Что называется магнитным моментом контура с током кратко

Обновлено: 30.06.2024

1) Магнитным моментом контура с током I называется векторная величина pm, равная. где n – единичный вектор нормали к элементу dS поверхности S, ограниченной контуром с током.
p(m)=ISn
2) По правилу правого винта

Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.

МАГНИ́ТНЫЙ МОМЕ́НТ, фи­зич. ве­ли­чи­на, ха­рак­те­ри­зую­щая маг­нит­ные свой­ст­ва замк­ну­то­го кон­ту­ра, об­те­кае­мо­го элек­трич. то­ком, или дру­го­го, эк­ви­ва­лент­но­го ему фи­зич. объ­ек­та (напр., ато­ма или др. сис­те­мы дви­жу­щих­ся за­ря­дов). Для замк­ну­то­го то­ка си­лой $I$ М. м. оп­ре­де­ля­ет­ся вы­ра­же­ни­ем: $$\boldsymbol p_М=I\int_σ \boldsymbol ndσ,$$ где $σ$ – гео­мет­рич. по­верх­ность про­из­воль­ной фор­мы, ог­ра­ни­чен­ная кон­ту­ром с то­ком; $dσ$ – ма­лый эле­мент этой по­верх­но­сти, ко­то­рый мож­но при­нять за часть плос­ко­сти; $\boldsymbol n$ – еди­нич­ный век­тор, на­прав­лен­ный пер­пен­ди­ку­ляр­но к $dσ$ в сто­ро­ну, со­гла­сую­щую­ся с на­прав­ле­ни­ем про­те­ка­ния то­ка по пра­ви­лу вин­та. Ве­ли­чи­на и на­прав­ле­ние М. м. не за­ви­сят от вы­бо­ра по­верх­но­сти $σ$ , и для кон­ту­ра с то­ком, це­ли­ком ле­жа­щего в плос­ко­сти, $\boldsymbol p_м=IS \boldsymbol n$ , где $S$ – пло­щадь час­ти плос­ко­сти, ог­ра­ни­чен­ной кон­ту­ром с то­ком, $\boldsymbol n$ – еди­нич­ный век­тор, на­прав­лен­ный пер­пен­ди­ку­ляр­но $S$ в сто­ро­ну, со­гла­сую­щую­ся с на­прав­ле­ни­ем про­те­ка­ния то­ка по пра­ви­лу вин­та. Раз­мер­ность М. м. – А · м 2 .

Важнейшая особенность магнитного поля состоит в том, что оно действует только на движущиеся в этом поле электрические заряды. Опыт показы­вает, что характер воздействия магнитного поля на ток различен в зависимости от формы проводника, по которому течет ток, от расположения проводника и от направ­ления тока. Следовательно, чтобы охарактеризовать магнитное поле, надо рассмот­реть его действие на определенный ток.


При исследовании магнитного поля используется замкнутый плоский контур с током (рамка с током), линейные размеры которого малы по сравнению с расстоянием до токов, образующих магнитное поле. Ориентация контура в простран­стве определяется направлением нормали к контуру. Направление нормали определя­ется правилом правого винта: за положительное направление нормали принимается направление поступательного движения винта, головка которого вращается в направ­лении тока, текущего в рамке (рис.).

Опыты показывают, что магнитное поле оказывает на рамку с током ориентирующее действие, поворачивая ее определенным образом. Этот результат использу­ется для выбора направления магнитного поля. За направление магнитного поля в данной точке принимается направление, вдоль которого располагается положитель­ная нормаль к рамке.


За направление магнитного поля может быть также принято направление, совпадающее с направлением силы, которая действует на север­ный полюс магнитной стрелки, помещенной в данную точку. Так как оба полюса магнитной стрелки лежат в близких точках поля, то силы, действующее на оба полюса, равны друг другу. Следовательно, на магнитную стрелку действует пара сил, поворачи­вающая ее так, чтобы ось стрелки, соединяющая южный полюс с северным, совпадала с направлением поля.

Рамкой с током можно воспользоваться также и для количественного описания магнитного поля. Так как рамка с током испытывает ориентирующее действие поля, то на нее в магнитном поле действует пара сил. Вращающий момент сил зависит как от свойств поля в данной точке, так и от свойств рамки и определяется формулой M = [pmB],

гдеpm— вектор магнитного момента рамки с током (В —вектор магнитной индукции,количественная характеристика магнитного поля). Для плоского контура с током I

где S — площадь поверхности контура (рамки), n — единичный вектор нормали к по­верхности рамки. Направление рm совпадает, таким образом, с направлением по­ложительной нормали.

Если в данную точку магнитного поля помещать рамки с различными магнитными моментами, то на них действуют различные вращающие моменты, однако отношение Мmaxm (Мmax — максимальный вращающий момент) для всех контуров одно и то же и поэтому может служить характеристикой магнитного поля, называемой магнитной индукцией: B = Мmaxm

Магнитная индукция в данной точке однородного магнитного поля определяется максимальным вращающим моментом, действующим на рамку с магнитным момен­том, равным единице, когда нормаль к рамке перпендикулярна направлению поля.

Важнейшая особенность магнитного поля состоит в том, что оно действует только на движущиеся в этом поле электрические заряды. Опыт показы­вает, что характер воздействия магнитного поля на ток различен в зависимости от формы проводника, по которому течет ток, от расположения проводника и от направ­ления тока. Следовательно, чтобы охарактеризовать магнитное поле, надо рассмот­реть его действие на определенный ток.


При исследовании магнитного поля используется замкнутый плоский контур с током (рамка с током), линейные размеры которого малы по сравнению с расстоянием до токов, образующих магнитное поле. Ориентация контура в простран­стве определяется направлением нормали к контуру. Направление нормали определя­ется правилом правого винта: за положительное направление нормали принимается направление поступательного движения винта, головка которого вращается в направ­лении тока, текущего в рамке (рис.).

Опыты показывают, что магнитное поле оказывает на рамку с током ориентирующее действие, поворачивая ее определенным образом. Этот результат использу­ется для выбора направления магнитного поля. За направление магнитного поля в данной точке принимается направление, вдоль которого располагается положитель­ная нормаль к рамке.





За направление магнитного поля может быть также принято направление, совпадающее с направлением силы, которая действует на север­ный полюс магнитной стрелки, помещенной в данную точку. Так как оба полюса магнитной стрелки лежат в близких точках поля, то силы, действующее на оба полюса, равны друг другу. Следовательно, на магнитную стрелку действует пара сил, поворачи­вающая ее так, чтобы ось стрелки, соединяющая южный полюс с северным, совпадала с направлением поля.

Рамкой с током можно воспользоваться также и для количественного описания магнитного поля. Так как рамка с током испытывает ориентирующее действие поля, то на нее в магнитном поле действует пара сил. Вращающий момент сил зависит как от свойств поля в данной точке, так и от свойств рамки и определяется формулой M = [pmB],

гдеpm— вектор магнитного момента рамки с током (В —вектор магнитной индукции,количественная характеристика магнитного поля). Для плоского контура с током I

где S — площадь поверхности контура (рамки), n — единичный вектор нормали к по­верхности рамки. Направление рm совпадает, таким образом, с направлением по­ложительной нормали.

Если в данную точку магнитного поля помещать рамки с различными магнитными моментами, то на них действуют различные вращающие моменты, однако отношение Мmaxm (Мmax — максимальный вращающий момент) для всех контуров одно и то же и поэтому может служить характеристикой магнитного поля, называемой магнитной индукцией: B = Мmaxm

Магнитная индукция в данной точке однородного магнитного поля определяется максимальным вращающим моментом, действующим на рамку с магнитным момен­том, равным единице, когда нормаль к рамке перпендикулярна направлению поля.

Элементарным замкнутым током называют линейный ток, который обтекает поверхность с бесконечно малыми в физическом смысле линейными размерами.

Итак, элементарным током мы будем называть замкнутый ток, который удовлетворяет следующим условиям:

  1. Размеры контура бесконечно малы в сравнении с расстоянием до точек, в которых необходимо рассмотреть поле.
  2. Величины, которые характеризуют внешнее поле, постоянны (Точнее постоянны значения магнитной индукции и ее пространственные производные). Для любого замкнутого тока можно создать условия, при которых его считают элементарным.

Векторный потенциал элементарного тока

Выберем контур в виде параллелограмма, стороны которого $l_1,l_2,\ l_3,l_4\ $(рис.1). Начало координат поместим в точку О на поверхности внутри параллелограмма. Так как параллелограмм бесконечно малый, то конкретное место положения точки значения не имеет.

Векторный потенциал элементарного тока

Так как параллелограмм маленький, то значение r можно считать постоянным и равным расстоянию от середины стороны параллелограмма до точки, в которой ищем поле. Соответственно перепишем уравнение (1):

Для того чтобы преобразовать выражение (2) найдем:

где бесконечно малыми величинами высоких порядков пренебрегаем. На рис.1 показаны геометрические построения для разъяснения того как получены равенства:

Из равенства (5) получим:

Из уравнения (6) получим:

В выражении (7) мы сохранили члены только первого порядка малости по $\overrightarrow$. Таким образом, получено выражение (4). С учетом (4) выражение для векторного магнитного потенциала (2) примет вид:

где использовано известное равенство их векторной алгебры:

Используем то, что вектор элемента поверхности, которая обтекается током, равна:

Перепишем уравнение (8), получим:

Магнитный момент элементарного тока

называется магнитным моментом элементарного тока.

Из (12) очевидно, что эта величина по модулю равна произведению силы тока, который течет в контуре на площадь, которая охвачена им. Направление магнитного момента совпадает с положительной нормалью к поверхности S. Если использовать в записи векторного магнитного потенциала магнитный момент элементарного тока, то выражение (11) примет вид:

Основная единица измерения магнитного момента - $А\cdot м^2.$

Задание: Определите силу тока (I) в витке, если магнитный момент витка $0.1\ А\cdot м^2$. Диаметр витка равен d=0,01 м.

За основу решения задачи примем определение модуля магнитного момента витка с током:

Площадь витка S равна:

Из (1.1) выразим силу тока, подставим S из выражения (1.2) получим:

Данные в условии задачи представлены в системе СИ, следовательно, можно провести вычисления:

Задание: Найдите магнитный момент $p_m\ $кругового витка с током если модуль вектора магнитной индукции в точке А равен В. Расстояние от центра кольца до точки А равно d (рис.2). Считайте ток элементарным.

Векторный потенциал элементарного тока

Выделим на круговом витке в током элемент тока $Idl$ . Для этого элемента запишем закон Био-Савара -- Лапласа для вакуума, чтобы найти поле, которое создает этот ток в точке А:

где $r$ -- расстояние от $dl$ до точки A, $r^2=R^2+d^2,\ R$ -- радиус витка с током.

Подставим (2.1) в (2.2) получим:

Используя принцип суперпозиции найдем полное поле, которое создает элементарный ток (виток с током) в точке А:

В силу симметрии суммарный вклад в магнитную индукцию составляющей $B_равен\ нулю$. Следовательно, можно запить, что магнитная индукция поля в точке А равна:

По условию, мы имеем дело с элементарным током, следовательно, $R\ll d$. В таком случае, (2.5) преобразуется в формулу:

Читайте также: