Что характеризует температура тела кратко

Обновлено: 06.07.2024

Температура

1. Какие явления называются тепловыми явлениями?

Тепловыми явлениями называются явления, связанные с изменением температуры тел, с нагреванием или охлаждением, с изменением агрегатных состояний.

Например:
- нагревание и охлаждение воздуха,
- таяние льда,
- замерзание воды,
- плавление металлов,
- кипение,
- испарение воды,
- образование тумана и росы.


2. Что характеризует температура?

Температура характеризует среднюю кинетическую энергию молекул.


3. Как связана температура тела со скоростью движения его молекул?

Температура тела связана со скоростью движения его молекул прямо пропорциональной зависимостью.
Чем больше скорость движения молекул тела, тем выше температура тела.

4. Можно ли назвать движение молекулы механическим движением?

Да. Движение отдельной молекулы - это механическое движение.
При этом можно определить пройденный путь и среднюю скорость движения молекулы.

5. Почему беспорядочное движение молекул называют тепловым движением, и чем оно отличается от механического движения?

Беспорядочное движение частиц, из которых состоят тела, называют тепловым движением, т.к. со скоростью движения молекул тела связана температура тела
Тепловое движение отличается от механического тем, что в нем участвует множество частиц и каждая движется беспорядочно.

6. Чем отличается движение молекул в газах, жидкостях и твёрдых телах?

В газах молекулы движутся с большой скоростью непрерывно и беспорядочно.
Они изменяют направление своего движения при столкновении друг с другом или со стенками сосуда, в котором газ находится.

В жидкостях молекулы могут колебаться, вращаться и перемещаться относительно друг друга.

В твердых телах молекулы и атомы колеблются около некоторого положения равновесия.


Внутренняя энергия тела

1. Какую энергию называют внутренней энергией тела?

Внутренней энергией тела называется сумма кинетической энергии хаотического движения его молекул и потенциальной энергии их взаимодействия.
Внутренняя энергия тела равна сумме энергий всех его молекул.


От чего зависит внутренняя энергия тела?

Внутренняя энергия тела зависит от температуры тела и агрегатного состояния вещества тела.

2. Зависит ли внутренняя энергия тела от его движения и положения относительно других тел?

Нет, внутренняя энергия тела не зависит ни от его движения, ни от положения относительно других тел.


3. Какие превращения энергии происходят при подъеме шара вверх и при его падении вниз?


При подъеме металлического шара над металлической плитой возрастает его потенциальная энергия.
При падении тела его потенциальная энергия уменьшается, превращаясь в кинетическую, которая увеличивается с увеличением скорости падения.
После удара шара о плиту его потенциальная и кинетическая энергии становятся равными нулю.
Механическая энергия шара после падения на плиту не исчезла, а превратилась в другую форму энергии — тепловую энергию шара и плиты.


4. Как изменяется состояние металлического шара и металлической плиты в результате их соударения?

В результате соударения металлического шара с металлической плитой оба тела деформируются и нагреваются от удара.
Запас внутренней энергиии этих тел увеличивается за счет перехода механической энергии шара в тепловую и передачи ее другому телу - плите.


Тепловое движение α-пептида. Сложное дрожащее движение атомов, составляющих пептид, случайно, и энергия отдельного атома флуктуирует в широких пределах, но с помощью закона равнораспределения вычисляют как среднюю кинетическую энергию каждого атома так и среднюю потенциальную энергию многих колебаний. Серые, красные и синие шары обозначают атомы углерода, кислорода и азота, соответственно; маленькие белые шарики представляют атомы водорода.

Температу́ра (от лат. temperatura — надлежащее смешение, нормальное состояние) — скалярная физическая величина, характеризующая приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия.

В Международной системе единиц (СИ) термодинамическая температура входит в состав семи основных единиц и выражается в кельвинах. В состав производных величин СИ, имеющих специальное название, входит температура Цельсия, измеряемая в градусах Цельсия [1] . На практике часто применяют градусы Цельсия из-за исторической привязки к важным характеристикам воды — температуре таяния льда (0 °C) и температуре кипения (100 °C). Это удобно, так как большинство климатических процессов, процессов в живой природе и т. д. связаны с этим диапазоном. Изменение температуры на один градус Цельсия тождественно изменению температуры на один Кельвин. Поэтому после введения в 1967 г. нового определения Кельвина, температура кипения воды перестала играть роль неизменной реперной точки и, как показывают точные измерения, она уже не равна 100 °C, а близка к 99,975 °C [2] .

Существуют также шкала Фаренгейта и некоторые другие.

Содержание

Термодинамическое определение

Существование равновесного состояния называют первым исходным положением термодинамики. Вторым исходным положением термодинамики называют утверждение о том, что равновесное состояние характеризуется некоторой величиной, которая при тепловом контакте двух равновесных систем становится для них одинаковой в результате обмена энергией. Эта величина называется температурой. [3]

История термодинамического подхода

В равновесном состоянии температура имеет одинаковое значение для всех макроскопических частей системы. Если в системе два тела имеют одинаковую температуру, то между ними не происходит передачи кинетической энергии частиц (тепла). Если же существует разница температур, то тепло переходит от тела с более высокой температурой к телу с более низкой.

Свойства температуры изучает раздел физики — термодинамика. Температура также играет важную роль во многих областях науки, включая другие разделы физики, а также химию и биологию.

Определение температуры в статистической физике

В статистической физике температура определяется по формуле

 T = \frac<dE></p>
<p>
,

где S — энтропия, E — энергия термодинамической системы. Введённая таким образом величина T является одинаковой для различных тел при термодинамическом равновесии. При контакте двух тел тело с большим значением T будет отдавать энергию другому.

Измерение температуры



Для измерения термодинамической температуры выбирается некоторый термодинамический параметр термометрического вещества. Изменение этого параметра однозначно связывается с изменением температуры. Классическим примером термодинамического термометра может служить газовый термометр, в котором температуру определяют методом измерения давления газа в баллоне постоянного объёма. Известны также термометры абсолютные радиационные, шумовые, акустические.

Термодинамические термометры — это очень сложные установки, которые невозможно использовать для практических целей. Поэтому большинство измерений производится с помощью практических термометров, которые являются вторичными, так как не могут непосредственно связывать какое-то свойство вещества с температурой. Для получения функции интерполяции они должны быть отградуированы в реперных точках международной температурной шкалы.

Средства измерения температуры часто проградуированы по относительным шкалам — Цельсия или Фаренгейта.

На практике для измерения температуры также используют

Самым точным практическим термометром является платиновый термометр сопротивления [5] . Разработаны новейшие методы измерения температуры, основанные на измерении параметров лазерного излучения [6] .

Единицы и шкала измерения температуры

Из того, что температура — это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (то есть в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах — градусах.

Абсолютная температура. Шкала температур Кельвина

Понятие абсолютной температуры было введено У. Томсоном (Кельвином), в связи с чем шкалу абсолютной температуры называют шкалой Кельвина или термодинамической температурной шкалой. Единица абсолютной температуры — кельвин (К).

Абсолютная шкала температуры называется так, потому что мера основного состояния нижнего предела температуры — абсолютный ноль, то есть наиболее низкая возможная температура, при которой в принципе невозможно извлечь из вещества тепловую энергию.

Абсолютный ноль определён как 0 K, что равно −273.15 °C.

Шкала температур Кельвина — это шкала, в которой начало отсчёта ведётся от абсолютного нуля.

Важное значение имеет разработка на основе термодинамической шкалы Кельвина Международных практических шкал, основанных на реперных точках — фазовых переходах чистых веществ, определенных методами первичной термометрии. Первой международной температурной шкалой являлась принятая в 1927 г. МТШ-27. С 1927 г. шкала несколько раз переопределялась (МТШ-48, МПТШ-68, МТШ-90): менялись реперные температуры, методы интерполяции, но принцип остался тот же — основой шкалы является набор фазовых переходов чистых веществ с определенными значениями термодинамических температур и интерполяционные приборы, градуированные в этих точках. В настоящее время действует шкала МТШ-90. Основной документ (Положение о шкале) устанавливает определение Кельвина, значения температур фазовых переходов (реперных точек) [7] и методы интерполяции.

Используемые в быту температурные шкалы — как Цельсия, так и Фаренгейта (используемая, в основном, в США), — не являются абсолютными и поэтому неудобны при проведении экспериментов в условиях, когда температура опускается ниже точки замерзания воды, из-за чего температуру приходится выражать отрицательным числом. Для таких случаев были введены абсолютные шкалы температур.

Одна из них называется шкалой Ранкина, а другая — абсолютной термодинамической шкалой (шкалой Кельвина); температуры по ним измеряются, соответственно, в градусах Ранкина (°Ra) и кельвинах (К). Обе шкалы начинаются при температуре абсолютного нуля. Различаются они тем, что цена одного деления по шкале Кельвина равна цене деления шкалы Цельсия, а цена деления шкалы Ранкина эквивалентна цене деления термометров со шкалой Фаренгейта. Температуре замерзания воды при стандартном атмосферном давлении соответствуют 273,15 K, 0 °C, 32 °F.

Масштаб шкалы Кельвина привязан к тройной точке воды (273,16 К), при этом от неё зависит постоянная Больцмана. Это создаёт проблемы с точностью интерпретации измерений высоких температур. Сейчас МБМВ рассматривает возможность перехода к новому определению кельвина и фиксированию постоянной Больцмана, вместо привязки к температуре тройной точки. [8] .

Шкала Цельсия

В технике, медицине, метеорологии и в быту используется шкала Цельсия, в которой температура тройной точки воды равна 0,008 °C, [9] и, следовательно, точка замерзания воды при давлении в 1 атм равна 0 °C. В настоящее время шкалу Цельсия определяют через шкалу Кельвина: цена одного деления в шкале Цельсия равна цене деления шкалы Кельвина, t(°С) = Т(К) — 273,15. Таким образом, точка кипения воды, изначально выбранная Цельсием, как реперная точка, равная 100 °C, утратила свое значение, и по современным оценкам температура кипения воды при нормальном атмосферном давлении составляет около 99,975 °C.Шкала Цельсия практически очень удобна, поскольку вода очень распространена на нашей планете и на ней основана наша жизнь. Ноль Цельсия — особая точка для метеорологии, поскольку связана с замерзанием атмосферной воды. Шкала предложена Андерсом Цельсием в 1742 г.

Шкала Фаренгейта

В Англии и, в особенности, в США используется шкала Фаренгейта. Ноль градусов Цельсия — это 32 градуса Фаренгейта, а 100 градусов Цельсия — 212 градуса Фаренгейта.

В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F — 32), t °F = 9/5 t °С + 32. Предложена Г. Фаренгейтом в 1724 году.

Шкала Реомюра

Предложена в 1730 году Р. А. Реомюром, который описал изобретённый им спиртовой термометр.

Единица — градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками — температурой таяния льда (0 °R) и кипения воды (80 °R)

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции, на родине автора.

Энергия теплового движения при абсолютном нуле

Когда материя охлаждается, многие формы тепловой энергии и связанные с ней эффекты одновременно уменьшаются по величине. Вещество переходит от менее упорядоченного состояния к более упорядоченному.

… современное понятие абсолютного нуля не есть понятие абсолютного покоя, наоборот, при абсолютном нуле может быть движение — и оно есть, но это есть состояние полного порядка …

П. Л. Капица (Свойства жидкого гелия)

Газ превращается в жидкость и затем кристаллизуется в твёрдое тело (гелий и при абсолютном нуле остаётся в жидком состоянии при атмосферном давлении). Движение атомов и молекул замедляется, их кинетическая энергия уменьшается. Сопротивление большинства металлов падает из-за уменьшения рассеяния электронов на колеблющихся с меньшей амплитудой атомах кристаллической решётки. Таким образом даже при абсолютном нуле электроны проводимости движутся между атомами со скоростью Ферми порядка 1·10 6 м/с.

Температура, при которой частицы вещества имеют минимальное количество движения, сохраняющееся только благодаря квантовомеханическому движению, — это температура абсолютного нуля (Т = 0К).

Температуры абсолютного нуля достичь невозможно. Наиболее низкая температура (450±80)·10 −12 К конденсата Бозе-Эйнштейна атомов натрия была получена в 2003 г. исследователями из МТИ [источник не указан 972 дня] . При этом пик теплового излучения находится в области длин волн порядка 6400 км, то есть примерно радиуса Земли.

Температура и излучение

Излучаемая телом энергия пропорциональна четвёртой степени его температуры. Так, при 300 К с квадратного метра поверхности излучается до 450 ватт. Этим объясняется, например, ночное охлаждение земной поверхности ниже температуры окружающего воздуха. Энергия излучения абсолютно чёрного тела описывается законом Стефана — Больцмана

Переходы из разных шкал

Пересчёт температуры между основными шкалами
из Цельсия (° C) в Цельсий
Фаренгейт (°F) [°F] = [°C] × 9⁄5 + 32 [°C] = ([°F] − 32) × 5⁄9
Кельвин (K) [K] = [°C] + 273.15 [°C] = [K] − 273.15
Rankine [°R] = ([°C] + 273.15) × 9⁄5 [°C] = ([°R] − 491.67) × 5⁄9
Delisle [°De] = (100 − [°C]) × 3⁄2 [°C] = 100 − [°De] × 2⁄3
Newton [°N] = [°C] × 33⁄100 [°C] = [°N] × 100⁄33
Réaumur [°Ré] = [°C] × 4⁄5 [°C] = [°Ré] × 5⁄4
Rømer [°Rø] = [°C] × 21⁄40 + 7.5 [°C] = ([°Rø] − 7.5) × 40⁄21

Сравнение температурных шкал

Сравнение температурных шкал
Описание Кельвин Цельсий Фаренгейт Ранкин Делиль Ньютон Реомюр Рёмер
Абсолютный ноль 0 −273,15 −459,67 0 559,725 −90,14 −218,52 −135,90
Температура таяния смеси Фаренгейта (соль и лёд в равных количествах) 255,37 −17,78 0 459,67 176,67 −5,87 −14,22 −1,83
Температура замерзания воды (Нормальные условия) 273,15 0 32 491,67 150 0 0 7,5
Средняя температура человеческого тела ¹ 310,0 36,6 98,2 557,9 94,5 12,21 29,6 26,925
Температура кипения воды (Нормальные условия) 373,15 100 212 671,67 0 33 80 60
Плавление титана 1941 1668 3034 3494 −2352 550 1334 883
Поверхность Солнца 5800 5526 9980 10440 −8140 1823 4421 2909

¹ Нормальная средняя температура человеческого тела — 36,6 °C ±0,7 °C, или 98,2 °F ±1,3 °F. Приводимое обычно значение 98,6 °F — это точное преобразование в шкалу Фаренгейта принятого в Германии в XIX веке значения 37 °C. Однако это значение не входит в диапазон нормальной средней температуры тела человека, поскольку температура разных частей тела разная [10] .

Некоторые значения в этой таблице являются округлёнными.

Характеристика фазовых переходов

Для описания точек фазовых переходов различных веществ используют следующие значения температуры:

Читайте также: