Чем объяснить существование поверхностного натяжения кратко

Обновлено: 08.07.2024

Поверхностное натяжение — характеристика поверхности раздела двух фаз, которые находятся в равновесии. Характеристика определяется работой образования единицы площади этой поверхности раздела.

Выражается произведением:

\(\mathcal F=\sigma\mathcal l\) , Н

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

\(\sigma\) — коэффициент поверхностного натяжения, Н/м

\(\mathcal l\) — длина, м

Направление силы: по касательной к поверхности.

Коэффициент поверхностного натяжения

Коэффициент поверхностного натяжения ( \(\sigma\) ) — сила, которая действует на единицу длины линии, ограничивающей поверхность жидкости (Н/м).

Коэффициент поверхностного натяжения – коэффициент, равный работе, которую необходимо совершить для образования поверхности жидкости площадью \(S\) при постоянной температуре.

\(\mathcal S\) — площадь поверхности жидкости

Зависит от:

  1. Рода жидкости и ее свойств.
  2. Температуры (чем больше температура, тем меньше натяжение).
  3. Наличия ПАВ (поверхностно-активных веществ. Например, мыло).
  4. Присутствия каких-либо примесей.
  5. Свойств газа, контактирующего с жидкостью.

Чем вызвано поверхностное натяжение

Причина возникновения явления поверхностного напряжения: молекулы, которые составляют верхний слой жидкости. Они создают взаимодействие между собой, возникает натяжение.

Жидкости стремятся принять форму, которая требует минимальной площади поверхности.

Силы поверхностного натяжения

Силы поверхностного натяжения работают вдоль поверхности жидкости перпендикулярно контуру. Сокращают ее площадь. Это похоже на пленку, которая стягивает объем. На сам объем силы не оказывают влияние.

Примеры в окружающей среде

  • движение водомерки по воде (ее лапки покрыты воскообразным веществом);
  • капля росы, дождя, из пипетки;
  • цилиндрическая форма струи воды;
  • мыльный пузырь.

Расчет поверхностного натяжения в задачах

Задача 1

Дано

Имеется пипетка с диаметром отверстия \(d=2\) мм. В ходе опыта выяснилось, что \(40\) капель имеют массу равную \(1,9\) г. Вычислите коэффициент поверхностного натяжения.

Решение

Найдем массу одной капли и длину окружности.

\(\mathcal l=\mathrm\pi\mathcal d\\\)

Напишем условие равновесия капли из пипетки.

Выразим коэффициент поверхностного натяжения.

Задача 2

Дано

Сосуд со ртутью имеет отверстие диаметром 70 мкм. Возможно ли без измерения определить максимальную высоту слоя ртути, при которой она не будет вытекать через отверстие?

Решение

Ртуть начнет вытекать тогда, когда произойдет увеличение силы ее давления относительно силы поверхностного натяжения.

\(\mathcal=\mathcal F\\\rho\mathcal=\sigma\mathcal l\\\)

Задача 3

Дано

Есть игла длиной \(3,5\) см и массой \(0,3\) г. Сможем ли мы произвести следующее действие: положить иголку на поверхность воды. Или же она утонет? Какие силы действуют на иголку?

Решение

На иглу действует сила тяжести. Если мы найдем ее и сравним с силой поверхностного натяжения, то узнаем ответ.

Сравниваем силы и видим, что значение силы тяжести больше величины поверхностного натяжения.

Ответ: Игла утонет.

Задача 4

Почему возникают сложности с тем, чтобы снять мокрые перчатки с рук?

Ответ: Молекулы воды взаимодействуют с молекулами перчатки. По этой причине мы чувствуем сопротивление при стягивании перчаток с рук.

Задача 5

Дано

Есть капиллярная трубка ( \(R=0,5\) мм). В ней столб жидкости высотой 11 мм. Определите плотность жидкости, если \(\sigma=22\;мН/м.\\\\\\\\\)

Решение

Воспользуемся формулой для капилляра.

Задача 6

Дано

Алюминиевое кольцо массой 7 г и радиусом 7,8 см соприкасается с мыльным раствором. Какую силу нужно приложить, чтобы оторвать кольцо от жидкости? Раствор имеет комнатную температуру.

Решение

Помимо натяжения на кольцо действует внешняя сила и сила тяжести.

Важно то, что кольцо соприкасается жидкости двумя сторонами. Умножаем на 2.

\(\mathcal F=mg+4\mathrm\\\mathcal F=7\ast10^\ast9,8+4\mathrm\pi\ast4\ast10^\ast7,8\ast10^=0,11\;\mathrm Н\\\\\\\)

Поверхностное натяжение – порыв жидкости уменьшить собственную свободную поверхность, то есть сократить избыток потенциальной энергии на границе разъединения с газообразной фазой.

Натяжение жидкости. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Натяжение жидкости. Автор24 — интернет-биржа студенческих работ

Упругими характеристиками оснащены не только твердые физические тела, но и поверхность самой жидкости. Каждый в своей жизни видел, как растягивается мыльная пленка при небольшом выдувании пузырей. Силы поверхностного натяжения, которые возникают в мыльной пленке, удерживают на определенный период времени воздух, аналогичному тому, как резиновая растянувшаяся камера сохраняет воздух в футбольном мяче.

Поверхностное натяжение появляется на границе раздела основных фаз, например, газообразной и жидкой, или жидкой и твердой. Это непосредственно обусловлено тем, что элементарные частицы поверхностного слоя жидкости всегда испытывают различную силу притяжения изнутри и снаружи.

Указанный физический процесс возможно рассматривать на примере капли воды, где жидкость движется себя так, как будто она находится в эластичной оболочке. Здесь атомы поверхностного слоя жидкого вещества притягиваются к собственным внутренним соседям сильнее, чем к внешним частицам воздуха.

Другой яркий пример – пленка любого нефтепродукта на воде. Здесь молекулы исследуемого объекта приближаются друг к другу слабее, чем к атомам воды, в итоге вещество растекается очень тонкой пленкой.

В целом поверхностное натяжение можно объяснить, как бесконечно малую или элементарную работу $\sigma A$, которую необходимо совершить для увеличения общей площади поверхности жидкости на бесконечно малую величину $dS$ при неизменной температуре $dt$.

Готовые работы на аналогичную тему

Механизм возникновения поверхностного натяжения в жидкостях

Рисунок 2. Скалярная положительная величина. Автор24 — интернет-биржа студенческих работ

Жидкость, в отличие от твердых тел и газов, не способна заполнить весь объем сосуда, в который она была помещена. Между паром и жидким веществом формируется определенная граница раздела, которая действует в особых условиях по сравнению с другой массой жидкости. Рассмотрим для более наглядного примера две молекулы $A$ и $B$. Частица $A$ находится внутри самой жидкости, молекула $B$ – непосредственно на ее поверхности. Первый элемент окружен другими атомами жидкости равномерно, поэтому действующие на молекулу силы со стороны попадающих в сферу межмолекулярного взаимодействия частиц всегда скомпенсированы, или, иными словами, их равнодействующая мощность равна нулю.

Молекула $B$ с одной стороны обрамлена молекулами жидкости, а с другой стороны –атомами газа, итоговая концентрация которых в значительной степени ниже, чем объединение элементарных частиц жидкости. Так как со стороны жидкости на молекулу $B$ воздействует гораздо больше молекул, чем со стороны идеального газа, равнодействующую всех межмолекулярных сил уже невозможно приравнять нулю, так как этот параметр направлен внутрь объема вещества. Таким образом, для того чтобы молекула из глубины жидкости оказалась в поверхностном слое, следует выполнить работу против нескомпенсированных сил. А это означает, что атомы приповерхностного уровня, по сравнению с частицами внутри жидкости, оснащены избыточной потенциальной энергией, которая носит название поверхностной энергии.

Коэффициент поверхностного натяжения

Рисунок 3. Поверхностное напряжение. Автор24 — интернет-биржа студенческих работ

Коэффициент поверхностного натяжения – это физический показатель, характеризующий определенную жидкость и численно равный соотношению поверхностной энергии к общей площади свободной среды жидкости.

В физике основной единицей измерения коэффициента поверхностного натяжения в концепции СИ является /.

Указанная величина напрямую зависит от:

  • природы жидкости (у «летучих элементах таких, как спирт, эфир, бензин, коэффициент поверхностного натяжения значительно меньше, чем у «нелетучих – ртути, воды);
  • температуры жидкого вещества (чем выше температура, тем меньше итоговое поверхностное натяжение);
  • свойств идеального газа, граничащий с данной жидкостью;
  • наличия стабильных поверхностно-активных элементов таких, как стиральный порошок или мыло, которые способны уменьшить поверхностное натяжение.

Также следует отметить, что параметр поверхностного натяжения не зависит от начальной площади свободной среды жидкости.

Из механики также известно, что неизменным состояниям системы всегда соответствует минимальное значение ее внутренней энергии. Вследствие такого физического процесса жидкое тело часто принимает форму с минимальной поверхностью. Если на жидкость не влияют посторонние силы или их действие крайне мало, ее элементы к форме сферы в виде капли воды или мыльного пузыря. Аналогичным образом начинают вести себя вода находясь в невесомости. Жидкость движется так, как будто по касательной к ее основной поверхности действуют факторы, сокращающие данную среду. Эти силы называются силами поверхностного натяжения.

Следовательно, коэффициент поверхностного натяжения возможно также определить, как основной модуль силы поверхностного натяжения, который в общем действует на единицу длины начального контура, ограничивающего свободную среду жидкости. Наличие указанных параметров делает поверхность жидкого вещества похожей на растянутую упругую пленку, с единственной разницей, что неизменные силы в пленке непосредственно зависят от площади ее системы, а сами силы поверхностного натяжения способны самостоятельно работать. Если положить небольшую швейную иглу на поверхность воды, гладь прогнется и не даст ей утонуть.

Действием внешнего фактора можно описать скольжение легких насекомых таких, как водомерки, по всей поверхности водоемов. Лапка этих членистоногих деформирует водную поверхность, тем самым увеличивая ее площадь. В результате этого возникает сила поверхностного натяжения, стремящаяся уменьшить подобное изменение площади. Равнодействующая сила будет всегда направлена исключительно вверх, компенсируя при этом действие тяжести.

Результат действия поверхностного натяжения

Под воздействием поверхностного натяжения небольшие количества жидких сред стремятся принять шарообразную форму, которая будет идеально соответствовать наименьшей величине окружающей среды. Приближение к шаровой конфигурации достигается тем больше, чем слабее начальные силы тяжести, так как у малых капель показатель силы поверхностного натяжения гораздо превосходит влияние тяжести.

Поверхностное натяжение считается одной из важнейших характеристик поверхностей раздела фаз. Оно непосредственно воздействует на формирование мелкодисперсных частиц физических тел и жидкостей при их разделении, а также на слияние элементов или пузырьков в туманах, эмульсиях, пенах, на процессы адгезии.

Поверхностное натяжение устанавливает форму будущих биологических клеток и их основных частей.

Изменение сил данного физического процесса влияет на фагоцитоз и на процессы альвеолярного дыхания. Благодаря этому явлению пористые вещества могут в течение длительного времени удерживать огромное количество жидкости даже из паров воздуха, Капиллярные явления, предполагающие изменения высоты уровня жидкости в капиллярах по сравнению с уровнем жидкости в более широком сосуде, весьма распространены. Посредством данных процессов обусловлено поднятие воды в почве, по корневой системе растений, движение биологических жидкостей по системе мелких канальцев и сосудов.

Молекулы жидкости располагаются очень близко друг к другу, поэтому силы притяжения достигают значительной величины. Каждая молекула испытывает притяжение со стороны соседних с ней молекул.

Если молекула находится внутри жидкости (рис. 16), то равнодействующая сил, действующих на нее, равна нулю. Иначе обстоит дело, если молекула находится в поверхностном слое жидкости. Плотность пара (или газа), с которым граничит жидкость, во много раз меньше плотности жидкости, поэтому равнодействующая сил, действующих со стороны молекул пара, тоже будет намного меньше, чем равнодействующая сил, действующих со стороны молекул жидкости. В результате, на каждую молекулу, находящуюся в приповерхностном слое будет действовать сила, направленная внутрь жидкости.


Рис. 16. Возникновение сил поверхностного натяжения

При переходе молекулы из глубины жидкости в поверхностный слой над молекулой совершается действующими на нее в этом слое силами отрицательная работа. При этом кинетическая энергия молекулы уменьшается, превращаясь в потенциальную. Таким образом, молекулы в поверхностном слое обладают дополнительной потенциальной энергией. Поверхностный слой в целом обладает дополнительной энергией, которая входит составной частью во внутреннюю энергию жидкости.

Наличие этой дополнительной энергии приводит к тому, что жидкость стремится сократить свою поверхность. Жидкость ведет себя так, как если бы она была заключена в упругую растянутую пленку, стремящуюся сжаться. На самом деле никакой пленки нет, поверхностный слой состоит из тех же молекул, что и вся жидкость.

Выделим мысленно на поверхности жидкости участок, ограниченный замкнутым контуром длиной l. Стремление этого участка к сокращению приводит тому, что он будет действовать на остальную часть поверхности с касательными к поверхности силами. Эти силы называются силами поверхностного натяжения. Для количественной оценки силы поверхностного вводят величину, которую называют коэффициентом поверхностного натяжения (или поверхностным натяжением).

Коэффициент поверхностного натяжения (α) – скалярная физическая величина, равная отношению модуля силы поверхностного натяжения F, действующей на границу поверхностного слоя длиной l, к этой длине:


(33)

Для того, чтобы изменить площадь поверхностного слоя при постоянной температуре на величину dS, надо совершить работу

δA = αdS, (34)

где α – коэффициент поверхностного натяжения.

При изменении площади от S1 до S2 работа будет соответственно равна:

A = α(S2 – S1). (35)

При совершении работы А энергия поверхностного слоя изменяется на величину ΔWпов.

A = ΔWпов.= α(S2 – S1) = αdS.


(36)


.

Таким образом, можно дать еще одно определение коэффициента поверхностного натяжения.

Коэффициент поверхностного натяжения – скалярная физическая величина, равная отношению изменения потенциальной энергии поверхностного слоя к изменению площади поверхности этого слоя.

Коэффициент поверхностного натяжения зависит от химического состава жидкости и от ее температуры. С увеличением температуры α уменьшается и обращается в нуль при критической температуре.

Поверхностное натяжение существенно зависит от примесей, имеющихся в жидкостях. Вещества, ослабляющие поверхностное натяжение жидкости, называются поверхностно-активными веществами (ПАВ). Наиболее известным поверхностно-активным веществом относительно воды является мыло. Оно значительно уменьшает ее поверхностное натяжение (примерно с 7,5*10 –2 до 4,5*10 –2 Н/м). Относительно воды поверхностно-активными являются эфиры, спирты, нефть т.д. С молекулярной точки зрения влияние поверхностно-активных веществ объясняется тем, что силы притяжения между молекулами жидкости больше, чем силы притяжения между молекулами жидкости и примеси. Молекулы жидкости в поверхностном слое с большей силой втягиваются внутрь жидкостей, чем молекулы примеси. В результате этого молекулы жидкости переходят с поверхностного слоя вглубь ее, а молекулы поверхностно-активного вещества вытесняются на поверхность.

Поверхностно-активные вещества применяются в качестве смачивателей, флотационных реагентов, пенообразователей, диспергаторов – понизителей твердости, пластифицирующих добавок, модификаторов кристаллизации и др.




Все вышесказанное об особых условиях, в которых находятся молекулы поверхностного слоя, целиком относится также и к твердым телам. Следовательно, твердые тела, как и жидкости, обладают поверхностным натяжением.

При рассмотрении явлений на границе раздела различных сред следует иметь в виду, что поверхностная энергия жидкости или твердого тела зависит не только от свойств данной жидкости или твердого тела, но и от свойств того вещества, с которым они граничат. Строго говоря, нужно рассматривать суммарную поверхностную энергию α12 двух граничащих друг с другом веществ. Только если одно вещество газообразно, химически не реагирует с другим веществом и мало в нем растворяется, можно говорить просто о поверхностной энергии (или коэффициенте поверхностного натяжения) второго жидкого или твердого тела.


Рис. 17. Граница жидкости, газа и твердого тела

Если граничат друг с другом сразу три вещества: твердое, жидкое и газообразное (рис. 17), то вся система принимает конфигурацию, соответствующую минимуму суммарной потенциальной энергии (поверхностной, в поле сил тяжести и т. п.). В частности, контур, по которому граничат все три вещества, располагается на поверхности твердого тела таким образом, чтобы сумма проекций всех приложенных к каждому элементу контура сил поверхностного натяжения на направление, в котором элемент контура может перемещаться (т. е. на направление касательной к поверхности твердого тела), была равна нулю. Из рис. 17 следует, что условие равновесия элемента контура длиной Δl запишется следующим образом:

где αТГ, αТЖ и αЖГ – коэффициенты поверхностного натяжения на границах: твердое тело — газ, твердое тело — жидкость и жидкость —газ.

Отсчитываемый внутри жидкости угол θ между касательными к поверхности твердого тела и к поверхности жидкости называется краевым углом. В соответствии с (37)


. (38)

Краевой угол определяется выражением (38) только при условии, что


. (39)

Если (39) не выполняется, т.е. |αТГ – αТЖ| > αЖГ, ни при каком значении θ не может установиться равновесие. Это имеет место в двух случаях.

1) αТГ > αТЖ + αЖГ. Как бы ни был мал угол θ, сила αТГ перевешивает две другие (рис. 18, а). В этом случае жидкость неограниченно растекается по поверхности твердого тела – имеет место полное смачивание. Замена поверхности твердое тело — газ двумя поверхностями, твердое тело — жидкость и жидкость — газ, оказывается энергетически выгодной. При полном смачивании краевой угол равен нулю.

2) αТЖ > αТГ + αЖГ. Как бы ни был угол θ близок к π, сила αТЖ перевешивает две другие (рис. 18,б), В этом случае поверхность, по которой жидкость граничит с твердым телом, стягивается в точку, жидкость отделяется от твердой поверхности — имеет место полное несмачивание. Замена поверхности твердое тело — жидкость двумя поверхностями, твердое тело — газ и жидкость — газ, оказывается энергетически выгодной. При полном несмачивании краевой угол равен π.


Рис. 18. Полное смачивание и полное несмачивание

При соблюдении условия (39) краевой угол может оказаться острым или тупым в зависимости от соотношения между αТГ и αТЖ. Если αТГ > αТЖ, то cosθ > 0 и угол θ— острый (рис. 19,а). В этом случае имеет место частичное смачивание. Если αТГ –2 до 4,5*10 –2 Н/м). Относительно воды поверхностно-активными являются эфиры, спирты, нефть т.д. С молекулярной точки зрения влияние поверхностно-активных веществ объясняется тем, что силы притяжения между молекулами жидкости больше, чем силы притяжения между молекулами жидкости и примеси. Молекулы жидкости в поверхностном слое с большей силой втягиваются внутрь жидкостей, чем молекулы примеси. В результате этого молекулы жидкости переходят с поверхностного слоя вглубь ее, а молекулы поверхностно-активного вещества вытесняются на поверхность.

Поверхностно-активные вещества применяются в качестве смачивателей, флотационных реагентов, пенообразователей, диспергаторов – понизителей твердости, пластифицирующих добавок, модификаторов кристаллизации и др.

Все вышесказанное об особых условиях, в которых находятся молекулы поверхностного слоя, целиком относится также и к твердым телам. Следовательно, твердые тела, как и жидкости, обладают поверхностным натяжением.

При рассмотрении явлений на границе раздела различных сред следует иметь в виду, что поверхностная энергия жидкости или твердого тела зависит не только от свойств данной жидкости или твердого тела, но и от свойств того вещества, с которым они граничат. Строго говоря, нужно рассматривать суммарную поверхностную энергию α12 двух граничащих друг с другом веществ. Только если одно вещество газообразно, химически не реагирует с другим веществом и мало в нем растворяется, можно говорить просто о поверхностной энергии (или коэффициенте поверхностного натяжения) второго жидкого или твердого тела.


Рис. 17. Граница жидкости, газа и твердого тела

Если граничат друг с другом сразу три вещества: твердое, жидкое и газообразное (рис. 17), то вся система принимает конфигурацию, соответствующую минимуму суммарной потенциальной энергии (поверхностной, в поле сил тяжести и т. п.). В частности, контур, по которому граничат все три вещества, располагается на поверхности твердого тела таким образом, чтобы сумма проекций всех приложенных к каждому элементу контура сил поверхностного натяжения на направление, в котором элемент контура может перемещаться (т. е. на направление касательной к поверхности твердого тела), была равна нулю. Из рис. 17 следует, что условие равновесия элемента контура длиной Δl запишется следующим образом:

где αТГ, αТЖ и αЖГ – коэффициенты поверхностного натяжения на границах: твердое тело — газ, твердое тело — жидкость и жидкость —газ.

Отсчитываемый внутри жидкости угол θ между касательными к поверхности твердого тела и к поверхности жидкости называется краевым углом. В соответствии с (37)


. (38)

Краевой угол определяется выражением (38) только при условии, что


. (39)

Если (39) не выполняется, т.е. |αТГ – αТЖ| > αЖГ, ни при каком значении θ не может установиться равновесие. Это имеет место в двух случаях.

1) αТГ > αТЖ + αЖГ. Как бы ни был мал угол θ, сила αТГ перевешивает две другие (рис. 18, а). В этом случае жидкость неограниченно растекается по поверхности твердого тела – имеет место полное смачивание. Замена поверхности твердое тело — газ двумя поверхностями, твердое тело — жидкость и жидкость — газ, оказывается энергетически выгодной. При полном смачивании краевой угол равен нулю.

2) αТЖ > αТГ + αЖГ. Как бы ни был угол θ близок к π, сила αТЖ перевешивает две другие (рис. 18,б), В этом случае поверхность, по которой жидкость граничит с твердым телом, стягивается в точку, жидкость отделяется от твердой поверхности — имеет место полное несмачивание. Замена поверхности твердое тело — жидкость двумя поверхностями, твердое тело — газ и жидкость — газ, оказывается энергетически выгодной. При полном несмачивании краевой угол равен π.


Рис. 18. Полное смачивание и полное несмачивание

При соблюдении условия (39) краевой угол может оказаться острым или тупым в зависимости от соотношения между αТГ и αТЖ. Если αТГ > αТЖ, то cosθ > 0 и угол θ— острый (рис. 19,а). В этом случае имеет место частичное смачивание. Если αТГ

Поверхностное натяжение

На этом уроке пойдет речь о жидкостях и их свойствах. С точки зрения современной физики, жидкости являются наиболее сложным предметом исследований, потому что по сравнению с газами уже нельзя говорить о пренебрежимо малой энергии взаимодействия между молекулами, а по сравнению с твердыми телами нельзя говорить об упорядоченном расположении молекул жидкости (в жидкости отсутствует дальний порядок). Это приводит к тому, что жидкости обладают рядом интереснейших свойств и их проявлений. Об одном таком свойстве и пойдет речь на этом уроке.

Читайте также: