Чем отличается сила трения покоя от силы трения скольжения и от силы трения качения кратко

Обновлено: 05.07.2024

Тела взаимодействуют друг с другом по-разному. Один из видов взаимодействия - трение. Прежде чем разбираться с тонкостями сухого и вязкого трения, ответим на два вопроса. Что такое сила трения, и когда она возникает?

Что такое сила трения?

Сила трения - сила, возникающая при соприкосновении тел и препятствующая их относительному движению.

Трение возникает вследствие взаимодействия между атомами и молекулами тел, когда они соприкасаются друг с другом.

Природа силы трения - электромагнитная.

Как и для любого другого взаимодействия, для трения справедлив третий закон Ньютона. Если на одно из двух взаимодействующих тел действует сила трения, то такая же по модулю сила действует на другое тело в противоположном направлении.

Сила трения покоя и сила трения скольжения

Различают сухое и вязкое трение, силу трения покоя, силу трения скольжения, силу трения качения.

Сухое трение - это трение, которое возникает между твердыми телами при отсутствии между ними жидкой или газообразной прослойки. Силы трения направлена по касательной к соприкасающимся поверхностям.

Представим, что на тело, например, брусок, лежащий на столе, действует некоторая внешняя сила. Эта сила стремится сдвинуть брусок с места. Пока тела покоятся, на брусок действуют сила трения покоя и, собственно, внешняя сила. Сила трения покоя равна внешней силе и уравновешивает ее.

Когда внешняя сила превышает некоторое предельное значение F т р . m a x , брусок сдвигается с места. На него так же действует сила трения, но это уже не сила трения покоя, а сила трения скольжения. Сила трения скольжения направлена в сторону, противоположную движению, и зависит от скорости движения тела.

Сила трения покоя и сила трения скольжения

При решении физических задач силу трения скольжения часто принимают равной максимальной силе трения покоя, а зависимостью от силы трения от относительной скорости движения тел пренебрегают.

Сила трения покоя и сила трения скольжения

На рисунке выше показаны реальная и идеализированная характеристики сухого трения. Как видим, на самом деле сила трения скольжения меняется в зависимости от скорости, однако изменения не столь велики, чтобы ими нельзя было пренебречь.

Сила трения пропорциональна силе нормальной реакции опоры.

F т р = F т р . m a x = μ N .

Что такое коэффициент трения скольжения?

μ - коэффициент пропорциональности, который называется коэффициентом трения скольжения. Он зависит от материалов соприкосающихся тел и их свойств. Коэффициент трения скольжения - безразмерная величина, не превышающая единицы.

Сила трения покоя и сила трения скольжения

Силы трения качения возникают при качении тел. Обычно при решении задач ими пренебрегают.

Вязкое трение в жидкостях и газах

Вязкое трение возникает при движении тел в жидкостях и газах. Сила вязкого трения также направлена в сторону, противоположную движению тела, но по величине гораздо меньше силы трения скольжения. Трение покоя отсутствует при вязком трении.

Расчет силы вязкого трения более сложен, нежели расчет силы трения скольжения. При малых скоростях движения тела в жидкоси сила вязкого трения пропорциональна скорости тела, а при больших скоростях - квадрату скорости. Коэффициенты пропорциональности при этом зависят от формы тел, также необходимо учитывать свойства самой среды, в которой происходит движение.

Например, силы вязкого трения в воде и масле будут отличаться, так как эти жидкости имеют различные вязкости.

Определение силы трения

Трение — это взаимодействие, которое возникает в плоскости контакта поверхностей соприкасающихся тел.
Сила трения — это величина, которая характеризует это взаимодействие по величине и направлению.

Основная особенность: сила трения приложена к обоим телам, поверхности которых соприкасаются, и направлена в сторону, противоположную мгновенной скорости движения тел друг относительно друга. Поэтому тела, свободно скользящие по какой-либо горизонтальной поверхности, в конце концов остановятся. Чтобы тело двигалось по горизонтальной поверхности без торможения, к нему надо прикладывать усилие, противоположное и хотя бы равное силе трения. В этом заключается суть силы трения.

Откуда берётся трение

Трение возникает по двум причинам:

  1. Все тела имеют шероховатости. Даже у очень хорошо отшлифованных металлов в электронный микроскоп видны неровности. Абсолютно гладкие поверхности бывают только в идеальном мире задач, в которых трением можно пренебречь. Именно упругие и неупругие деформации неровностей при контакте трущихся поверхностей формируют силу трения.
  2. Между атомами и молекулами поверхностей тел действуют электромагнитные силы притяжения и отталкивания. Таким образом, сила трения имеет электромагнитную природу.

Виды силы трения

В зависимости от вида трущихся поверхностей, различают сухое и вязкое трение. В свою очередь, оба подразделяются на другие виды силы трения.

  1. Сухое трение возникает в области контакта поверхностей твёрдых тел в отсутствие жидкой или газообразной прослойки. Этот вид трения может возникать даже в состоянии покоя или в результате перекатывания одного тела по другому, поэтому здесь выделяют три вида силы трения:
  • трение скольжения,
  • трение покоя,
  • трение качения.

Виды силы трения

  1. Вязкое трение возникает при движении твёрдого тела в жидкости или газе. Оно препятствует движению лодки, которая скользит по реке, или воздействует на летящий самолёт со стороны воздуха. Интересная особенность вязкого трения в том, что отсутствует трение покоя. Попробуйте сдвинуть пальцем лежащий на земле деревянный брус и проделайте тот же эксперимент, опустив брус на воду. Чтобы сдвинуть брус с места в воде, будет достаточно сколь угодно малой силы. Однако по мере роста скорости силы вязкого трения сильно увеличиваются.

Сила трения покоя

Рассмотрим силу трения покоя подробнее.

Сила трения покоя

Обычная ситуация: на кухне имеется холодильник, его нужно переставить на другое место.

Когда никто не пытается двигать холодильник, стоящий на горизонтальном полу, трения между ним и полом нет. Но как только его начинают толкать, коварная сила трения покоя тут же возникает и полностью компенсирует усилие. Причина её возникновения — те самые неровности соприкасающихся поверхностей, которые деформируясь, препятствуют движению холодильника. Поднатужились, увеличили силу, приложенную к холодильнику, но он не поддался и остался на месте. Это означает, что сила трения покоя возрастает вместе с увеличением внешнего воздействия, оставаясь равной по модулю приложенной силе, ведь увеличиваются деформации неровностей.

Пока силы равны, холодильник остаётся на месте:


Сила трения, которая действует между поверхностями покоящихся тел и препятствует возникновению движения, называется силой трения покоя


Сила трения скольжения

Что же делать с холодильником и можно ли победить силу трения покоя? Не будет же она расти до бесконечности?

Зовём на помощь друга, и вдвоём уже удаётся передвинуть холодильник. Получается, чтобы тело двигалось, нужно приложить силу, большую, чем самая большая сила трения покоя:


Теперь на движущийся холодильник действует сила трения скольжения. Она возникает при относительном движении контактирующих твёрдых тел.

Итак, сила трения покоя может меняться от нуля до некоторого максимального значения — Fтр. пок. макс И если приложенная сила больше, чем Fтр. пок. макс, то у холодильника появляется шанс сдвинуться с места.

Теперь, после начала движения, можно прекратить наращивать усилие и ещё одного друга можно не звать. Чтобы холодильник продолжал двигаться равномерно, достаточно прикладывать силу, равную силе трения скольжения:


Сила трения скольжения

Как рассчитать и измерить силу трения

Чтобы понять, как измеряется сила трения, нужно понять, какие факторы влияют на величину силы трения. Почему так трудно двигать холодильник?

Самое очевидное — его масса играет первостепенную роль. Можно вытащить из него все продукты и тем самым уменьшить его массу, и, следовательно, силу давления холодильника на опору (пол). Пустой холодильник сдвинуть с места гораздо легче!
Следовательно, чем меньше сила нормального давления тела на поверхность опоры, тем меньше и сила трения. Опора действует на тело с точно такой же силой, что и тело на опору, только направленной в противоположную сторону.

Сила реакции опоры обозначается N. Можно сделать вывод


Второй фактор, влияющий на величину силы трения, — материал и степень обработки соприкасающихся поверхностей. Так, двигать холодильник по бетонному полу гораздо тяжелее, чем по ламинату. Зависимость силы трения от рода и качества обработки материала обеих соприкасающихся поверхностей выражают через коэффициент трения.


Он чаще всего попадает в интервал от нуля до единицы, не имеет размерности и определяется экспериментально.

Можно предположить, что сила трения зависит также от площади соприкасающихся поверхностей. Однако, положив холодильник набок, мы не облегчим себе задачу.

Ещё Леонардо да Винчи экспериментально доказал, что сила трения не зависит от площади соприкасающихся поверхностей при прочих равных условиях.

Сила трения скольжения, возникающая при контакте твёрдого тела с поверхностью другого твёрдого тела прямо пропорциональна силе нормального давления и не зависит от площади контакта.

Этот факт отражён в законе Амонтона-Кулона, который можно записать формулой:


где μ — коэффициент трения, N — сила нормальной реакции опоры.

Для тела, движущегося по горизонтальной поверхности, сила реакции опоры по модулю равна весу тела:


Сила трения качения

Сила трения качения

Ещё древние строители заметили, что если тяжёлый предмет водрузить на колёсики, то сдвинуть с места и затем катить его будет гораздо легче, чем тянуть волоком. Вот бы пригодилась эта древняя мудрость, когда мы тянули холодильник! Однако всё равно нужно толкать или тянуть тело, чтобы оно не остановилось. Значит, на него действует сила трения качения. Это сила сопротивления движению при перекатывании одного тела по поверхности другого.

Причина трения качения — деформация катка и опорной поверхности. Сила трения качения может быть в сотни раз меньше силы трения скольжения при той же силе давления на поверхность. Примерами уменьшения силы трения за счёт подмены трения скольжения на трение качения служат такие приспособления, как подшипники, колёсики у чемоданов и сумок, ролики на прокатных станах.

Направление силы трения

Сила трения скольжения всегда направлена противоположно скорости относительного движения соприкасающихся тел. Важно помнить, что на каждое из соприкасающихся тел действует своя сила трения.

Направление силы трения

Бывают ситуации, когда сила трения не препятствует движению, а совсем наоборот.

Представьте, что на ленте транспортёра лежит чемодан. Лента трогается с места, и чемодан движется вместе с ней. Сила трения между лентой и чемоданом оказалась достаточной, чтобы преодолеть инерцию чемодана, и эти тела движутся как одно целое. На чемодан действует сила трения покоя, возникающая при взаимодействии соприкасающихся поверхностей, которая направлена по ходу движения ленты транспортёра.

Сила трения покоя

Если бы лента была абсолютно гладкой, то чемодан начал бы скользить по ней, стремясь сохранить своё состояние покоя. Напомним, что это явление называется инерцией.

Направление силы трения

Сила трения покоя, помогающая нам ходить и бегать, также направлена не против движения, а вперёд по ходу перемещения. При повороте же автомобиля сила трения покоя и вовсе направлена к центру окружности.

Для того чтобы понять, как направлена сила трения покоя, нужно предположить, в каком направлении стало бы двигаться тело, будь поверхность идеально гладкой. Сила трения покоя в этом случае будет направлена как раз в противоположную сторону. Пример, лестница у стены.

Подведём итоги

  1. Сила трения покоя меняется от нуля до максимального значения 0


Ответ задачи зависит от того, сдвинется ли брусок под действием внешнего воздействия. Поэтому вначале узнаем значение силы, которую нужно приложить к бруску для скольжения. Это будет максимально возможная сила трения покоя, определяющаяся по формуле Fтр. = μ ⋅ N , где N = mg (при условии горизонтальной поверхности). Подставляя значения, получаем, что Fтр. = 35 Н. Данное значение больше прикладываемой силы, следовательно брусок не сдвинется с места. Тогда сила трения покоя будет равна внешней силе: Fтр. = F = 25 H .

Записали!
Скоро с вами свяжется консультант, расскажет об обучении в нашей онлайн-школе.
Проверьте вашу электронную почту — там письмо о том, что стоит сделать перед консультацией.

Записали!
Скоро с вами свяжется консультант, расскажет об обучении в нашей онлайн-школе.
Проверьте вашу электронную почту — там письмо о том, что стоит сделать перед консультацией.

Записали!
Скоро с вами свяжется консультант, расскажет об обучении в нашей онлайн-школе.
Проверьте вашу электронную почту — там письмо о том, что стоит сделать перед консультацией.


У нас вы сможете учиться в удобном темпе, делать упор на любимые предметы и общаться со сверстниками по всему миру.

Из-за чего возникает сила трения? Она возникает в результате движения одно тела по поверхности другого тела.

Причины возникновения силы трения:

  1. Все тела имеют шероховатости. Даже у очень хорошо отшлифованных металлов в электронный микроскоп видны неровности. Абсолютно гладкие поверхности бывают только в идеальном мире задач, в которых трением можно пренебречь. Именно упругие и неупругие деформации неровностей при контакте трущихся поверхностей формируют силу трения.
  2. Между атомами и молекулами поверхностей тел действуют электромагнитные силы притяжения и отталкивания. Таким образом, сила трения имеет электромагнитную природу.

Существуют следующие виды сухого трения:

Сухое трение возникает в области контакта поверхностей твёрдых тел в отсутствие жидкой или газообразной прослойки. Этот вид трения может возникать даже в состоянии покоя или в результате перекатывания одного тела по другому, поэтому здесь выделяют три вида силы трения.

1. Сила трения покоя.

Этот вид силы трения возникает в ситуации возможного движения тела по поверхности другого тела. Эта сила направлена против направления возможного движения. Сила трения покоя может принимать любые значения в диапазоне от нуля до своего максимального предельного значения, после которого она переходит в силу трения скольжения. То есть сила трения покоя действует пока тело стоит на месте.

Важно: При решении стандартных физических задач принимается, что максимальная сила трения покоя равна силе трения скольжения и рассчитывается по формуле Fтр = μ N , где N – сила реакции опоры;
μ – коэффициент трения.

Коэффициент трения – это безразмерная величина. Он зависит от свойств соприкасающихся поверхностей и не зависит от силы давления (соответственно, и от силы реакции опоры, так как это силы, описываемые третьим законом Ньютона) и от площади соприкасающихся поверхностей.

Обычная ситуация: на кухне имеется холодильник, его нужно переставить на другое место.

Когда никто не пытается двигать холодильник, стоящий на горизонтальном полу, трения между ним и полом нет. Но как только его начинают толкать, коварная сила трения покоя тут же возникает и полностью компенсирует усилие. Причина её возникновения — те самые неровности соприкасающихся поверхностей, которые деформируясь, препятствуют движению холодильника. Поднатужились, увеличили силу, приложенную к холодильнику, но он не поддался и остался на месте. Это означает, что сила трения покоя возрастает вместе с увеличением внешнего воздействия, оставаясь равной по модулю приложенной силе, ведь увеличиваются деформации неровностей.

Пока силы равны, холодильник остаётся на месте.

Сила трения, которая действует между поверхностями покоящихся тел и препятствует возникновению движения, называется силой трения покоя .

2. Сила трения скольжения

Что же делать с холодильником и можно ли победить силу трения покоя? Не будет же она расти до бесконечности? Зовём на помощь друга, и вдвоём уже удаётся передвинуть холодильник. Получается, чтобы тело двигалось, нужно приложить силу, большую, чем самая большая сила трения покоя:

Теперь на движущийся холодильник действует сила трения скольжения . Она возникает при относительном движении контактирующих твёрдых тел.

Итак, сила трения покоя может меняться от нуля до некоторого максимального значения — Fтр. пок. макс И если приложенная сила больше, чем Fтр. пок. макс, то у холодильника появляется шанс сдвинуться с места.

Теперь, после начала движения, можно прекратить наращивать усилие и ещё одного друга можно не звать. Чтобы холодильник продолжал двигаться равномерно, достаточно прикладывать силу, равную силе трения скольжения:

Чтобы понять, как измеряется сила трения, нужно понять, какие факторы влияют на величину силы трения. Почему так трудно двигать холодильник?

Самое очевидное — его масса играет первостепенную роль. Можно вытащить из него все продукты и тем самым уменьшить его массу, и, следовательно, силу давления холодильника на опору (пол). Пустой холодильник сдвинуть с места гораздо легче! Следовательно, чем меньше сила нормального давления тела на поверхность опоры, тем меньше и сила трения. Опора действует на тело с точно такой же силой, что и тело на опору, только направленной в противоположную сторону.

Сила реакции опоры обозначается N. Можно сделать вывод

Второй фактор, влияющий на величину силы трения, — материал и степень обработки соприкасающихся поверхностей. Так, двигать холодильник по бетонному полу гораздо тяжелее, чем по ламинату. Зависимость силы трения от рода и качества обработки материала обеих соприкасающихся поверхностей выражают через коэффициент трения.

Он чаще всего попадает в интервал от нуля до единицы, не имеет размерности и определяется экспериментально.

Можно предположить, что сила трения зависит также от площади соприкасающихся поверхностей. Однако, положив холодильник набок, мы не облегчим себе задачу.

Ещё Леонардо да Винчи экспериментально доказал, что сила трения не зависит от площади соприкасающихся поверхностей при прочих равных условиях.

Сила трения скольжения, возникающая при контакте твёрдого тела с поверхностью другого твёрдого тела прямо пропорциональна силе нормального давления и не зависит от площади контакта.

Этот факт отражён в законе Амонтона-Кулона, который можно записать формулой:

Рассмотрим пример в виде задачи

Брусок массой m покоится на плоскости, наклонённой под углом α к горизонту. Коэффициент трения между бруском и плоскостью равен μ. Установите соответствие между физическими величинами и формулами, по которым они определяются. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ:
А) модуль силы нормальной реакции плоскости
Б) модуль силы трения

ФОРМУЛЫ:
1) mgsin α
2) μmgsin α
3) mgcos α
4) μmgcos α

Cделаем рисунок к задаче:

Для решение задачи нам потребуется проецировать на оси нашей системы координат второй закон Ньютона

Как мы только что увидели, сила трения покоя может быть больше силы трения скольжения для одного и того же угла наклона. В большей степени это зависит от угла наклона плоскости и значения коэффициента трения скольжения.

Однако, здесь есть подвох (!). Тело всё таки не двигается, поэтому никакой речи о силе трения скольжения идти не может, согласны?

Для обеспечения покоя бруска сила трения покоя должна возрастать с увеличением угла α . Но мы знаем, что она не может быть больше максимального значения – силы трения скольжения:

Поэтому ясно, что существует предельный угол αпр наклона плоскости, при котором покой бруска станет невозможным, начнется соскальзывание. Значение этого угла мы нашли из условия, что сила трения покоя становится максимальной. Если угол наклонной плоскости будет равен углу трения (предельному углу), то тело будет либо равномерно скользить вниз под действие собственной силы тяжести, либо покоиться.

Видно, что предельный угол не зависит от массы бруска. Последнее соотношение позволяет на практике определить значение коэффициента трения с помощью изменения угла наклона плоскости для исследуемых предметов. К примеру, мы можем определить коэффициент трения дерева об дерево, если на деревянную доску положим деревянный брусок, а потом будем поднимать доску и фиксировать тот угол, при котором брусок начинает соскальзывать с доски. Тангенс этого угла как раз таки и будет определять коэффициент трения для этих материалов.

Неплохое дополнение по теме вы можете почитать: ЗДЕСЬ .

3. Сила трения качения

Ещё древние строители заметили, что если тяжёлый предмет водрузить на колёсики, то сдвинуть с места и затем катить его будет гораздо легче, чем тянуть волоком. Вот бы пригодилась эта древняя мудрость, когда мы тянули холодильник! Однако всё равно нужно толкать или тянуть тело, чтобы оно не остановилось. Значит, на него действует сила трения качения . Это сила сопротивления движению при перекатывании одного тела по поверхности другого.

Причина трения качения — деформация катка и опорной поверхности. Сила трения качения может быть в сотни раз меньше силы трения скольжения при той же силе давления на поверхность. Примерами уменьшения силы трения за счёт подмены трения скольжения на трение качения служат такие приспособления, как подшипники, колёсики у чемоданов и сумок, ролики на прокатных станах.

Вязкое трение

Вязкое возникает при движении твёрдого тела в жидкости или газе. Оно препятствует движению лодки, которая скользит по реке, или воздействует на летящий самолёт со стороны воздуха. Интересная особенность вязкого трения в том, что отсутствует трение покоя. Попробуйте сдвинуть пальцем лежащий на земле деревянный брус и проделайте тот же эксперимент, опустив брус на воду. Чтобы сдвинуть брус с места в воде, будет достаточно сколь угодно малой силы. Однако по мере роста скорости силы вязкого трения сильно увеличиваются.

Спасибо, что дочитали до конца :) Если вам нравятся такие разборы, и вы хотите видеть их чаще, то оставьте обратную связь (лайки, комментарии, ваши мысли).

При движении одного тела по поверхности другого всегда возникает сила, направленная противоположно направлению скорости и замедляющая движение. Эта сила называется силой трения.

По своей природе сила трения отличается от силы тяготения и силы упругости, которые были рассмотрены в предыдущих параграфах.

Причины возникновения силы трения можно разделить на два класса: 1) шероховатость поверхностей контактирующих тел; 2) взаимное притяжение молекул при контакте.

Причины возникновения трения


Неровности поверхностей тел при контакте
(от сантиметров до микрон)


Взаимное притяжение молекул тел при контакте
(от микрон до нанометров)

Неровности поверхностей проявляются на макроуровне и видны невооруженным глазом или в оптический микроскоп. Их влияние можно уменьшить, если отполировать поверхности или нанести смазку.

Взаимное притяжение молекул проявляется на микроуровне и приводит к тому, что даже на идеально отполированных поверхностях не удается избежать трения, когда частицы одного тела перемещаются относительно частиц другого.

Сила трения – это сумма межмолекулярных сил, возникающих при деформациях и изломах контактирующих поверхностей за счет разрыва межмолекулярных связей.
Сила трения направлена вдоль поверхностей контактирующих тел.

Как и сила упругости, сила трения имеет электромагнитную природу и связана с межмолекулярным взаимодействием.

Но в отличие от силы упругости, причиной силы трения является разрыв межмолекулярных связей. Кроме того, если сила упругости всегда направлена перпендикулярно поверхностям контактирующих тел, то сила трения всегда направлена вдоль этих поверхностей.

В зависимости от характера движения контактирующих тел различают трение покоя, трение скольжения и трение качения.

Виды сухого трения
Трение покоя
Трение покоя
Трение скольжения
Трение скольжения
Трение качения
Трение качения

п.2. Трение покоя

Сила трения, возникающая при относительной скорости двух контактирующих тел равной нулю, называется силой трения покоя .
Сила трения покоя равна по модулю приложенной силе и направлена в сторону, противоположную возможному движению тела, параллельно контактирующим поверхностям.
Если параллельно поверхности контакта на тело не действует сила, сила трения покоя равна нулю. Максимальное значение силы трения, при котором тело все ещё неподвижно, называется максимальной силой трения покоя .

Пример изменения силы трения покоя

п.3. Трение скольжения

Трение скольжения
Если тело расположено на горизонтальной опоре, сила тяжести \(mg\), действующая на него, равна по величине силе реакции опоры \(N\) (см. §22 данного справочника).
Сила трения направлена противоположно силе тяги.

Сила трения скольжения прямо пропорциональна силе реакции опоры: $$ F_>=\mu N $$ Коэффициент \(\mu\) называют коэффициентом трения скольжения ; величина \(\mu\) зависит от материала трущихся тел и состояния их поверхностей.

Значения коэффициентов трения скольжения для различных поверхностей приводятся в справочных таблицах.

При проектировании и разработке машин и механизмов коэффициенты трения скольжения для отдельных узлов определяются в специальных лабораториях.

п.4. Трение качения

Сила трения, возникающая при качении одного тела по поверхности другого, называется силой трения качения .

Сила трения качения значительно меньше силы трения скольжения.

Поэтому в Древнем Египте блоки для строительства пирамид перекатывали, подкладывая бревна.
Трение качения
А сегодня 300-тонные ракеты перевозят на колесных платформах.
Трение качения
Трение качения
Уменьшение трения за счет качения используется в шариковых и роликовых подшипниках.
Первый подшипник качения был установлен в опоре ветряка, построенного в Англии в 1780 г. Этот подшипник состоял из двух литых чугунных дорожек качения, между которыми находилось 40 чугунных шаров.
Сегодня подшипники являются незаменимой деталью во всех подвижных конструкциях; они уменьшают износ трущихся деталей и снижают потери энергии на нагрев из-за трения.

п.5. Задачи

Задача 1. Найдите коэффициент трения между шинами автомобиля и дорогой, если при равномерном движении по прямолинейному участку двигатель развивает силу тяги, равную 30 кН. Масса автомобиля 6 т.

Задача 1


Коэффициент трения $$ \mu=\frac>>. $$ При равномерном движении скорость постоянна и ускорение \(\overrightarrow=0\). По второму закону Ньютона, равнодействующая горизонтальных сил равна нулю $$ \overrightarrow>>+ \overrightarrow>>=0. $$ Значит, сила трения и сила тяги равны по модулю: $$ F_>=F_>. $$ Сила реакции горизонтальной опоры равна силе тяжести, действующей на автомобиль: $$ n=mg. $$ Получаем: $$ \mu=\frac>>= \frac>>,\ \ \mu=\frac=0,5. $$ Ответ: 0,5

Задача 2. Деревянный брусок массой 3 кг равномерно тянут по горизонтальной деревянной доске с помощью динамометра. Жесткость пружины динамометра равна 3 Н/см, коэффициент трения дерева об дерево 0,3. На сколько сантиметров растянется пружина?

Показания динамометра – это сила упругости, равная силе тяги. При равномерном движении сила тяги равна по модулю силе трения. Поэтому \begin F_>=k\Delta l=F_>=\mu N=\mu mg\Rightarrow k\Delta l=\mu mg \end Получаем: $$ \Delta l=\frac<\mu mg>,\ \ \Delta l=\frac=0,03\ (\text)=3\ (\text) $$ Ответ: 3 см.

Задача 3. Автомобиль движется по горизонтальному участку дороги со скоростью 72 км/ч. Рассчитайте время торможения и тормозной путь до полной остановки, если коэффициент трения колес о дорогу равен 0,4.

Автомобиль тормозит за счет силы трения. По второму закону Ньютона \begin F_>=ma. \end С другой стороны на горизонтальной дороге $$ F_>=\mu N=\mu mg. $$ Получаем: $$ ma=\mu mg\Rightarrow a=\mu g. $$ По определению ускорения $$ a=\frac. $$ Т.к. \(v_2=0\), ускорение отрицательное.
Модуль ускорения $$ |a|=\frac=\mu g\Rightarrow t=\frac <\mu g>$$ Время торможения прямо пропорционально скорости и обратно пропорционально коэффициенту трения. $$ t=\frac=5\ (\text) $$ Найдем тормозной путь $$ s=v_1t+\frac=v_1t+ \left(\frac<\overbrace^-v_1>\right)\frac=v_1t -\frac=\frac=\frac\cdot \frac<\mu g>=\frac <2\mu g>$$ Тормозной путь прямо пропорционален квадрату(!) скорости и обратно пропорционален коэффициенту трения. $$ s=\frac=50\ (\text) $$ Ответ: 5 с; 50 м.

п.6. Лабораторная работа №8. Измерение коэффициента трения скольжения

Цель работы
Научиться измерять силу трения скольжения и определять коэффициент трения скольжения. Изучить зависимость коэффициента трения скольжения от материалов соприкасающихся тел и от площади опоры движущегося тела.

Теоретические сведения

Лабораторная работа №8
При \(v=const\) (равномерное движение) получаем
По вертикали \(m\overrightarrow=-\overrightarrow\). Модули этих сил равны
По горизонтали \(\overrightarrow>>=-\overrightarrow>>\). Модули этих сил равны $$ F_>=F_>=\mu N=\mu mg $$

Если тело перемещать с помощью динамометра, то сила упругости, возникающая в пружине, будет равна силе тяги. Т.е., сила тяги непосредственно измеряется динамометром.

В работе используются стандартные лабораторные грузики массой 100 г.

Измерив силу тяги и зная массу перемещаемого тела, рассчитываем коэффициент трения: $$ \mu=\frac>> $$

Для расчетов используем стандартное значение \(g=9,80665\ \text^2\).

Погрешность для прямых измерений \(F_>\) определяется как половина цены деления динамометра. Погрешность для массы определяется по маркировке грузиков и бруска, \(\Delta m=2\ \text\) для \(m=100\ \text\), т.е. \(\delta_m=2\text\).

Погрешность эксперимента \(\delta_e\) рассчитывается как средняя арифметическая по результатам измерений и вычислений.

Приборы и материалы
Лабораторный динамометр на 5 Н; набор грузиков по 100 г; деревянный брусок с крючком 100 г; деревянная доска; наждачная бумага.

Ход работы
1. Прикрепите динамометр к бруску, положите доску горизонтально, поставьте брусок самой большой по площади гранью слева на доску.
2. Перемещая брусок слева направо по доске, добейтесь равномерного скольжения (со стабильными показаниями динамометра). Снимите показания динамометра и запишите.
3. Повторите эксперимент, нагружая брусок одним, двумя, тремя и четырьмя грузиками.
4. Рассчитайте коэффициент трения дерева об дерево, определите относительную и абсолютную погрешности эксперимента.
5. Повторите эксперимент, перемещая брусок по доске, обмотанной наждачной бумагой. Найдите коэффициент трения дерева об наждак, определите относительную и абсолютную погрешности эксперимента.
6. Снимите наждачную бумагу и повторите эксперимент для трения дерева об дерево. Однако на этот раз брусок должен опираться на меньшую по площади грань. Рассчитайте коэффициент трения дерева об дерево в этом случае.
7. Сравните полученные коэффициенты трения, сделайте выводы о зависимости коэффициента трения от материала соприкасающихся поверхностей и от площади опоры движущегося тела.

Результаты измерений и вычислений

Цена деления динамометра \(d=0,1\ \text\).

Таблица для расчета коэффициента трения скольжения дерева об дерево

Опыт \(m,\ \text\) \(F_>,\ \text\) \(\mu=\frac>\) \(\Delta=|\mu-\mu_>|\)
1 Брусок 0,1 0,3 0,306 0,026
2 Брусок + 1 грузик 0,2 0,7 0,357 0,025
3 Брусок + 2 грузика 0,3 1,0 0,340 0,008
4 Брусок + 3 грузика 0,4 1,3 0,331 0,001
5 Брусок + 4 грузика 0,5 1,6 0,326 0,006
Всего - - 1,660 0,065

Среднее значение коэффициента трения $$ \mu_>=\frac=0,332 $$ Среднее значение абсолютного отклонения $$ \Delta =\frac=0,013 $$ Относительная погрешность \begin \delta=\frac\cdot 100\text\approx 3,9\text\\[7pt] \mu_>=(0,332\pm 0,013),\ \delta_\mu=3,9\text \end

Таблица для расчета коэффициента трения скольжения дерева об наждак

Опыт \(m,\ \text\) \(F_>,\ \text\) \(\mu=\frac>\) \(\Delta=|\mu-\mu_>|\)
1 Брусок 0,1 0,6 0,612 0,039
2 Брусок + 1 грузик 0,2 1,1 0,561 0,012
3 Брусок + 2 грузика 0,3 1,7 0,578 0,005
4 Брусок + 3 грузика 0,4 2,2 0,561 0,012
5 Брусок + 4 грузика 0,5 2,7 0,551 0,022
Всего - - 2,862 0,090

Среднее значение коэффициента трения $$ \mu_>=\frac\approx 0,572 $$ Среднее значение абсолютного отклонения $$ \Delta =\frac=0,018 $$ Относительная погрешность \begin \delta=\frac\cdot 100\text\approx 3,1\text\\[7pt] \mu_>=(0,572\pm 0,018),\ \delta_\mu=3,1\text \end

Таблица для расчета коэффициента трения скольжения дерева об дерево (узкая грань)

Опыт \(m,\ \text\) \(F_>,\ \text\) \(\mu=\frac>\) \(\Delta=|\mu-\mu_>|\)
1 Брусок 0,1 0,35 0,357 0,011
2 Брусок + 1 грузик 0,2 0,7 0,357 0,011
3 Брусок + 2 грузика 0,3 1,0 0,340 0,006
4 Брусок + 3 грузика 0,4 1,3 0,331 0,015
5 Брусок + 4 грузика 0,5 1,7 0,347 0,000
Всего - - 1,732 0,043

Среднее значение коэффициента трения $$ \mu_>=\frac\approx 0,346 $$ Среднее значение абсолютного отклонения $$ \Delta =\frac\approx 0,009 $$ Относительная погрешность \begin \delta=\frac\cdot 100\text\approx 2,5\text\\[7pt] \mu '_>=(0,346\pm 0,009),\ \delta_\mu=2,5\text \end

Выводы
На основании проделанной работы можно сделать следующие выводы.

В работе исследовалась зависимость коэффициента трения скольжения от поверхностей, из которых изготовлены соприкасающиеся тела.

Для скольжения дерева об дерево был получен коэффициент \begin \mu_>=(0,332\pm 0,013),\ \delta_\mu=3,9\text \end

Для скольжения дерева об наждак был получен коэффициент \begin \mu_>=(0,572\pm 0,018),\ \delta_\mu=3,1\text\\[7px] \mu_>\gt \mu_> \end

Наждак является более шероховатой поверхностью и сила трения на ней больше.

Коэффициент трения скольжения сильно зависит от материалов соприкасающихся поверхностей.

Также в работе исследовалась зависимость коэффициента трения скольжения от площади опоры движущегося тела. Брусок выставлялся на более узкую грань, и изучалось скольжение дерева об дерево в этом случае. Был получен коэффициент \begin \mu'_>=(0,346\pm 0,009),\ \delta_\mu=2,5\text \end Поскольку \begin 0,319\le \mu_>\le 0,345\ \ 0,337\le \mu'_>\le 0,355 \end Полученные отрезки значений перекрываются.

Таким образом, в рамках погрешности эксперимента коэффициент трения скольжения не зависит от площади опоры движущегося тела.

Трение покоя - трение при отсутствии относительного перемещения соприкасающихся тел.
Трение скольжения - трение при относительном движении соприкасающихся тел.

Трение покоя где нет физических факторов действия на какое-либо тело.
Трение скольжения где есть механические взаимодейтвия физических тел.

Ну вот лежит ящик. Ты начинаешь его толкать. Пока ты его ещё не сдвинула с места, "работает" сила трения покоя. И коэффициент трения пропорционален силе, с которой ты толкаешь этот ящик.
И вот наконец ты сдвинула этот проклятый ящик. Тут уже вступает в свои права трение скольжения. Ящик--то движется, скользит! И коэффициент трения скольжения уже постоянен.

Читайте также: