Чем определяется время жизни звезды главной последовательности кратко

Обновлено: 04.07.2024

Таким образом, если расчётное время жизни Солнца на главной последовательности составляет 10 10 лет, то звезда в 10 раз массивней Солнца будет жить в 1000 раз меньше, т.е. 10 7 лет.

9.1.3. Особенности реакций на легких ядрах в звёздах.

Ядерные реакции, протекающие в звездах при сверхвысоких температурах, имеют ряд особенностей. В обычных условиях заряженная частица, обладающая достаточной энергией для того, чтобы произошла ядерная реакция, двигаясь в среде, быстро теряет свою энергию на возбуждение и ионизацию атомов среды. Потеряв энергию, заряженная частица не в состоянии преодолеть кулоновский барьер. Поэтому даже для достаточно энергичных заряженных частиц эффективность ядерного взаимодействия оказывается низкой из-за потерь энергии на ионизацию. При высоких температурах звездная материя ионизована и поэтому потери энергии на ионизацию и возбуждение атомов отсутствуют.

Следующая особенность протекания реакций в звездах обусловлена распределением ядер по скоростям. Если звезда имеет температуру около 10 7 K, то средняя энергия ядер Eср = 3/2 kT ~ 1кэВ мала по сравнению с высотой кулоновского барьера даже для самых легких ядер ( ~ 10 3 кэВ). Однако, в системе, находящейся в термодинамическом равновесии, имеются ядра, энергия которых значительно превосходит Eср (число их можно оценить, исходя из распределения Максвелла). Это, наряду с эффектом квантовомеханического туннелирования для основной части ядер, имеющих энергию ниже высоты кулоновского барьера, приводит к тому, что реакции в звездах могут протекать при значительно более низких температурах.

Ядерные реакции в недрах Солнца или подобной ему звезды протекают при энергиях, характерных для распределения Максвелла-Больцмана с температурой среды Т£15×10 6 К. Отсюда следует, что интересующий нас диапазон энергий лежит в окрестностях нескольких кэВ. В этой области энергий величины эффективных сечений много ниже значений, при которых возможны лабораторные измерения. Следовательно, данные, полученные при более высоких энергиях, необходимо экстраполировать до более низких значений-до уровня нескольких десятков кэВ. С этой целью, согласно Гамову, полезно выразить эффективное сечение в следующем виде

где SaA(E) – S-фактор реакции;

Eg – энергия Гамова: Eg=31,28×Z1×Z2×m 1/2 кэВ 1/2 . Здесь Z1 и Z2-зарядовые числа взаимодействующих частиц; а m -их приведённая масса .

Если воспользоваться для определения эффективного сечения его выражением через S-фактор, то скорость соответствующей ядерной реакции может быть найдена, как

Для термолизованной плазмы величина F(v)- вероятность встретить частицу, абсолютное значение скорости которой лежит в интервале от v до v+dv. Задаётся распределением Максвелла-Больцмана

; где - приведённая масса, а v-относительная скорость частиц a и b.

Если перейти от скорости к соответствующей энергии, а вместо s(Е) поставить его выражение через S-фактор, то с учётом Якобиана перехода от v к E, получим

Интеграл становится максимальным, когда выражение показателя для экспоненты минимально.

Если S(Е) –слабо меняющаяся от Е функция, то подынтегральная функция имеет вид пика с центром в Е0 и шириной 0=4×(Е0×kT6/3) 1/2 или 0=1,35×(Т6) 5/6 кэВ.

Удельная скорость ядерной реакции как функция температуры T (а также вид функции S(E)) существенно зависит от того, есть ли резонанс вблизи энергии сталкивающихся частиц или нет. Для нерезонансной реакции: нерез ~S(E0)T -2/3 exp(-3E0/kT). (9.13)

Для резонансной реакции: рез ~S(Ерез)T -3/2 exp(-3Eрез/kT). (9.14)

Таким образом, для вычисления скорости ядерной реакции в звездах необходимо, помимо плотностей сталкивающихся частиц, знать:

1) распределение температуры внутри звезды;

2) эффективные сечения реакций вплоть до достаточно низких энергий взаимодействующих частиц, соответствующих температуре ~ 10 7 K. Эта температура отвечает кинетической энергии ~1кэВ.




Сечения многих термоядерных реакций определены вплоть до довольно низких энергий ~ (5 - 10) кэВ. На основе этих данных получены функции S(E).

В звездах реакции между двумя ядрами происходят при их сближении до расстояний ~ 10 -13 см в результате туннелирования через кулоновский барьер. Для энергий столкновения ниже кулоновского барьера сечение ядерной реакции падает по экспоненциальному закону. Поэтому для надежных оценок скорости ядерных реакций в звездах необходимы измерения сечений ядерных реакций при энергии ниже кулоновского барьера, что является достаточно сложной экспериментальной задачей. Так, например, в настоящее время для имеющих важное значение ядерных реакций в звездах 7 Be(p,γ), 25 Mg(p,γ), 12 C(α,γ) сечения реакций измерены вплоть до энергий 120 кэВ, 190 кэВ и 1 МэВ, соответственно. Предел со стороны низких энергий определяется величиной космического фона. В то же время сечения для указанных реакций должны быть известны до энергии 19 кэВ, 39 кэВ и 300 кэВ, соответственно. Таким образом, в настоящее время единственная возможность для оценки величины сечения - это экстраполяция к низким энергиям. Однако, как показывает сравнение измеренных сечений с ранее полученными путем экстраполяции, отличие экспериментальных и экстраполированных значений достигает десятков и сотен раз. Необходимые для ядерной астрофизики результаты могут быть получены на сильноточных ускорителях, работающих при энергиях несколько десятков и сотен кэВ и расположенных в низкофоновых условиях (например, по аналогии с нейтринными измерениями, глубоко под Землей).

Определенные трудности при оценке сечений реакций, протекающих в звездах, возникают также при учете эффекта экранирования. Должны быть учтены два основных эффекта прежде, чем использовать экспериментальные результаты, полученные на ускорителях, применительно к звездному веществу.

Лабораторное экранирование. В случае экспериментов на ускорителе сталкиваются не голые ядра, а ядра-мишени и налетающие ядра, имеющие электронные оболочки, т. е. сталкивается атом с ионизованным атомом, в то время как в звездах атомы полностью ионизованы. Наличие электронной оболочки сильно искажает кулоновское поле, что существенно при низких звездных энергиях сталкивающихся частиц.

Экранирование в астрофизической плазме. В ядерной реакции, происходящей в звездной среде, необходимо учесть эффекты поляризации ионизованной звездной материи. Окружающие сталкивающиеся ядра электроны и соседние ионы приводят к изменению кулоновского поля сталкивающихся частиц. Так, расчеты показывают, что в углеродной плазме при плотностях ~10 9 г/см 3 и температурах ~ 10 9 K сечение взаимодействия может измениться на фактор 10 10 благодаря влиянию окружающих частиц.

MO/MQ Время достижения главной последовательности, лет Время жизни на главной последовательности, лет
6.2·10 4 1.0·10 7
1.5·10 5 2.2·10 7
5.8·10 5 6.8·10 7
2.5·10 6 2.3·10 8
2.25 5.9·10 6 5.0·10 8
1.5 1..8·10 7 1.7·10 9
1.25 2.9·10 7 3.0·10 9
1.0 5.0·10 7 8.2·10 9
0.5 1.5·10 8 5.0·10 10

Таким образом, если расчётное время жизни Солнца на главной последовательности составляет 10 10 лет, то звезда в 10 раз массивней Солнца будет жить в 1000 раз меньше, т.е. 10 7 лет.

9.1.3. Особенности реакций на легких ядрах в звёздах.

Ядерные реакции, протекающие в звездах при сверхвысоких температурах, имеют ряд особенностей. В обычных условиях заряженная частица, обладающая достаточной энергией для того, чтобы произошла ядерная реакция, двигаясь в среде, быстро теряет свою энергию на возбуждение и ионизацию атомов среды. Потеряв энергию, заряженная частица не в состоянии преодолеть кулоновский барьер. Поэтому даже для достаточно энергичных заряженных частиц эффективность ядерного взаимодействия оказывается низкой из-за потерь энергии на ионизацию. При высоких температурах звездная материя ионизована и поэтому потери энергии на ионизацию и возбуждение атомов отсутствуют.

Следующая особенность протекания реакций в звездах обусловлена распределением ядер по скоростям. Если звезда имеет температуру около 10 7 K, то средняя энергия ядер Eср = 3/2 kT ~ 1кэВ мала по сравнению с высотой кулоновского барьера даже для самых легких ядер ( ~ 10 3 кэВ). Однако, в системе, находящейся в термодинамическом равновесии, имеются ядра, энергия которых значительно превосходит Eср (число их можно оценить, исходя из распределения Максвелла). Это, наряду с эффектом квантовомеханического туннелирования для основной части ядер, имеющих энергию ниже высоты кулоновского барьера, приводит к тому, что реакции в звездах могут протекать при значительно более низких температурах.

Ядерные реакции в недрах Солнца или подобной ему звезды протекают при энергиях, характерных для распределения Максвелла-Больцмана с температурой среды Т£15×10 6 К. Отсюда следует, что интересующий нас диапазон энергий лежит в окрестностях нескольких кэВ. В этой области энергий величины эффективных сечений много ниже значений, при которых возможны лабораторные измерения. Следовательно, данные, полученные при более высоких энергиях, необходимо экстраполировать до более низких значений-до уровня нескольких десятков кэВ. С этой целью, согласно Гамову, полезно выразить эффективное сечение в следующем виде

где SaA(E) – S-фактор реакции;

Eg – энергия Гамова: Eg=31,28×Z1×Z2×m 1/2 кэВ 1/2 . Здесь Z1 и Z2-зарядовые числа взаимодействующих частиц; а m -их приведённая масса .

Если воспользоваться для определения эффективного сечения его выражением через S-фактор, то скорость соответствующей ядерной реакции может быть найдена, как

Для термолизованной плазмы величина F(v)- вероятность встретить частицу, абсолютное значение скорости которой лежит в интервале от v до v+dv. Задаётся распределением Максвелла-Больцмана

; где - приведённая масса, а v-относительная скорость частиц a и b.

Если перейти от скорости к соответствующей энергии, а вместо s(Е) поставить его выражение через S-фактор, то с учётом Якобиана перехода от v к E, получим

Интеграл становится максимальным, когда выражение показателя для экспоненты минимально.

Если S(Е) –слабо меняющаяся от Е функция, то подынтегральная функция имеет вид пика с центром в Е0 и шириной 0=4×(Е0×kT6/3) 1/2 или 0=1,35×(Т6) 5/6 кэВ.

Удельная скорость ядерной реакции как функция температуры T (а также вид функции S(E)) существенно зависит от того, есть ли резонанс вблизи энергии сталкивающихся частиц или нет. Для нерезонансной реакции: нерез ~S(E0)T -2/3 exp(-3E0/kT). (9.13)

Для резонансной реакции: рез ~S(Ерез)T -3/2 exp(-3Eрез/kT). (9.14)

Таким образом, для вычисления скорости ядерной реакции в звездах необходимо, помимо плотностей сталкивающихся частиц, знать:

1) распределение температуры внутри звезды;

2) эффективные сечения реакций вплоть до достаточно низких энергий взаимодействующих частиц, соответствующих температуре ~ 10 7 K. Эта температура отвечает кинетической энергии ~1кэВ.

Сечения многих термоядерных реакций определены вплоть до довольно низких энергий ~ (5 - 10) кэВ. На основе этих данных получены функции S(E).

В звездах реакции между двумя ядрами происходят при их сближении до расстояний ~ 10 -13 см в результате туннелирования через кулоновский барьер. Для энергий столкновения ниже кулоновского барьера сечение ядерной реакции падает по экспоненциальному закону. Поэтому для надежных оценок скорости ядерных реакций в звездах необходимы измерения сечений ядерных реакций при энергии ниже кулоновского барьера, что является достаточно сложной экспериментальной задачей. Так, например, в настоящее время для имеющих важное значение ядерных реакций в звездах 7 Be(p,γ), 25 Mg(p,γ), 12 C(α,γ) сечения реакций измерены вплоть до энергий 120 кэВ, 190 кэВ и 1 МэВ, соответственно. Предел со стороны низких энергий определяется величиной космического фона. В то же время сечения для указанных реакций должны быть известны до энергии 19 кэВ, 39 кэВ и 300 кэВ, соответственно. Таким образом, в настоящее время единственная возможность для оценки величины сечения - это экстраполяция к низким энергиям. Однако, как показывает сравнение измеренных сечений с ранее полученными путем экстраполяции, отличие экспериментальных и экстраполированных значений достигает десятков и сотен раз. Необходимые для ядерной астрофизики результаты могут быть получены на сильноточных ускорителях, работающих при энергиях несколько десятков и сотен кэВ и расположенных в низкофоновых условиях (например, по аналогии с нейтринными измерениями, глубоко под Землей).

Определенные трудности при оценке сечений реакций, протекающих в звездах, возникают также при учете эффекта экранирования. Должны быть учтены два основных эффекта прежде, чем использовать экспериментальные результаты, полученные на ускорителях, применительно к звездному веществу.

Лабораторное экранирование. В случае экспериментов на ускорителе сталкиваются не голые ядра, а ядра-мишени и налетающие ядра, имеющие электронные оболочки, т. е. сталкивается атом с ионизованным атомом, в то время как в звездах атомы полностью ионизованы. Наличие электронной оболочки сильно искажает кулоновское поле, что существенно при низких звездных энергиях сталкивающихся частиц.

Экранирование в астрофизической плазме. В ядерной реакции, происходящей в звездной среде, необходимо учесть эффекты поляризации ионизованной звездной материи. Окружающие сталкивающиеся ядра электроны и соседние ионы приводят к изменению кулоновского поля сталкивающихся частиц. Так, расчеты показывают, что в углеродной плазме при плотностях ~10 9 г/см 3 и температурах ~ 10 9 K сечение взаимодействия может измениться на фактор 10 10 благодаря влиянию окружающих частиц.

Главная последовательность (ГП) - наиболее населенная область на диаграмме Гецшпрунга - Рессела (ГР). Основная масса звезд на диаграмме ГР расположена вдоль диагонали на полосе, идущей от правого нижнего угла диаграммы в левый верхний угол. Эта полоса и называется главной последовательностью.

Нижний правый угол занят холодными звездами с малой светимостью и малой массой, начиная со звезд порядка 0.08 солнечной массы, а верхний левый угол занимают горячие звезды, имеющие массу порядка 60-100 солнечных масс и большую светимость (вопрос об устойчивости звезд с массами больше 60-120Мsun остается открытым, хотя, по-видимому, в последнее время имеются наблюдения таких звезд).

Фаза эволюции, соответствующая главной последовательности, связана с выделением энергии в процессе превращения водорода в гелий, и так как все звезды ГП имеют один источник энергии, то положение звезды на диаграмме ГР определяется ее массой и в малой степени химическим составом.

Основное время жизни звезда проводит на главной последовательности и поэтому главная последовательность - наиболее населенная группа на диаграмме ГР (до 90% всех звезд лежат на ней).

Главная последовательность

Основные соотношения, справедливые для звезд главной последовательности

  • Радиус, R(см.) Радиус фотосферы звезды
  • Светимость, L (эрг/c) Полное электромагнитное излучение звезды в единицу времени
  • Эффективная температура, Teff (К) Такая температура фотосферы, которая обеспечит полную светимость звезды по Планковскому закону чернотельного излучения.

Светимость звезды пропорциональна ее эффективной температуре и площади поверхности.

Зависимость масса-светимость для главной последовательности

Для звезд главной последовательности существует апроксимационное соотношение, известное как зависимость масса-светимость. Это соотношение было выведено из наблюдательного определения масс и светимостей звезд главной последовательности, но оно также подтверждается расчетами звездных моделей для звезд ГП. Светимость звезды грубо пропорциональна ее массе в степени 3.5 или 4:

Таким образом, звезда в два раза массивней Солнца имеет светимость в 11 раз большую, чем Солнце. Наиболее массивные звезды главной последовательности примерно в 60 раз массивней Солнца. Это соответствует светимости почти в миллион раз больше солнечной.

Для наиболее массивных звезд L~M.

Время жизни на главной последовательности

Звезды проводят большую часть своей жизни на главной последовательности. В общем, более массивные звезды живут более быстрой жизнью, чем менее массивные. Казалось бы, что звезды, имеющие большее количество водорода для горения должны были бы расходовать его дольше, но это не так, потому что они используют свои ресурсы быстрее.

Оценим время жизни звезды на ГП. Упрощенно, оно равно отношению энергии, которая может быть излучена к выделению звездой энергии в единицу времени (это светимость L).

Энергия, излучаемая звездой за время t, равна произведению светимости на это время:

Согласно уравнению Эйнштейна:

Комбинируя эти два выражения, получаем:

учитывая закон масса-светимость, получаем:

или в солнечных единицах:

Таким образом, если расчетное время жизни Солнца на главной последовательности составляет 10 10 лет, то звезда в 10 раз массивней Солнца будет жить в 1000 раз меньше т.е. 10 7 лет. Так как для наиболее массивных звезд L~M, то по мере увеличения их массы время жизни перестает увеличиваться и стремится к величине ~3.5 млн. лет, что очень мало по космическим масштабам.

Звезда Вега, снимок ESO

Время жизни звезд состоит из нескольких этапов, проходя через которые миллионы и миллиарды лет светила неуклонно стремятся к неизбежному финалу, превращаясь в яркие вспышки сверхновых или в угрюмый мрак черных дыр.

Общая информация

Эволюция Звезд

Время жизни звезды любого типа – невероятно долгий и сложный процесс, сопровождаемый явлениями космического масштаба. Многогранность его просто невозможно полностью проследить и изучить, даже используя весь арсенал современной науки. Но на основании тех уникальных знаний, накопленных и обработанных за весь период существования земной астрономии, нам становятся доступными целые пласты ценнейшей информации. Это позволяет связать последовательность эпизодов из жизненного цикла светил в относительно стройные теории и смоделировать их развитие. Что же это за этапы?

Жизненный цикл звезд

Эпизод I. Протозвезды

Протопланетный диск, окружающий молодую солнечную систему в туманности Ориона

Протопланетный диск, окружающий молодую солнечную систему в туманности Ориона

Жизненный путь звезд, как и всех объектов макромира и микрокосма, начинается с рождения. Это событие берет свое начало в формировании невероятно огромного облака, внутри которого появляются первые молекулы, поэтому образование называется молекулярным. Иногда употребляется еще и другой термин, непосредственно раскрывающий суть процесса, – колыбель звезд.

Только когда в таком облаке, в силу непреодолимых обстоятельств, происходит чрезвычайно быстрое сжатие составляющих его частиц, имеющих массу, т. е. гравитационный коллапс, начинает формироваться будущая звезда. Причиной этому является выплеск энергии гравитации, часть которой сжимает молекулы газа и разогревает материнское облако. Затем прозрачность образования постепенно начинает пропадать, что способствует еще большему нагреванию и возрастанию давления в его центре. Заключительным эпизодом в протозвездной фазе является аккреция падающего на ядро вещества, в ходе чего происходит рост зарождающегося светила, и оно становится видимым, после того, как давление испускаемого света буквально сметает всю пыль на окраины.

Найди протозвезды в туманности Ориона!


Эта огромная панорама туманности Ориона получена из снимков телескопа Хаббл. Данная туманность одна из самых больших и близких к нам колыбелей звезд. Попробуйте найти в этой туманности протозвезды, благо разрешение этой панорамы позволяет это сделать.

Эпизод II. Молодые звезды

Фомальгаут, изображение из каталога DSS

Фомальгаут, изображение из каталога DSS. Вокруг этой звезды еще остался протопланетный диск.

Следующим этапом или циклом жизни звезды является период ее космического детства, который, в свою очередь, делится на три стадии: молодые светила малой ( Эпизод III. Расцвет жизненного пути звезды

Солнце в линии H альфа

Солнце снятое в линии H альфа. Наше звезда в самом расцвете сил.

В середине своей жизни космические светила могут обладать самыми разнообразными цветами, массой и габаритами. Цветовая палитра варьируется от голубоватых оттенков до красных, а их масса может быть значительно меньше солнечной, либо превышать ее более чем в триста раз. Главная последовательность жизненного цикла звезд длится около десяти миллиардов лет. После чего в ядре космического тела заканчивается водород. Этот момент принято считать переходом жизни объекта на следующий этап. По причине истощения водородных ресурсов в ядре останавливаются термоядерные реакции. Однако в период вновь начавшегося сжатия звезды начинается коллапс, который приводит к возникновению термоядерных реакций уже с участием гелия. Этот процесс стимулирует просто невероятное по масштабам расширение звезды. И теперь она считается красным гигантом.

Эпизод IV. Конец существования звезд и их гибель

Диск звезды Бетельгейзе, снимок телескопа Хаббл

Диск звезды Бетельгейзе, снимок телескопа Хаббл

Старые светила, как и их юные собратья, делятся на несколько видов: с малой массой, средних размеров, сверхмассивные звезды, белые карлики, нейтронные и черные дыры. Что касается объектов с небольшой массой, то до сих пор нельзя точно утверждать какие именно процессы с ними происходят на последних стадиях существования. Все подобные явления гипотетически описаны при помощи компьютерного моделирования, а не на основании тщательных наблюдений за ними. После окончательного выгорания углерода и кислорода происходит увеличение атмосферной оболочки звезды и быстрая потеря ею газовой составляющей. В финале своего эволюционного пути светила многократно сжимаются, а их плотность наоборот значительно возрастает. Такую звезду принято считать белым карликом. Затем в ее жизненной фазе следует период красного сверхгиганта. Последним в цикле существования звезды является ее превращение, в результате очень сильного сжатия, в нейтронную звезду. Однако не все подобные космические тела становятся таковыми. Некоторые, чаще всего наиболее крупные по параметрам (больше 20-30 масс Солнца), переходят в разряд черных дыр в результате коллапса.

Интересные факты из жизненных циклов звезд

Жизненный цикл звезд

Жизненный цикл звезд

Одним из самых своеобразных и примечательных сведений из звездной жизни космоса является то, что подавляющее большинство светил в нашей Вселенной находятся на стадии красных карликов. Такие объекты обладают массой значительно меньшей, чем у Солнца.

Довольно интересно также и то, что магнитное притяжение нейтронных звезд в миллиарды раз выше аналогичного излучения земного светила.

Влияние массы на звезду

Путь звезды в зависимости от массы

Путь звезды в зависимости от массы

Еще одним не менее занимательным фактом можно назвать продолжительность существования самых огромных из известных типов звезд. В силу того, что их масса способна в сотни раз превышать солнечную, выделение ими энергии тоже многократно больше, иногда даже в миллионы раз. Следовательно, период их жизни длится гораздо меньше. В некоторых случаях их существование укладывается всего в несколько миллионов лет, против миллиардов лет жизни звезд с небольшой массой.

Интересным фактом также является противоположность черных дыр белым карликам. Примечательно то, что первые возникают из самых гигантских по массе звезд, а вторые, наоборот, из наименьших.

Во Вселенной существует огромное количество уникальных явлений, о которых можно говорить бесконечно, ведь космос крайне слабо изучен и исследован. Все человеческие знания о том, сколько лет живут звезды, их жизненных циклах, которыми обладает современная наука, в основном получены из наблюдений и теоретических расчетов. Такие малоизученные явления и объекты дают почву для постоянной работы тысячам исследователей и ученых: астрономов, физиков, математиков, химиков. Благодаря их непрерывному труду, эти знания постоянно накапливаются, дополняются и изменяются, становясь, таким образом, более точными, достоверными и всеобъемлющими.

При коллапсе молекулярное облако разделяется на части, образуя всё более и более мелкие сгустки. Фрагменты с массой меньше ~100 солнечных масс способны сформировать звезду. В таких формированиях газ нагревается по мере сжатия, вызванного высвобождением гравитационной потенциальной энергии, и облако становится протозвездой, трансформируясь во вращающийся сферический объект.

Звёзды на начальной стадии своего существования, как правило, скрыты от взгляда внутри плотного облака пыли и газа. Часто силуэты таких звёздообразующих коконов можно наблюдать на фоне яркого излучения окружающего газа. Такие образования получили название глобул Бока.

1280x1024 161234 www.ArtFile.ru

На диаграмме Герцшпрунга - Рассела появившаяся звезда занимает точку в правом верхнем углу: у неё большая светимость и низкая температура. Основное излучение происходит в инфракрасном диапазоне. До нас доходит излучение холодной пылевой оболочки. В процессе эволюции положение звезды на диаграмме будет меняться. Единственным источником энергии на этом этапе служит гравитационное сжатие. Поэтому звезда достаточно быстро перемещается параллельно оси ординат.

Температура поверхности не меняется, а радиус и светимость уменьшаются. Температура в центре звезды повышается, достигая величины, при которой начинаются реакции с лёгкими элементами: литием, бериллием, бором, которые быстро выгорают, но успевают замедлить сжатие. Трек поворачивается параллельно оси ординат, температура на поверхности звезды повышается, светимость остаётся практически постоянной. Наконец, в центре звезды начинаются реакции образования гелия из водорода (горение водорода). Звезда выходит на главную последовательность.

Продолжительность начальной стадии определяется массой звезды. Для звёзд типа Солнца она около 1 млн лет, для звезды массой 10 M примерно в 1000 раз меньше, а для звезды массой 0,1 M в тысячи раз больше.

На стадии главной последовательности звезда светит за счёт выделения энергии в ядерных реакциях превращения водорода в гелий. Запас водорода обеспечивает светимость звезды массой 1M примерно в течение 10 10 лет. Звезды большей массы расходуют водород быстрее: так, звезда массой в 10 M израсходует водород менее, чем за 10 7 лет (светимость пропорциональна четвертой степени массы).

Звёзды малой массы

По мере выгорания водорода центральные области звезды сильно сжимаются.

Звёзды большой массы

После выхода на главную последовательность эволюция звезды большой массы (>1,5 M ) определяется условиями горения ядерного горючего в недрах звезды. На стадии главной последовательности это — горение водорода, но в отличие от звёзд малой массы в ядре доминируют реакции углеродно-азотного цикла. В этом цикле атомы C и N играют роль катализаторов. Скорость выделения энергии в реакциях такого цикла пропорциональна T 17 . Поэтому в ядре образуется конвективное ядро, окружённое зоной, в которой перенос энергии осуществляется излучением.

Светимость звёзд большой массы намного превышает светимость Солнца, и водород расходуется значительно быстрее. Связано это и с тем, что температура в центре таких звёзд тоже намного выше.

По мере уменьшения доли водорода в веществе конвективного ядра темп выделения энергии уменьшается. Но поскольку темп выделения определяется светимостью, ядро начинает сжиматься, и темп выделения энергии остаётся постоянным. Звезда же при этом расширяется и переходит в область красных гигантов.

star life

Стадия зрелости звёзд

Звёзды малой массы

К моменту полного выгорания водорода в центре звезды малой масс образуется небольшое гелиевое ядро. В ядре плотность вещества и температура достигают значений 10 9 кг/м 3 и 10 8 K соответственно. Горение водорода происходит на поверхности ядра. Поскольку температура в ядре повышается, темп выгорания водорода увеличивается, увеличивается светимость. Лучистая зона постепенно исчезает. А из-за увеличения скорости конвективных потоков внешние слои звезды раздуваются. Размеры и светимость её возрастают — звезда превращается в красный гигант.

Звёзды большой массы

Когда водород у звезды большой массы полностью исчерпывается, в ядре начинает идти тройная гелиевая реакция и одновременно реакция образования кислорода (3He=>C и C+He=>О). В то же время на поверхности гелиевого ядра начинает гореть водород. Появляется первый слоевой источник.

Запас гелия исчерпывается очень быстро, так как в описанных реакциях в каждом элементарном акте выделяется сравнительно немного энергии. Картина повторяется, и в звезде появляются уже два слоевых источника, а в ядре начинается реакция C+C=>Mg.

Эволюционный трек при этом оказывается очень сложным. На диаграмме Герцшпрунга-Расселла звезда перемещается вдоль последовательности гигантов или (при очень большой массе в области сверхгигантов) периодически становится цефеидой.

Старые звёзды малой массы

У звезды малой массы, в конце концов, скорость конвективного потока на каком-то уровне достигает второй космической скорости, оболочка отрывается, и звезда превращается в белый карлик, окружённый планетарной туманностью.

Гибель звёзд большой массы

В конце эволюции звезда большой массы имеет очень сложное строение. В каждом слое свой химический состав, в нескольких слоевых источниках протекают ядерные реакции, а в центре образуется железное ядро.

Ядерные реакции с железом не протекают, так как они требуют затраты (а не выделения) энергии. Поэтому железное ядро быстро сжимается, температура и плотность в нем увеличиваются, достигая фантастических величин — температуры 10 9 K и плотности 10 9 кг/м3.

Падение внешних слоёв приводит к резкому повышению температуры в них. Начинают гореть водород, гелий, углерод. Это сопровождается мощным потоком нейтронов, который идёт из центрального ядра. В результате происходит мощнейший ядерный взрыв, сбрасывающий внешние слои звезды, уже содержащие все тяжёлые элементы, вплоть до калифорния. По современным воззрениям все атомы тяжёлых химических элементов (т.е. более тяжёлых, чем гелий) образовались во Вселенной именно во вспышках сверхновых. На месте взорвавшейся сверхновой остаётся в зависимости от массы взорвавшейся звезды либо нейтронная звезда, либо чёрная дыра.

Читайте также: