Что называют уравнением состояния кратко

Обновлено: 30.06.2024

Уравнение состояния — уравнение, связывающее между собой термодинамические (макроскопические) параметры системы, такие, как температура, давление, объём, химический потенциал и др. Уравнение состояния можно написать всегда, когда можно применять термодинамическое описание явлений. При этом реальные уравнения состояний реальных веществ могут быть крайне сложными.

Уравнение состояния системы не содержится в постулатах термодинамики и не может быть выведено из неё. Оно должно быть взято со стороны (из опыта или из модели, созданной в рамках статистической физики). Термодинамика же не рассматривает вопросы внутреннего устройства вещества.

Заметим, что соотношения, задаваемые уравнением состояния, справедливы только для состояний термодинамического равновесия.

Содержание

Виды уравнений состояния

Термическое уравнение состояния

Термическое уравнение состояния связывает макроскопические параметры системы. Для системы с постоянным числом частиц его общий вид можно записать так:

<\displaystyle f></p>
<p>То есть, задать термическое уравнение состояния значит конкретизировать вид функции
.

Калорическое уравнение состояния

Калорическое уравнение состояния показывает, как внутренняя энергия выражается через давление, объем и температуру. Для системы с постоянным числом частиц оно выглядит так:

или, учитывая, что давление можно выразить из термического уравнения,

Каноническое уравнение состояния

Каноническое уравнение, независимо от того, в каком из этих четырех видов оно представлено, содержит полную информацию о термических и калорических свойствах термодинамической системы.

Параметры состояния связаны друг с другом. Соотношение, при котором определяется данная связь, называют уравнением состояния данного тела. В самом простом случае равновесное состояние тела определяется значением следующих параметров: давления p , объема V и температуры (масса тела или системы, как правило, известна).

Что такое идеальный газ

Уравнение состояния так называемого идеального газа является простым, но достаточно информативным.

Идеальный газ – это газ, в котором пренебрегают взаимодействием молекул между собой.

Идеальными считают разреженные газы. Особенно близки к идеальным газы гелий и водород. Идеальный газ – это упрощенная математическая модель реального газа: молекулы движутся хаотически, а соударения между молекулами и удары молекул о стенки сосуда упругие, не приводящие к потерям энергии в системе. Подобная упрощенная модель весьма удобна, поскольку не требует учета силы взаимодействия между молекулами газа. Множество реальных газов не отличаются в своем поведении от идеального газа в условиях, когда суммарный объем молекул пренебрежимо мал в сравнении с объемом сосуда (то есть при атмосферном давлении и комнатной температуре). Это дает возможность применять уравнение состояния идеального газа для сложных расчетов.

Уравнение состояния идеального газа запишем несколько раз ( 2 ) , ( 3 ) , ( 5 ) :

p V = m μ R T = ν R T ( 2 ) .

Уравнение ( 2 ) – уравнение Менделеева-Клапейрона, где m – это масса газа, μ – это молярная масса газа, R = 8 , 31 Д ж м о л ь · К – это универсальная газовая постоянная, ν – это число молей вещества.

N A = 6 , 02 · 10 23 м о л ь - 1 – это постоянная Авогадро.

Если поделить в ( 4 ) обе части на V , то получаем следующий вид записи уравнения состояния идеального газа:

где n = N V – это количество частиц в единице объема или же концентрация частиц.

Что такое реальный газ

Рассмотрим теперь более сложные системы: неидеальные газы и жидкости.

Реальный газ – это газ, между молекулами которого наблюдаются заметные силы взаимодействия.

Необходимо учитывать, что в неидеальных, плотных газах взаимодействие молекул высоко. Известно, что взаимодействие молекул очень сильно усложняет физическую картину, потому точную формулу уравнения состояния неидеального газа не получается записать в простом виде. В данном случае прибегают к приближенным формулам, найденным полу-эмпирическим путем. Самая удачная формула – это уравнение Ван-деp-Ваальса.

Взаимодействие молекул обладает сложным характером. На достаточно больших расстояниях между молекулами действуют силы притяжения. С уменьшением расстояния силы притяжения вначале растут, однако потом уменьшаются и преобразуются в силы отталкивания. Притяжение и отталкивание молекул будем рассматривать и учитывать отдельно. Уравнение Ван-дер-Ваальса, которое описывает состояние одного моля реального газа, имеет вид:

p + a V μ 2 V μ - b = R T ( 6 ) ,

где a V μ 2 – это внутреннее давление, обусловленное силами притяжения между молекулами, b – это поправка на собственный объем молекул, учитывающая действие сил отталкивания между молекулами, при этом:

b = N A 2 3 πd 3 ( 7 ) ,

где d – это диаметр молекулы. Значение a рассчитывается по формуле:

a = - 2 πN A 2 ∫ d ∞ W p ( r ) r 2 dr ( 8 ) ,

где W p ( r ) – это потенциальная энергия притяжения 2 -х молекул.

При увеличении объема значение поправок в уравнении ( 6 ) становится менее существенным. И в пределе уравнение ( 6 ) превращается в уравнение ( 2 ) . Это согласовано с тем фактом, что с уменьшением плотности реальные газы по своим характеристикам приближаются к идеальным.

Положительным в уравнении Ван-деp-Ваальса является тот факт, что данное равенство при очень больших плотностях приблизительно описывает также и свойства жидкости, в частности, плохую ее сжимаемость. Потому существует основание предполагать, что уравнение Ван-деp-Ваальса позволяет отразить и переход от жидкости к газу (либо от газа к жидкости).

На рисунке 1 представлена изотерма Ван-дер-Ваальса для некоторого постоянного значения температуры T , которая построена из соответствующего уравнения.

В месте “извилины” (участок КМ) изотерма 3 раза пересекает изобару. На участке
V 1 , V 2 давление увеличивается с ростом объема.

Что такое реальный газ

Подобная зависимость невозможна. Это означает, что в этой области с веществом происходит что-то необыкновенное. Что именно, не видно в уравнении Ван-деp-Ваальса. Обратимся к опыту. В месте “извилины” на изотерме в состоянии равновесия вещество расслаивается на 2 фазы: жидкую и газообразную. Обе фазы существуют одновременно и находятся в фазовом равновесии. В таком состоянии происходит испарение жидкости и конденсация газа. Процессы протекают с такой интенсивностью, что полностью компенсируют друг друга: объем жидкости и газа со временем не изменяется.

Газ, который находится в фазовом равновесии со своей жидкостью, называется насыщенным паром. Если фазовое равновесие отсутствует, отсутствует также компенсация испарения и конденсации, тогда газ называется ненасыщенным паром.

Что происходит с изотермой в области двухфазного состояния вещества (то есть в месте "извилины" изотермы Ван-деp-Ваальса)? Эксперимент показывает, что в этом месте при изменении объема давление остается неизменным. График изотермы идет параллельно оси V (рисунок 2 ).

Что такое реальный газ

С увеличением температуры участок двухфазных состояний на изотермах уменьшается до тех пор, пока не превращается в точку (рисунок 2 ). Это особая точка К , в которой исчезает разница между жидкостью и паром. Ее называют критической точкой.

Параметры, которые соответствуют критическому состоянию, являются критическими (критическая температура, критическое давление, критическая плотность вещества).

Необходимо найти величину n . В процессе, представленном на рисунке 3 , давление p ~ T n .

Что такое реальный газ

Решение

Из графика, приведенного на рисунке 3 , запишем уравнение процесса в параметрах p ( V ) :

p = k V или p ~ V .

С учетом уравнения Менделеева-Клайперона:

Подставив p ~ V вместо объема, получаем:

Ответ: n = 1 2 .

Моль кислорода охлаждают до - 100 ° C . Необходимо определить давление, которое оказывает газ на стенки сосуда, если занимаемый газом объем V = 0 , 1 л . Необходимо также сравнить p с давлением идеального газа p i d , если бы кислород вел себя как идеальный газ. Величина постоянных Ван-дер-Ваальса a и b , для кислорода a = 0 , 1358 П а · м 6 / м о л ь 2 , b = 3 , 167 · 10 - 5 м 3 / м о л ь .

Решение

Из уравнения Ван-Дер-Ваальса имеем:

p = R T V μ - b - a V μ 2

Переведем температуру в систему измерения: T = t + 273 , По условию T = 173 K , V = 0 , 1 л = 10 - 4 м 3 .

Произведем расчет: p = 8 , 31 · 173 ( 10 - 3 , 2 ) · 10 - 5 - 0 , 1358 ( 10 - 4 ) 2 = 75 , 61 · 10 5 ( П а ) .

Уравне́ние состоя́ния — уравнение, связывающее между собой термодинамические (макроскопические) параметры системы, такие, как температура, давление, объём, химический потенциал и др. Уравнение состояния можно написать всегда, когда можно применять термодинамическое описание явлений. При этом реальные уравнения состояний реальных веществ могут быть крайне сложными.

Уравнение состояния системы не содержится в постулатах термодинамики и не может быть выведено из неё. Оно должно быть взято со стороны (из опыта или из модели, созданной в рамках статистической физики). Термодинамика же не рассматривает вопросы внутреннего устройства вещества.

Заметим, что соотношения, задаваемые уравнением состояния, справедливы только для состояний термодинамического равновесия.

Содержание

Виды уравнений состояния

Термическое уравнение состояния

Термическое уравнение состояния связывает макроскопические параметры системы. Для системы с постоянным числом частиц его общий вид можно записать так:

f(P,\;V,\;T)=0.

То есть, задать термическое уравнение состояния значит конкретизировать вид функции f .

Калорическое уравнение состояния

Калорическое уравнение состояния показывает, как внутренняя энергия выражается через давление, объем и температуру. Для системы с постоянным числом частиц оно выглядит так:

U=U(P,\;V,\;T)

или, учитывая, что давление можно выразить из термического уравнения:

U=U(V,\;T).

Каноническое уравнение состояния

Каноническое уравнение представляет собой выражение для одного из термодинамических потенциалов (внутренней энергии, энтальпии, свободной энергии или потенциала Гиббса) через независимые переменные, относительно которых записывается его полный дифференциал.

Каноническое уравнение, независимо от того, в каком из этих четырех видов оно представлено, содержит полную информацию о термических и калорических свойствах термодинамической системы.

См. также

Литература

Истинный раствор • Коллоид • Грубодисперсная система • Свободнодисперсная коллоидная система (дым, золь)

Сверхкритическая жидкость • Вырожденное вещество • Конденсат Ферми — Дирака • Конденсат Бозе — Эйнштейна • Странная материя • Уравнение состояния • Кривая охлаждения • Квантовая жидкость • Термодинамическая фаза • Фазовый переход • Теория катастроф • Твёрдый гелий

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Уравнения состояния" в других словарях:

УРАВНЕНИЯ СОСТОЯНИЯ — ур ния, выражающие связь между параметрами состояния физически однородной системы при термодинамич. равновесии. Термическое У. с. связывает давление р с объемом Vи т рой T, а для многокомпонентных систем также с составом (молярными долями… … Химическая энциклопедия

ГОСТ Р 8.662-2009: Государственная система обеспечения единства измерений. Газ природный. Термодинамические свойства газовой фазы. Методы расчетного определения для целей транспортирования и распределения газа на основе фундаментального уравнения состояния AGA8 — Терминология ГОСТ Р 8.662 2009: Государственная система обеспечения единства измерений. Газ природный. Термодинамические свойства газовой фазы. Методы расчетного определения для целей транспортирования и распределения газа на основе… … Словарь-справочник терминов нормативно-технической документации

Уравнения Навье — Стокса — Механика сплошных сред Сплошная среда Классическая меха … Википедия

Уравнения Лагранжа (гидромеханика) — Уравнения Лагранжа (в гидромеханике) дифференциальные уравнения движения частиц несжимаемой идеальной жидкости в переменных Лагранжа, имеющие вид: где время … Википедия

Уравнения движения — Уравнение движения (уравнения движения) уравнение или система уравнений, задающие закон эволюции механической или сходной динамической системы (например, поля) во времени[1]. Эволюция физической системы однозначно определяется уравнениями… … Википедия

Уравнения Навье — Механика сплошных сред … Википедия

Уравнения Навье-Стокса — Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса … Википедия

Уравнения Гинзбурга-Ландау — Теория Гинзбурга Ландау созданная в начале 1950 х годов В. Л. Гинзбургом и Л. Д. Ландау феноменологическая теория сверхпроводимости. Теория построена исходя из следующего вида лагранжиана: , где ψ комплексное поле пар Купера, оператор… … Википедия

Уравнения Фридмана — Космология Возраст Вселенной Большой взрыв Содвижущееся расстояние Реликтовое излучение Космологическое уравнение состояния Тёмная энергия Скрытая масса Вселенная Фридмана Космологический принцип Космологические модели Формиро … Википедия

МАКСВЕЛЛА УРАВНЕНИЯ — уравнения электромагнитного поля в материальных средах; установлены в 60 х гг. 19 в. Дж. Максвеллом (J. Maxwell) на основе экспериментально найденных к тому времени законов электрических и магнитных явлений. В классич. электродинамике для… … Математическая энциклопедия

Уравне́ние состоя́ния — соотношение, отражающее для конкретного класса термодинамических систем связь между характеризующими её макроскопическими физическими величинами, такими как температура, давление, объём, химический потенциал, энтропия, внутренняя энергия, энтальпия и др. [1] Уравнения состояния необходимы для получения с помощью математического аппарата термодинамики конкретных результатов, касающихся рассматриваемой системы [2] . Эти уравнения не содержатся в постулатах термодинамики, так что для каждого выбранного для изучения макроскопического объекта их либо определяют эмпирически, либо для модели изучаемой системы находят методами статистической физики [3] . В рамках термодинамики уравнения состояния считают заданными при определении системы [4] . Если изучаемый объект допускает термодинамическое описание, то это описание выполняют посредством уравнений состояния, которые для реальных веществ могут иметь весьма сложный вид.

Состояние данной массы газа полностью определено, если известны его давление, температура и объем. Эти неличины называют параметрами состояния газа. Уравнение, связывающее параметры состояния, называют уравнением состояния.

Для произвольной массы газа состояние газа описывается уравнением Менделеева—Клапейрона:

 pV = mRT/M

,

где — давление, — объем, — массa, - молярная масса, — универсальная газовая постоянная (). Физический смысл универсальной газовой постоянной в том, что она показывает, какую работу совершает один моль идеального газа при изобарном расширении при нагревании на 1 К.

Уравнение Менделеева—Клапейрона показывает, что возможно одновременное изменение трех параметров, характеризующих состояние идеального газа. Однако многие процессы в газах, происходящие в природе и осуществляемые в технике, можно рассматривать приближенно как процессы, в которых изменяются лишь два параметра. Особую роль в физике и технике играют три процесса: изотермический, изохорный и изобарный.

Изопроцессом называют процесс, происходящий с данной массой газа при одном постоянном параметре — температуре, давлении или объеме. Из уравнения состояния как частные случаи получаются законы для изопроцессов.

Изотермическим называют процесс, протекаю-щий при постоянной температуре: . Он описывается законом Бойля—Мариотта: .

Изохорным называют процесс, протекающий при постоянном объеме: . Для него справедлив закон Шарля: .

Изобарным называют процесс, протекающий при постоянном давлении. Уравнение этого процесса имеет вид при и называется законом Гей-Люссака. Все изопроцессы можно изобразить графически. На рисунке 11 представлены в различных координатах графики процессов: изотермического (изотерма АВ), изобарного (изобара АС) и изохорного (изохора ВС).

Реальные газы удовлетворяют уравнению состоя ния идеального газа при не слишком высоких давлениях (пока собственный объем молекул пренебрежимо мал по сравнению с объемом сосуда, в котором находится газ) и при не слишком низких температуpax (пока потенциальной энергией межмолекулярного взаимодействия можно пренебречь по сравнению с кинетической энергией теплового движения молекул), т. е. для реального газа это уравнение и его следствия являются хорошим приближением.

Читайте также: