Что называют степенью числа а с показателем 1 кратко

Обновлено: 04.07.2024

Степенью числа a с натуральным показателем n, бóльшим 1, называется произведение n одинаковых множителей, каждый из которых равен числу a.

Свойства степеней:

Произведение степеней с одним и тем же показателем равно степени с тем же показателем и основанием, равным произведению оснований.

Произведение степеней с одним и тем же основанием – это степень с тем же основанием и показателем, равным сумме показателей этих степеней.

Степень степени числа равна степени того же числа с показателем, равным произведению показателей этих степеней.

Основная литература:

1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.

Дополнительная литература:

1. Макарычев Ю. Н. Алгебра: 7 класс. // Макарычев Ю. Н., Миндюк Н. Г., Нешков К. И., Суворова С. Б. – М.: Просвещение, 2019. – 256 с.

2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.

Теоретический материал для самостоятельного изучения.

Для записи произведения числа самого на себя несколько раз применяют сокращённое обозначение.

Произведение шести множителей, каждый из которых равен 8, называют шестой степенью числа 8 и обозначают 8 6 , т.е.

8 ∙ 8 ∙ 8 ∙ 8 ∙ 8 ∙ 8 = 8 6 .

При этом число 8 называют основанием степени, а число 6 – показателем степени.


А теперь давайте сформулируем общее определение степени числа, опираясь на предыдущий пример:

степенью числа a с натуральным показателем n, бóльшим 1, называется произведение n одинаковых множителей, каждый из которых равен числу a.



Запись a n читается как: а в степени n, или n-ая степень числа a.

А вот следующие записи можно произносить по-разному:

Стоит отметить, что особые случаи возникают, если показатель степени равен нулю или единице:

степенью числа а с показателем n = 1 является само это число:

любое число в нулевой степени равно единице:

ноль в любой натуральной степени равен нулю:

единица в любой степени равна 1:

Выражение 0 0 (ноль в нулевой степени) считают неопределенным.

Примеры. Возведём в степени:

При решении задач, нужно помнить, что возведением в степень называется нахождение числового или буквенного значения после его возведения в степень.

Рассмотрим несколько примеров.

Возведём в степень

2 5 = 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 = 32

2,5 3 = 2,5 ∙ 2,5 ∙ 2,5 = 15,625


Основание степени может быть любым числом – положительным, отрицательным или нулём.
При возведении в степень положительного числа получается положительное число.

При возведении нуля в натуральную степень получается ноль.

При возведении в степень отрицательного числа, в результате может получиться как положительное число, так и отрицательное число. Это зависит от того, чётным или нечётным числом был показатель степени.

Например, (-2) 5 . Ответ будет отрицательным, так как показатель степени, 5- нечётное число. (-2) 5 = (-2) ∙ (-2) ∙ (-2) ∙ (-2) ∙ (-2) = -32.

(-5) 4 . А вот в этом примере ответ будет положительным, так как показатель степени, 4 – чётное число.

(-5) 4 = (-5) ∙ (-5) ∙ (-5) ∙ (-5) = 625.

Рассмотрим такой пример: 4 2 ∙ 5 2 = 4 ∙ 4 ∙ 5 ∙ 5 = (4 ∙ 5) ∙ (4 ∙ 5) = (4 ∙ 5) 2 = 20 2 = 400.

Данный пример подтверждает справедливость следующего свойства степеней:

Произведение степеней с одним и тем же показателем равно степени с тем же показателем и основанием, равным произведению оснований:

a n ∙ b n = (a ∙ b) n

Приведём еще такой пример: 5 2 ∙ 5 5 = (5 ∙ 5) ∙ (5 ∙ 5 ∙ 5 ∙ 5 ∙ 5) = 5 ∙ 5 ∙ 5 ∙ 5 ∙ 5 ∙ 5 ∙ 5 = 5 7 .

Этот пример подтверждает справедливость следующего свойства степеней:

Произведение степеней с одним и тем же основанием это степень с тем же основанием и показателем, равным сумме показателей этих степеней, т.е.

a n ∙ a m = a n+m

Наконец, рассмотрим равенство:

(7 2 ) 3 = (7 ∙ 7) 3 = (7 ∙ 7) ∙ (7 ∙ 7) ∙ (7 ∙ 7) = 7 ∙ 7 ∙ 7 ∙ 7 ∙ 7 ∙ 7 = 7 6 .

Это равенство подтверждает справедливость следующего свойства степеней:

Степень степени числа равна степени того же числа с показателем, равным произведению показателей этих степеней, т.е.

Обращаем ваше внимание, что в данном разделе разбирается понятие степени только с натуральным показателем и нулём.

Понятие и свойства степеней с рациональными показателями (с отрицательным и дробным) будут рассмотрены в уроках для 8 класса.

Итак, разберёмся, что такое степень числа. Для записи произведения числа самого на себя несколько раз применяют сокращённое обозначение.

4 · 4 · 4 · 4 · 4 · 4 = 4 6

Выражение 4 6 называют степенью числа, где:

определение степени в буквенном выражении

Запомните!

что такое степень числа

Исключение составляют записи:

Конечно, выражения выше можно читать и по определению степени:

Особые случаи возникают, если показатель степени равен единице или нулю (n = 1; n = 0) .

Запомните!

Любое число в нулевой степени равно единице.
a 0 = 1

Ноль в любой натуральной степени равен нулю.
0 n = 0

Единица в любой степени равна 1.
1 n = 1

Выражение 0 0 (ноль в нулевой степени) считают лишённым смысла.

При решении примеров нужно помнить, что возведением в степень называется нахождение числового или буквенного значения после его возведения в степень.

Пример. Возвести в степень.

Возведение в степень отрицательного числа

Основание степени (число, которое возводят в степень) может быть любым числом — положительным, отрицательным или нулём.

Запомните!

При возведении в степень положительного числа получается положительное число.

При возведении нуля в натуральную степень получается ноль.

При возведении в степень отрицательного числа в результате может получиться как положительное число, так и отрицательное число. Это зависит от того чётным или нечётным числом был показатель степени.

Рассмотрим примеры возведения в степень отрицательных чисел.

разные примеры возведения в степень отрицательных чисел

Из рассмотренных примеров видно, что если отрицательное число возводится в нечётную степень, то получается отрицательное число. Так как произведение нечётного количество отрицательных сомножителей отрицательно.

Если же отрицательное число возводится в чётную степень, то получается положительное число. Так как произведение чётного количество отрицательных сомножителей положительно.

Запомните!

Отрицательное число, возведённое в чётную степень, есть число положительное .

Отрицательное число, возведённое в нечётную степень, — число отрицательное .

Квадрат любого числа есть положительное число или нуль, то есть:

a 2 ≥ 0 при любом a .

  • 2 · (−3) 2 = 2 · (−3) · (−3) = 2 · 9 = 18
  • −5 · (−2) 3 = −5 · (−8) = 40

Обратите внимание!

При решении примеров на возведение в степень часто делают ошибки, забывая, что записи (−5) 4 и −5 4 это разные выражения. Результаты возведения в степень данных выражений будут разные.

Вычислить (−5) 4 означает найти значение четвёртой степени отрицательного числа.

Пример. Вычислить: −6 2 − (−1) 4

  1. 6 2 = 6 · 6 = 36
  2. −6 2 = −36
  3. (−1) 4 = (−1) · (−1) · (−1) · (−1) = 1
  4. −(−1) 4 = −1
  5. −36 − 1 = −37

Порядок действий в примерах со степенями

Вычисление значения называется действием возведения в степень. Это действие третьей ступени.

Запомните!

В выражениях со степенями, не содержащими скобки, сначала выполняют вовзведение в степень, затем умножение и деление , а в конце сложение и вычитание .

Если в выражении есть скобки, то сначала в указанном выше порядке выполняют действия в скобках, а потом оставшиеся действия в том же порядке слева направо.

пример порядка действийсо степенями

Для облегчения решения примеров полезно знать и пользоваться таблицей степеней, которую вы можете бесплатно скачать на нашем сайте.


Степени. Свойства степеней

Степени. Свойства степеней.

Ключевые слова конспекта: степень с натуральным показателем, основание степени, показатель степени, возведение в степень, дисперсия, умножение и деление степеней, свойства степеней.

Умножим 7 5 на 7 3 :
7 5 • 7 3 = (7 • 7 • 7 • 7 • 7) • (7 • 7 • 7) = 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7 = 7 8 .
Показатель степени увеличился на 3. Естественно считать, что 7 = 7 1 . Вообще считают, что первой степенью числа является само число. Например, 18 1 = 18; 104 1 = 104.

Степень с натуральным показателем

✅ Определение. Степенью числа а с натуральным показателем n, большим 1, называют выражение а n , равное произведению n множителей, каждый из которых равен а.
Степенью числа а с показателем 1 называют выражение а 1 , равное а.


По определению


Возведение в степень

Нахождение n-й степени числа а называют возведением в n-ю степень.

Пример 1. Возведём число –3 в четвёртую и пятую степени:
(–3) 4 = (-3) • (-3) • (-3) • (-3) = 81;
(–3) 5 = (-3) • (-3) • (-3) • (-3) • (-3) = –243.

Из свойств умножения следует, что:

  • при возведении нуля в любую степень получается нуль;
  • при возведении положительного числа в любую степень получается положительное число;
  • при возведении отрицательного числа в степень с чётным показателем получается положительное число, а при возведении отрицательного числа в степень с нечётным показателем — отрицательное число.

Пример 2. Возведём число 6,1 в седьмую степень, воспользовавшись калькулятором. Для этого надо выполнить умножение:
6,1 • 6,1 • 6,1 • 6,1 • 6,1 • 6,1 • 6,1.
Калькулятор позволяет выполнять возведение в степень проще, не повторяя основание степени и знак умножения. Для того чтобы возвести число 6,1 в седьмую степень, достаточно ввести число 6,1, нажать клавишу УМНОЖИТЬ и шесть раз нажать клавишу РАВНО . Получим, что 6,1 7 = 314274,28.

При вычислении значений числовых выражений, не содержащих скобки, принят следующий порядок действий: сначала выполняют возведение в степень, затем умножение и деление, далее сложение и вычитание.

Пример 3. Найдём значение выражения –6 2 + 64 : (–2) 5 . Последовательно находим:
1) 6 2 = 36;
2) (–2) 5 = –32;
3) 64 : (–32) = –2;
4) –36 + (–2) = –38.

Пример 4. Найдём множество значений выражения 5 • (–1) n + 1 + 2, где n ∈ N.
Если n — нечётное число, то (-1) n + 1 = 1; тогда 5 • (-1) n + 1 + 2 = 5 • 1 + 2 = 7.
Если n — чётное число, то (-1) n + 1 = -1; тогда 5 • (-1) n + 1 + 2 = 5 • (-1) + 2 = -5 + 2 = -3.
Множество значений данного выражения: .

В рассмотренном примере было указано, что n ∈ N. Условимся в дальнейшем такое указание опускать и считать, что если показатель степени содержит переменную, то значениями этой переменной являются натуральные числа.

Дисперсия

Степень с натуральным показателем широко используется в естествознании для вычисления различных характеристик. Например, в статистике, для того чтобы узнать, как числа некоторой выборки расположены по отношению к среднему арифметическому этой выборки, используют отклонения, их квадраты и среднее арифметическое квадратов отклонений — дисперсию.


Пример 5. Дана выборка: 4, 6, 7, 8, 10. Среднее арифметическое этой выборки равно 7. Тогда отклонения вариант данной выборки от среднего арифметического равны: 4 – 7 = –3, 6 – 7 = –1, 7 – 7 = 0,8 – 7 = 1, 10 – 7 = 3, т. е. мы получили ещё один набор чисел — отклонения каждой варианты выборки от среднего арифметического. По новой выборке (–3; –1; 0; 1; 3) можно судить о том, насколько близки к среднему арифметическому числа исходного набора. Но поскольку сумма отклонений равна нулю, то и среднее арифметическое этой новой выборки также равно нулю. Поэтому для дальнейших исследований исходного набора находят квадраты отклонений и их среднее арифметическое

Полученное число и есть дисперсия исходной выборки.

Умножение степеней

Представим произведение степеней а 5 и а 2 в виде степени:
а 5 • а 2 = (а • а • а • а • а) • (а • а) = а • а • а • а • а • а • а = а 7 .
Мы получили степень с тем, же основанием и показателем, равным сумме показателей множителей. Подмеченное свойство выполняется для произведения любых двух степеней с одинаковыми основаниями.

Если а — произвольное число, m и n — любые натуральные числа, то а m • а n = а m+ n

Из основного свойства степени следует правило:

  • чтобы перемножить степени с одинаковыми основаниями, надо основание оставить тем же, а показатели степеней сложить.

Деление степеней

Представим теперь в виде степени частное степеней а 8 и а 3 , где а ≠ 0. Так как а 3 • а 5 = а 8 , то по определению частного а 8 : а 3 = а 5 .

Мы получили степень с тем же основанием и показателем, равным разности показателей делимого и делителя. Такое свойство выполняется для частного любых степеней с одинаковыми основаниями, не равными нулю, у которых показатель делимого больше показателя делителя.

Если а — произвольное число, не равное нулю, m и n — любые натуральные числа, причём m > n, то а m : а n = а m — n , где а ≠ 0, m ≥ n

Докажем это. Умножим а m — n на а n , используя основное свойство степени:
a m – n • a n = a (m – n) + n = a m – n + n = a m

Из доказанного свойства следует правило:

  • чтобы выполнить деление степеней с одинаковыми основаниями, надо основание оставить тем же, а из показателя делимого вычесть показатель делителя.

Степень с нулевым показателем

Мы рассматривали степени с натуральными показателями. Введём теперь понятие степени с нулевым показателем.

✅ Определение. Степенью числа а, где а ≠ 0, с нулевым показателем называется выражение а 0 , равное 1 .

Например, 5 0 = 1; (–6,3) 0 = 1. Выражение 0 0 не имеет смысла.

Степени. Свойства степеней

Зачем нужны степени? Где они тебе пригодятся? Почему тебе нужно тратить время на их изучение?

Как обычно — чтобы облегчить себе жизнь. Знание свойств степеней позволит тебе упрощать вычисления и считать быстрее, что пригодится и в жизни и на ОГЭ или ЕГЭ!

Чтобы узнать все о степенях и научиться пользоваться свойствами степеней, читай эту статью.

P.S Если ты хорошо знаешь степени и тебе надо только повторить, переходи сразу к продвинутому уровню.

НАЧАЛЬНЫЙ УРОВЕНЬ

Степени. Коротко о главном

Определение степени:


Свойства степеней:


Произведение степеней с одинаковым основанием:
\( >\cdot >=>\)
Произведение степеней с одинаковыми показателями:\( >\cdot ^>=<<\left( a\cdot b \right)>^>\)
Деление степеней с одинаковым основанием:\( \frac<>><>>=>\)
Деление степеней с одинаковыми показателями:\( \frac<>><^>>=<<\left( \frac \right)>^>\)
Возведение степени в степень:\( <<\left( > \right)>^>=>\)
Дробная степень:\( <^<\frac>>=\sqrt[m]<>>\)

Особенности степеней:

  • Отрицательное число, возведенное в четную степень, – число положительное;
  • Отрицательное число, возведенное в нечетную степень, – число отрицательное;
  • Положительное число в любой степени – число положительное;
  • Ноль в любой степени равен \( 0\);
  • Любое число в нулевой степени равно \( 1\);
  • Степень с целым показателем — это степень, показатель которой натуральное число (т.е. целое и положительное);
  • Степень с рациональным показателем — это степень, показатель которой отрицательные и дробные числа;
  • Степень с иррациональным показателем — это степень, показатель которой бесконечная десятичная дробь или корень.

Возведение в степень – это такая же математическая операция, как сложение, вычитание, умножение или деление.

Сейчас объясню все человеческим языком на очень простых примерах. Будь внимателен. Примеры элементарные, но объясняющий важные вещи. Начнем со сложения.

Сложение

Объяснять тут нечего. Ты и так все знаешь: нас восемь человек. У каждого по две бутылки колы. Сколько всего колы? Правильно – 16 бутылок. Теперь умножение.

Умножение

Тот же самый пример с колой можно записать по-другому: \(\displaystyle 2\cdot 8=16\).

В нашем случае они заметили, что у каждого из восьми человек одинаковое количество бутылок колы и придумали прием, который называется умножением.

Согласись, \(\displaystyle 2\cdot 8=16\) считается легче и быстрее, чем \(\displaystyle 2+2+2+2+2+2+2+2=16\).

И еще одна важная деталь. Ошибок при таком счете делается гораздо меньше. Математики из Стэнфорда, кстати, считают, что человек, знающий приемы счета, делает это в два раза легче и быстрее и совершает в два раза меньше ошибок. Работы меньше, а результат лучше.

Итак, чтобы считать быстрее, легче и без ошибок, нужно всего лишь запомнить таблицу умножения. Ты, конечно, можешь делать все медленнее, труднее и с ошибками, но лучше ее запомнить! Вот таблица умножения. Выучи ее наизусть.


И другая таблица, красивее:


А какие еще хитрые приемы счета придумали ленивые математики? Правильно – возведение числа в степень.

Возведение числа в степень

Если тебе нужно умножить число само на себя пять раз, то математики говорят, что тебе нужно возвести это число в пятую степень.

Например, \(\displaystyle 2\cdot 2\cdot 2\cdot 2\cdot 2=^>\). Математики помнят, что два в пятой степени – это \(\displaystyle 32\).

И решают такие задачки в уме – быстрее, легче и без ошибок.

Для этого нужно всего лишь запомнить то, что выделено цветом в таблице степеней чисел. Поверь, это сильно облегчит тебе жизнь.


Кстати, почему вторую степень называют квадратом числа, а третью — кубом? Что это значит? Очень хороший вопрос. Сейчас будут тебе и квадраты, и кубы.

Примеры из жизни

Начнем с квадрата или со второй степени числа.

Представь себе квадратный бассейн размером \( \displaystyle 3\) метра на \( \displaystyle 3\) метра. Бассейн стоит у тебя на даче. Жара и очень хочется купаться.

Но… бассейн без дна! Нужно застелить дно бассейна плиткой. Сколько тебе надо плитки? Для того чтобы это определить, тебе нужно узнать площадь дна бассейна.

Ты можешь просто посчитать, тыкая пальцем, что дно бассейна состоит из \( \displaystyle 9\) кубиков метр на метр. Если у тебя плитка метр на метр, тебе нужно будет \( \displaystyle 9\) кусков. Это легко…

Итак, по одной стороне дна бассейна у нас поместится \( \displaystyle 30\) плиток (\( \displaystyle \frac=30\) штук) и по другой тоже \( \displaystyle 30\) плиток.

Умножив \( \displaystyle 30\) на \( \displaystyle 30\) , ты получишь \( \displaystyle 900\) плиток (\( \displaystyle 30\cdot 30=900\) ).

Конечно, когда у тебя всего два числа, все равно перемножить их или возвести в степень. Но если у тебя их много, то возводить в степень значительно проще и ошибок при расчетах получается тоже меньше.

Итак, тридцать во второй степени будет \( \displaystyle 900\) (\( \displaystyle ^>=900\) ). Или же можно сказать, что тридцать в квадрате будет \( \displaystyle 900\) .

Иными словами, вторую степень числа всегда можно представить в виде квадрата. И наоборот, если ты видишь квадрат – это ВСЕГДА вторая степень какого-то числа.

Квадрат – это изображение второй степени числа.


Вот тебе задание, посчитать, сумму белых и черных квадратов на шахматной доске с помощью квадрата числа… По одной стороне \( \displaystyle 8\) клеток и по другой тоже \( \displaystyle 8\) .

Чтобы посчитать их количество, нужно восемь умножить на восемь или… если заметить, что шахматная доска – это квадрат со стороной \( \displaystyle 8\) , то можно возвести восемь в квадрат. Получится \( \displaystyle 64\) клетки (\( \displaystyle 8\cdot 8=^>=64\)). Так?


Теперь куб или третья степень числа. Тот же самый бассейн. Но теперь тебе нужно узнать, сколько воды придется залить в этот бассейн. Тебе нужно посчитать объем. (Объемы и жидкости, кстати, измеряются в кубических метрах. Неожиданно, правда?)

Нарисуй бассейн: дно размером \( \displaystyle 3\) на \( \displaystyle 3\) метра и глубиной \( \displaystyle 3\) метра и попробуй посчитать, сколько всего кубов размером метр на метр войдет в твой бассейн.

Прямо показывай пальцем и считай! Раз, два, три, четыре…двадцать два, двадцать три… Сколько получилось? Не сбился? Трудно пальцем считать?

Так-то! Бери пример с математиков. Они ленивы, поэтому заметили, что чтобы посчитать объем бассейна, надо перемножить друг на друга его длину, ширину и высоту.

В нашем случае объем бассейна будет равен \( \displaystyle 3\cdot 3\cdot 3=27\) кубов… Легче правда?

А теперь представь, насколько математики ленивы и хитры, если они и это упростили. Свели все к одному действию. Они заметили, что длина, ширина и высота равна и что одно и то же число перемножается само на себя…

А что это значит? Это значит, что можно воспользоваться степенью. Итак, то, что ты \( \displaystyle 27\) раз считал пальцем, они делают в одно действие: три в кубе равно \( \displaystyle 27\) . Записывается это так: \( \displaystyle ^>=27\) .


Остается только запомнить таблицу степеней. Если ты, конечно, такой же ленивый и хитрый как математики. Если любишь много работать и делать ошибки – можешь продолжать считать пальцем.

Ну и чтобы окончательно убедить тебя, что степени придумали лодыри и хитрюги для решения своих жизненных проблем, а не для того чтобы создать тебе проблемы, вот тебе еще пара примеров из жизни.

У тебя есть \( \displaystyle 2\) миллиона рублей. В начале каждого года ты зарабатываешь на каждом миллионе еще один миллион. То есть каждый твой миллион в начале каждого года удваивается. Сколько денег у тебя будет через \( \displaystyle 5\) лет?

Ты заметил, что число \( \displaystyle 2\) перемножается само на себя \( \displaystyle 6\) раз. Значит, два в шестой степени – \( \displaystyle 64\) миллиона! А теперь представь, что у вас соревнование и эти \( \displaystyle 64\) миллиона получит тот, кто быстрее посчитает…

Стоит запомнить степени чисел, как считаешь?

У тебя есть \( \displaystyle 1\) миллион. В начале каждого года ты зарабатываешь на каждом миллионе еще два. Здорово правда? Каждый миллион утраивается. Сколько денег у тебя будет через \( \displaystyle 4\) года?

Давай считать. Первый год — \( \displaystyle 1\) умножить на \( \displaystyle 3\) , потом результат еще на \( \displaystyle 3\) …

Уже скучно, потому что ты уже все понял: три умножается само на себя \( \displaystyle 4\) раза.

Значит \( \displaystyle 3\) в четвертой степени равно \( \displaystyle 81\) миллион. Надо просто помнить, что три в четвертой степени это \( \displaystyle 81\) или \( \displaystyle ^>=81\) .

Теперь ты знаешь, что с помощью возведения числа в степень ты здорово облегчишь себе жизнь. Давай дальше посмотрим на то, что можно делать со степенями и что тебе нужно знать о них.

Читайте также: