Чему равна работа внешних сил действующих на газ кратко

Обновлено: 05.07.2024

В механике рассматривается движение макроскопических тел. Работа определяется как произведение модулей силы и перемещения и косинуса угла между направлениями силы и перемещения. Работа совершается при действии силы или нескольких сил на движущееся макроскопическое тело и равна изменению его кинетической энергии.

В термодинамике движение тела как целого не рассматривается и речь идет о перемещении частей макроскопического тела друг относительно друга. При совершении работы меняется объем тела, а его скорость остается равной нулю. Но скорости молекул тела, например газа, меняются. Поэтому меняется и температура тела.

Причина состоит в следующем: при упругих соударениях молекул с движущимся поршнем (для случая сжатия газа) их кинетическая энергия изменяется. Так, при движении навстречу молекулам поршень во время столкновений передает им часть своей механической энергии, в результате чего газ нагревается. Поршень действует подобно футболисту, встречающему летящий мяч ударом ноги и сообщающему мячу скорость, значительно большую той, которой он обладал до удара(1).

И наоборот, если газ расширяется, то после столкновения с удаляющимся поршнем скорости молекул уменьшаются, в результате чего газ охлаждается. Так же действует футболист: чтобы уменьшить скорость летящего мяча или остановить его, нога футболиста движется от мяча, как бы уступая ему дорогу.

Итак, при совершении работы в термодинамике меняется состояние макроскопических тел: меняется их объем и температура.

Вычисление работы

Вычислим работу в зависимости от изменения объема на примере газа в цилиндре под поршнем (рис. 5.1). Проще всего вначале вычислить не работу силы , действующей на газ со стороны внешнего тела (поршня), а работу, которую совершает сам газ, действуя на поршень с силой . Согласно третьему закону Ньютона = -.


Модуль силы, действующей со стороны газа на поршень, равен F' = pS, где р — давление газа, a S — площадь поверхности поршня. Пусть газ расширяется и поршень смещается в направлении силы на малое расстояние Δh = h2 - h1. Если перемещение мало, то давление газа можно считать постоянным.

Работа газа равна


Эту работу можно выразить через изменение объема газа. Начальный объем V1 = Sh1, а конечный V2 = Sh2. Поэтому


где ΔV =V2 - V1 — изменение объема газа.

При расширении газ совершает положительную работу, так как направления силы и перемещения поршня совпадают.

Если газ сжимается, то формула (5.1.2) для работы газа остается справедливой. Но теперь V2 0: при сжатии газа направления силы и перемещения совпадают. При расширении газа, наоборот, работа внешних тел отрицательна (А 0. Теперь направления силы и перемещения противоположны .

Выражения (5.1.2) и (5.1.3) справедливы не только при сжатии или расширении газа в цилиндре, но и при малом изменении объема любой системы. Если процесс изобарный (р = const), то эти формулы можно применять и для больших изменений объема.

Геометрическое истолкование работы

Работе газа А' для случая постоянного давления можно дать простое геометрическое истолкование.

Построим график зависимости давления газа от объема (рис. 5.3). Здесь площадь прямоугольника abcd, ограниченная графиком р1 = const, осью V и отрезками ab и cd, равными давлению газа, численно равна работе (5.1.2).


В общем случае при произвольном изменении объема газа давление не остается неизменным. Например, при изотермическом процессе оно убывает обратно пропорционально объему (рис. 5.4). В этом случае для вычисления работы нужно общее изменение объема разделить на малые части, вычислить элементарные (малые) работы, а потом все их сложить. Работа газа по-прежнему будет численно равна площади фигуры, ограниченной графиком зависимости р от V, осью V и отрезками ab и cd, равными давлениям р1 и р2 в начальном и конечном состояниях.


Работа внешней силы, изменяющей объем газа на ΔV, равна А = —pΔV. Работа самого газа А' = —А = = pΔV, где р — давление газа.

Работа силы равна . Со стороны газа на поршень действуют сила, равная произведению давлению газа на поршень и площадь сечения поршня . Подставив вторую формулу в первую, получим .

Знак "-" в формуле означает, что при уменьшении объема (как в нашем примере, ) работа внешних сил положительная. И наоборот, когда газ расширяется, работа внешней силы, удерживающей поршень, отрицательная.

Графическое определение работы

Строим график процесса p(V). Определяем на графике точки, которые соответствуют состоянию системы в 1 и 2 состояниях. Площадь фигуры под графиком - есть термодинамическая работа самой системы. Внешняя работа над системой равна работе системы, но с противоположным знаком

И сторическая справка.

2) Б. Румфорд, работая на заводе по изготовлению пушек, заметил, что при сверлении пушечного ствола он сильно нагревается. Например, он помещал металлический цилиндр массой около 50 кг в ящик с водой и, сверля цилиндр сверлом, доводил воду в ящике до кипения за 2.5часа.

3) Дэви в 1799 году осуществил интересный опыт. Два куска льда при трении одного о другой начали таять и превращаться в воду.

4) Корабельный врач Роберт Майер в 1840 году во время плавания на остров Яву заметил, что после шторма вода в море всегда теплее, чем до него.

Вычисление работы.

В механике работа определяется как произведение модулей силы и перемещения: A=FS. При рассмотрении термодинамических процессов механическое перемещение макротел в целом не рассматривается. Понятие работы здесь связывается с изменением объема тела, т.е. перемещением частей макротела друг относительно друга. Процесс этот приводит к изменению расстояния между частицами, а также часто к изменению скоростей их движения, следовательно, к изменению внутренней энергии тела.


Пусть в цилиндре с подвижным поршнем находится газ при температуре T1 (рис.). Будем медленно нагревать газ до температуры T2. Газ будет изобарно расширяться, и поршень переместится из положения 1 в положение 2 на расстояние Δl. Сила давления газа при этом совершит работу над внешними телами. Так как p = const, то и сила давления F = pS тоже постоянная. Поэтому работу этой силы можно рассчитать по формуле A=F Δ l =pS Δ l =p Δ V , A= p Δ V

где ΔV — изменение объема газа. Если объем газа не изменяется (изохорный процесс), то работа газа равна нулю.

Почему при сжатии или расширении меняется внутренняя энергия тела? Почему при сжатии газ нагревается, а при расширении охлаждается?

Причиной изменения температуры газа при сжатии и расширении является следующее: при упругих соударениях молекул с движущимся поршнем их кинетическая энергия изменяется.

  • Если газ сжимается, то при столкновении движущийся навстречу поршень передаёт молекулам часть своей механической энергии, в результате чего газ нагревается;
  • Если газ расширяется, то после столкновения с удаляющимся поршнем скорости молекул уменьшаются. в результате чего газ охлаждается.

При сжатии и расширении меняется и средняя потенциальная энергия взаимодействия молекул, так как при этом меняется среднее расстояние между молекулами.

Работа внешних сил, действующих на газ

  • При сжатии газа, когда Δ V = V 2 – V 1 0, направления силы и перемещения совпадают;
  • При расширении, когда Δ V = V 2 – V 1 > 0 , A

Запишем уравнение Клапейрона-Менделеева для двух состояний газа:

pV 1 = m/M*RT 1 ; pV 2 =m/M* RT 2 ⇒

p ( V 2 − V 1 )= m/M* R ( T 2 − T 1 ).

Следовательно, при изобарном процессе

A = m/M* R Δ T .

Если m = М (1 моль идеального газа), то при ΔΤ = 1 К получим R = A. Отсюда вытекает физический смысл универсальной газовой постоянной: она численно равна работе, совершаемой 1 моль идеального газа при его изобарном нагревании на 1 К.

Геометрическое истолкование работы:

На графике p = f(V) при изобарном процессе работа равна площади заштрихованного на рисунке а) прямоугольника.


Если процесс не изобарный (рис. б), то кривую p = f(V) можно представить как ломаную, состоящую из большого количества изохор и изобар. Работа на изохорных участках равна нулю, а суммарная работа на всех изобарных участках будет равна площади заштрихованной фигуры. При изотермическом процессе (Т = const) работа равна площади заштрихованной фигуры, изображенной на рисунке в.

В термодинамике движение тела как целого не рассматривается и речь идет о перемещении частей макроскопического тела относительно друг друга. При совершении работы меняется объем тела, а его скорость остается раной нулю. Носкорости молекул тела меняются! Поэтому меняется температура тела. Причина в том, что при столкновении с движущимся поршнем (сжатие газа) кинетическая энергия молекул изменяется - поршень отдает часть своей механической энергии. При столкновении с удаляющимся поршнем (расширение) скорости молекул уменьшаются, газ охлаждается. При совершении работы в термодинамике меняется состояние макроскопических тел: их объем и температура.

- сила, действующая на газ со стороны поршня.

А - работа внешних сил по сжатию газа.

- сила, действующая на поршень со стороны газа.

А' - работа газа по расширению.

= - - по 3-ему з-ну Ньютона.

Следовательно: А= - А'


= pS, где p- давление, S - площадь поршня.

Если газ расширяется:

Δh=h2 - h1 - перемещение поршня. V1=Sh1; V2=Sh2.

перемещение поршня

При расширении работа газа положительна. При сжатии - отрицательна. Таким образом: A' = pΔV - работа газа

A= - pΔV - работа внешних сил.

уравнение Менделеева-Клапейрона

Используя уравнение Менделеева-Клапейрона, получим:

Эти выражения справедливы при очень малых (!) изменениях объема или при постоянном давлении (т.е. в изобарном процессе)

Физический смысл универсальной газовой постоянной.

- универсальная газовая постоянная численно равна работе 1 моля идеального газа при изобарном нагревании на 1 К.

Геометрическое истолкование работы.

В изобарном процессе площадь под графиком в координатах p,V численно равна работе (вспомните - перемещение на графике скорости!).

В общем случае надо процесс разбить на малые части и сосчитать элементарные работы, а затем их сложить (процесс интегрирования):

Например, в изотермическом процессе .

В изохорном процессе объем не меняется, следовательно, в изохорном процессе работа не совершается!

Читайте также: