.

Класс светимости V � звезды главной последовательности.

Класс светимости VI � яркие субкарлики. Они образуют последовательность, проходящую ниже главной примерно на одну звездную величину, начиная от класса А0 вправо.

Класс светимости VII . Белые карлики. Они обладают весьма малой светимостью и занимают нижнюю часть диаграммы.

Принадлежность звезды к данному классу светимости устанавливается на основании специальных дополнительных признаков спектральной классификации. Так, например, сверхгиганты обладают, как правило, узкими и глубокими линиями (с-характеристика), в полную противоположность необычайно широким линиям белых карликов (рис. 196). По своим спектрам карлики отличаются от гигантов тем, что у них линии некоторых металлов относительно слабее, чем у гигантов тех же спектральных классов, в то время как интенсивности линий других металлов различаются значительно меньше. Спектры субкарликов, наоборот, отличаются слабостью всех металлических линий, что связано с меньшим содержанием металлов в этих звездах.


Рассмотренные дополнительные критерии спектральной классификации, позволяющие определить класс светимости, могут служить основой для спектроскопического определения абсолютных звездных величин и тем самым расстояний.

Метод определения расстояний, основанный на эмпирической зависимости светимости звезд от отношения интенсивностей определенных линий в спектре, называется методом спектральных параллаксов.

В отличие от тригонометрических, спектральные параллаксы могут быть определены и для весьма удаленных объектов, коль скоро изучены их спектры. Поэтому этот метод играет исключительно важную роль в астрономии.

Читайте также: