Чем физический маятник отличается от математического кратко

Обновлено: 06.07.2024

В качестве конкретного примера тела, вращающегося вокруг оси, рассмотрим движение маятников.

Физическим маятником называется твердое тело, обладающее горизонтальной осью вращения, вокруг которой оно совершает колебательные движения под действием своего веса (рис. 119).

Положение маятника полностью определяется углом его отклонения от положения равновесия, и поэтому для определения закона движения маятника достаточно найти зависимость этого угла от времени.

называется уравнением (законом) движения маятника. Он зависит от начальных условий, т. е. от угла и угловой скорости Таким образом,

Предельным случаем физического Маятника является математический маятник, представляющий (как указывалось ранее — глава 2, § 3) материальную точку, соединенную с горизонтальной осью, вокруг которой она вращается, жестким невесомым стержнем (рис. 120). Расстояние материальной точки от оси вращения называется длиной математического маятника.

Уравнения движения физического и математического маятников

Выберем систему осей координат так, чтобы плоскость ху проходила через центр тяжести тела С и совпадала с плоскостью качания маятника, как это показано на чертеже (рис. 119). Ось направим перпендикулярно к плоскости чертежа на нас. Тогда на основании результатов предыдущего параграфа уравнение движения физического маятника запишем в виде:

где через обозначен момент инерции маятника относительно его оси вращения и

Поэтому можно написать:

Активной силой, действующей на маятник, является его вес момент которого относительно оси привеса будет:

где — расстояние от оси вращения маятника до его центра масс С.

Следовательно, приходим к следующему уравнению движения физического маятника:

Так как математический маятник является частным случаем физического, то записанное выше дифференциальное уравнение справедливо и для математического маятника. Если длина математического маятника равна а вес его то момент инерции его относительно оси вращения равен

Так как расстояние центра тяжести математического маятника от оси равно то окончательно дифференциальное уравнение движения математического маятника можно написать в виде:

Приведенная длина физического маятника

Сравнивая уравнения (16.8) и (16.9), можно заключить, что если параметры физического и математического маятников связаны соотношением

то законы движения физического и математического маятников одинаковы (при одинаковых начальных условиях).

Последнее соотношение указывает на ту длину, которую должен иметь математический маятник, чтобы двигаться так же, как соответствующий физический маятник. Эта длина называется приведенной длиной физического маятника. Смысл этого понятия заключается в том, что изучение движения физического маятника можно заменить изучением движения математического маятника, представляющего собой простейшую механическую схему.

Первый интеграл уравнения движения маятника

Уравнения движения физического и математического маятников имеют один и тот же вид, следовательно, уравнение их движения будет

Так как единственной силой, которая учитывается в этом уравнении, будет сила тяжести, принадлежащая потенциальному силовому полю, то имеет место закон сохранения механической энергии.

Последний можно получить простым приемом, именно умножим уравнение (16.10) на тогда

Интегрируя это уравнение, получим

Определяя постоянную интегрирования Си из начальных условий найдем

Решив последнее уравнение относительно получим

Это соотношение представляет собой первый интеграл дифференциального уравнения (16.10).

Определение опорных реакций физического и математического маятников

Первый интеграл уравнений движения позволяет определить опорные реакции маятников. Как указывалось в предыдущем параграфе, реакции опор определяются из уравнений (16.5). В случае физического маятника составляющие активной силы по осям координат и моменты ее относительно осей будут:

Координаты центра масс определяются формулами:

Тогда уравнения для определения реакций опор принимают вид:

Центробежные моменты инерции тела и расстояния между опорами должны быть известны по условиям задачи. Угловое ускорение в и угловая скорость со определяются из уравнений (16.9) и (16.4) в виде:

Таким образом, уравнения (16.12) полностью определяют составляющие опорных реакций физического маятника.

Уравнения (16.12) еще упрощаются, если рассматривать математический маятник. Действительно, так как материальная точка математического маятника расположена в плоскости то Кроме того, так как закреплена одна точка, то Следовательно, уравнения (16.12) обращаются в уравнения вида:

Из уравнений (16.13) с использованием уравнения (16.9) следует, что реакция опоры направлена вдоль нити I (рис. 120). Последнее представляет собой очевидный результат. Следовательно, проектируя составляющие равенств (16.13) на направление нити, найдем уравнение для определения реакции опоры вида (рис. 120):

Подставляя сюда значение и учитывая, что запишем:

Последнее соотношение определяет динамическую реакцию математического маятника. Заметим, что статическая реакция его будет

Качественное исследование характера движения маятника

Первый интеграл уравнения движеиия маятника позволяет провести качественное исследование характера движения его. Именно, запишем этот интеграл (16.11) в виде:

В процессе движения подкоренное выражение должно быть либо положительным, либо обращаться в некоторых точках в нуль. Допустим, что начальные условия таковы, что

В этом случае подкоренное выражение нигде не обращается в нуль. Следовательно, при движении маятник будет пробегать все значения угла и угловая скорость со маятника имеет один и тот же знак, который определяется направлением начальной угловой скорости, или угол будет либо все время возрастать, либо все время убывать, т. е. маятник будет вращаться в одну сторону.

Направления движения будут соответствовать тому или иному знаку в выражении (16.11). Необходимым условием реализации такого движения является наличие начальной угловой скорости, так как из неравенства (16.14) видно, что если то ни при каком начальном угле отклонения получить такое движение маятника невозможно.

Пусть теперь начальные условия таковы, что

В этом случае найдутся два таких значения угла при которых подкоренное выражение обращается в нуль. Пусть они соответствуют углам, определяемым равенством

Причем будет где-то в диапазоне изменения от 0 до . Далее, очевидно, что при

подкоренное выражение (16.11) будет положительным и при сколь угодно мало превышающем оно будет отрицательным.

Следовательно, при движении маятника его угол изменяется в диапазоне:

При угловая скорость маятника обращается в нуль и угол начинает уменьшаться до значения . При этом изменится знак угловой скорости или знак перед радикалом в выражении (16.11). Когда достигает значения угловая скорость маятника вновь обращается в нуль и угол опять начинает увеличиваться до значения

Таким образом, маятник будет совершать колебательные движения

Амплитуда колебаний маятника

При колебательных движениях маятника максимальная величина его отклонения от вертикали называется амплитудой колебания. Она равна которое определяется из равенства

Как следует из последней формулы, амплитуда колебания зависит от начальных данных основных характеристик маятника или его приведенной длины.

В частном случае, когда маятник отклонен от равновесного положения и отпущен без начальной скорости то будет равно , следовательно, амплитуда не зависит от приведенной длины.

Уравнение движения маятника в конечной форме

Пусть начальная скорость маятника равна нулю, тогда первый интеграл уравнения движения его будет:

Интегрируя это уравнение, находим

Будем вести отсчет времени от положения маятника, соответствующего тогда

Преобразуем подынтегральное выражение с помощью формулы:

Полученный интеграл называется эллиптическим интегралом первого рода. Он не может быть выражен с помощью конечного числа элементарных функций.

Обращение эллиптического интеграла (16.15) относительно его верхнего предела представляет уравнение движения маятника:

Это будет хорошо изученная эллиптическая функция Якоби.

Период колебания маятника

Время одного полного колебания маятника называется периодом его колебания. Обозначим его Т. Так как время движения маятника от положения до положения такое же, как время движения от то Т определится формулой:

Далее, так как при движении от до скорость отрицательна, то перед интегралом следует взять знак минус. Тогда

Сделаем замену переменных, положив

При изменяющихся в пределах от 0 до будет меняться от 0 до . Далее,

Последний интеграл называется полным эллиптическим интегралом первого рода (значения его даются специальными таблицами).

При подынтегральная функция стремится к единице и .

Приближенные формулы малых колебаний маятника

В случае когда колебания маятника имеют небольшую амплитуду (практически не должно превышать 20°), можно положить

Тогда дифференциальное уравнение движения маятника преобретает вид:

где приведенная длина маятника.

Это уравнение интегрируется в элементарных функциях. Общее решение его имеет вид:

где А и постоянные, зависящие от начальных условий определяемые из формулы:

Уравнение движения маятника в конечной форме (16.17) является периодической функцией от I. Это уравнение описывает колебательное движение с амплитудой А (зависящей от начальных условий) и периодом, который определяется формулой:

Как следует из формулы, период не зависит от начальных условий и определяется только приведенной длиной маятника. Это свойство малых колебаний маятника называется изохронностью. Оно используется, например, в часах, где благодаря изохронности обеспечивается точность хода.

Использование маятников для экспериментального определения ускорения силы тяжести на земной поверхности

Как следует из предыдущего, период колебания маятника зависит от Этим обстоятельством можно воспользоваться для экспериментального определения Обычно для этого применяется при бор, называемый оборотным маятником. Последний состоит из стержня с двумя призмами (рис. 121), ребра которых лежат на одной прямой с центром масс маятника, по обе стороны от него. Ребро может двигаться вдоль . Оборотный маятник может качаться относительно осей, совпадающих с ребрами . Принцип действия этого прибора основывается на следующем свойстве осей качания маятников. Как указывалось, приведенная длина маятника определяется формулой:

Преобразуем это выражение, используя теорему Гюйгенса — Штейнера. Именно,

где — момент инерции маятника относительно оси, параллель ной оси его качания и проходящей через его центр масс, М — масса маятника. Тогда

Но где — радиус инерции маятника относительно оси, проходящей через центр масс. Следовательно,

Отсюда видно, что приведенная длина маятника всегда больше расстояния от его центра до оси подвеса. Отложим от точки О вдоль линии отрезок и заставим этот маятник качаться около новой оси, параллельной первоначальной, но проходящей через точку О. В этом случае роль отрезка а будет играть отрезок

и приведенная длина V равна:

Таким образом, приведенная длина маятника, а следовательно и закон его движения вокруг осей О и О не изменяется. Возвращаясь к оборотному маятнику, заставим его качаться относительно оси, совпадающей с ребром О, а потом — с ребром О. Затем, передвигая призму О вдоль , добьемся такого положения, когда периоды этих колебаний будут одинаковы. Это значит, что

Определив эту длину и измерив амплитуду колебаний и период колебаний Т, обращаясь к формуле (16.16), где найдем:

При малых колебаниях формула для определения сильно упрощается и имеет вид:

Физическим маятником называется твердое тело, которое может качаться вокруг неподвижной горизонтальной оси. Точка пересечения ее А вертикальной плоскостью, проходящей через центр масс маятника, называется точкой подвеса маятника (рис. 6.3). Положение тела в каждый момент времени можно характеризовать углом отклонения его из положения равновесия . Угол играет роль обобщенной координаты q. Кинетическая энергия качающегося физического маятника определяется выражением

где I – момент инерции маятника относительно оси А.

Потенциальная энергия равна

где h – высота поднятия центра масс С над его самым нижним положением. Обозначим через а расстояние между центром масс С и точкой подвеса А. Тогда

В случае малых колебаний синус угла можно приближенно заменить самим углом. В этом приближении

Таким образом, для малых колебаний потенциальная и кинетическая энергии приводятся к виду (6.14), причем . Отсюда следует, что малые колебания физического маятника будут приблизительно гармоническими с циклической частотой

Частным случаем физического маятника является математический маятник. Так называется маятник, вся масса которого практически сосредоточена в одной точке – в центре масс маятника С.

Примером математического маятника может служить шарик, подвешенный на длинной нити. В случае математического маятника

где l – длина маятника.

Формула (6.19) переходит в

Сравнивая формулы (6.19) и (6.20), заключаем, что физический маятник колеблется так же, как математический маятник с длиной

которая называется приведенной длиной физического маятника.

Отложим от точки подвеса А вдоль прямой АС отрезок , длина которого равна приведенной длине физического маятника l (см. рис. 6.3). Точка называется центром качания. Центр качания можно определить как математическую точку, в которой надо сосредоточить всю массу физического маятника, чтобы период его колебаний остался без изменений.

По теореме Штейнера

где – момент инерции маятника относительно параллельной оси, проходящей через центр масс С. Подставив это выражение в формулу (6.21), придадим ей вид

Отсюда следует, во-первых, что l > a, т. е. точка подвеса А и центр качания лежат по разные стороны от центра масс С и, во-вторых, что всем точкам подвеса, одинаково удаленным от центра масс маятника, соответствует одна и та же приведенная длина l, а следовательно, один и тот же период колебаний T.

Точка подвеса и центр качания являются взаимными или сопряженными точками в следующем смысле. Если маятник подвесить за центр качания , то его период не изменится и прежняя точка подвеса А сделается новым центром качания.

Физическим маятником называется твердое тело, которое может качаться вокруг неподвижной горизонтальной оси. Точка пересечения ее А вертикальной плоскостью, проходящей через центр масс маятника, называется точкой подвеса маятника (рис. 6.3). Положение тела в каждый момент времени можно характеризовать углом отклонения его из положения равновесия . Угол играет роль обобщенной координаты q. Кинетическая энергия качающегося физического маятника определяется выражением

где I – момент инерции маятника относительно оси А.

Потенциальная энергия равна

где h – высота поднятия центра масс С над его самым нижним положением. Обозначим через а расстояние между центром масс С и точкой подвеса А. Тогда

В случае малых колебаний синус угла можно приближенно заменить самим углом. В этом приближении

Таким образом, для малых колебаний потенциальная и кинетическая энергии приводятся к виду (6.14), причем . Отсюда следует, что малые колебания физического маятника будут приблизительно гармоническими с циклической частотой

Частным случаем физического маятника является математический маятник. Так называется маятник, вся масса которого практически сосредоточена в одной точке – в центре масс маятника С.

Примером математического маятника может служить шарик, подвешенный на длинной нити. В случае математического маятника

где l – длина маятника.

Формула (6.19) переходит в

Сравнивая формулы (6.19) и (6.20), заключаем, что физический маятник колеблется так же, как математический маятник с длиной




которая называется приведенной длиной физического маятника.

Отложим от точки подвеса А вдоль прямой АС отрезок , длина которого равна приведенной длине физического маятника l (см. рис. 6.3). Точка называется центром качания. Центр качания можно определить как математическую точку, в которой надо сосредоточить всю массу физического маятника, чтобы период его колебаний остался без изменений.

По теореме Штейнера

где – момент инерции маятника относительно параллельной оси, проходящей через центр масс С. Подставив это выражение в формулу (6.21), придадим ей вид

Отсюда следует, во-первых, что l > a, т. е. точка подвеса А и центр качания лежат по разные стороны от центра масс С и, во-вторых, что всем точкам подвеса, одинаково удаленным от центра масс маятника, соответствует одна и та же приведенная длина l, а следовательно, один и тот же период колебаний T.

Точка подвеса и центр качания являются взаимными или сопряженными точками в следующем смысле. Если маятник подвесить за центр качания , то его период не изменится и прежняя точка подвеса А сделается новым центром качания.

Физическим маятником называется абсолютно твердое тело, совершающее колебания под действием силы тяжести вокруг неподвижной горизонтальной оси, не проходящей через его центр масс.

На рисунке 33.1 изображено произвольное тело массой , колеблющееся вокруг оси (ось перпендикулярна плоскости чертежа); – центр масс; – плечо силы тяжести.

Пусть ось вращения (качания) маятника является осью декартовой системы координат с началом в точке . Свяжем положительное направление оси с положительным направлением отсчета угла поворота правилом правого винта. (Примем направление отсчета угла против часовой стрелки за положительное.) Тогда ось будет направлена ’’к нам’’.

Если силами трения в подвесе маятника можно пренебречь, то момент относительно оси создает только его сила тяжести . Под действием этой силы при отклонении маятника на угол в положительном направлении возникает вращательный момент этой силы относительно точки

направленный в противоположную оси сторону. Тогда проекция вектора на ось

С другой стороны, согласно основному уравнению динамики вращения твердого тела

Так как , то (33.2) можно переписать в виде

где – момент инерции маятника относительно оси качания .

При малых колебаниях маятника , и уравнение (33.2) принимает вид дифференциального уравнения гармонических колебаний,

решение которого имеет вид

где – собственная частота колебаний физического маятника, зависящая, как видно из приведенной формулы, от массы, момента инерции тела и расстояния между осью вращения и центром масс. В соответствии с формулами (28.2) и (33.3) период колебаний физического маятника определяется выражением

Математический маятником называется материальная точка (частица), подвешенная на невесомой и нерастяжимой нити (длиной ) и совершающая колебания в вертикальной плоскости под действием силы тяжести.

Математический маятник представляет собой предельный случай физического маятника, вся масса которого сосредоточена в его центре масс, так что , .

Период колебаний математического маятника зависит только от его длины и ускорения свободного падения:

Возвращающей силой в этом случае является проекция силы тяжести на направление движения ( ). Для постоянства коэффициента , а следовательно, и частоты колебаний , необходимо постоянство длины нити . Между тем составляющая силы тяжести , действующая вдоль нити, может вызывать ее удлинение, которое будет минимальным в крайних положениях и максимальным при прохождении тела через положение равновесия. Поэтому для того чтобы колебания маятника были гармоническими, необходимо, кроме малости углов отклонения, дополнительно еще и условие нерастяжимости нити.

Пример 33.1. Диск радиусом см колеблется около горизонтальной оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска. Определить период колебаний такого маятника.

Решение.Период колебаний физического маятника определяется по формуле (33.4),

где – момент инерции маятника относительно оси колебаний, – его масса, – расстояние от центра масс маятника до его оси колебаний.

Момент инерции диска найдем, воспользовавшись теоремой Штейнера:

где – момент инерции диска относительно оси, проходящей через центр масс параллельно оси колебаний, – расстояние между указанными осями.

Учитывая, что для диска

и по условию задачи

представим (33.5) в виде

Подставляя выражение (33.6) в формулу (33.4), получаем окончательно

1) Какие колебания называют гармоническими? собственными?

2) Что такое смещение?

3) Дайте определение амплитуды, фазы, периода, частоты, циклической частоты.

4) Какая сила называется квазиупругой? Приведите примеры квазиупругих сил.

5) От чего зависят амплитуда и начальная фаза гармонических колебаний?

6) Как зависит ускорение гармонических колебаний от смещения?

7) Выведите формулу для полной энергии при гармонических колебаниях.

8) Какую систему можно считать математическим маятником?

Лекция 10. Механические колебания (продолжение)

Затухающие колебания

Во всех реальных случаях помимо квазиупругой силы на тело действует сила сопротивления, которая обычно считается пропорциональной скорости:

где – коэффициент сопротивления.

Уравнение второго закона Ньютона при наличии силы сопротивления имеет вид

где означает первую производную смещения по времени; – частота собственных колебаний, – коэффициент затухания. Уравнение (34.1) является дифференциальным. Его решение при не слишком сильном затухании имеет вид

Из выражения (34.2) видно, что амплитуда колебаний не является постоянной величиной, а уменьшается со временем по экспоненциальному закону:

где – начальная амплитуда колебаний.

Следовательно, колебания при наличии силы сопротивления не являются гармоническими. Такие колебания называются затухающими. Постоянная величина называется круговой частотой затухающих колебаний. Величина является круговой частотой колебаний в отсутствие сопротивления среды ( ) и называется собственной частотой колебаний. За счет работы силы сопротивления механическая энергия в процессе колебаний непрерывно уменьшается, переходя во внутреннюю энергию. Соответственно амплитуда колебаний уменьшается, и колебания постепенно затухают (рис. 34.1). Однако смещение принимает нулевые значения через равные промежутки времени

Поэтому период , определяемый формулой (34.4), и частота рассматриваются как условные период и частота затухающих колебаний.

Быстроту убывания амплитуды характеризуют величиной, называемой логарифмическим декрементом затухания

где и – значения амплитуд, соответствующих моментам времени, отличающимся на период.

Воспользовавшись соотношением (34.3), получим

Пример 34.1. Амплитуда затухающих колебаний уменьшилась в раз за колебаний. Чему равен логарифмический декремент затухания ?

Решение.Логарифмический декремент затухания связан с коэффициентом затухания соотношением (34.5).

Амплитуда затухающих колебаний убывает со временем по закону

По условию задачи

Комбинируя выражения (34.6) и (34.7), получаем

где – время, в течение которого произошло колебаний.

Подставляя выражения (34.9) и (34.8) в соотношение (34.5), получаем

Вынужденные колебания

Для поддержания колебаний в системе необходимо, чтобы действовала сила, работа которой компенсировала бы уменьшение механической энергии. Эта сила должна быть переменной, т.к. постоянная сила может только изменить положение равновесия, но не может способствовать поддержанию колебаний в системе.

Колебания, возникающие в системе под действием внешней переменной силы, называются вынужденными. Переменная сила, поддерживающая в системе незатухающие колебания, называется вынуждающей.

Рассмотрим простейший частный случай вынужденных колебаний в среде, заключающийся в том, что на систему действует сила, которая изменяется со временем по гармоническому закону:

где – амплитуда силы, – круговая частота изменения силы со временем.

Помимо вынуждающей силы на тело действуют квазиупругая сила и сила сопротивления. Тогда колебания будут описываться дифференциальным уравнением:

С течением времени собственные колебания в системе затухнут, следовательно, вынужденные колебания происходят с частотой вынуждающей силы.

Решение уравнения для установившихся вынужденных колебаний имеет вид:

где – амплитуда вынужденных колебаний, – сдвиг фаз; он представляет собой величину отставания по фазе вынужденного колебания от обусловившей его вынуждающей силы:

Из соотношений (35.4) и (35.5) следует, что амплитуда и фаза зависят от соотношения между частотой собственных колебаний и частотой вынуждающей силы . При совпадении этих частот амплитуда колебаний будет резко возрастать (рис.35.1)

Явление резкого увеличения амплитуды вынужденных колебаний при совпадении частоты вынуждающей силы с частотой собственных колебаний системы, называется резонансом.

Резонансная амплитуда зависит от сопротивления среды, как видно из формулы (35.4). Кривой соответствует меньшее сопротивление среды, чем кривой . При , как видно из (35.5), и, соответственно, решение уравнения колебаний приобретает вид

Тогда скорость изменяется по закону

откуда видно, что скорость изменяется в фазе с вынуждающей силой.

Возрастание амплитуды при резонансе объясняется тем, что при направление вынуждающей силы все время совпадает с направлением перемещения, и, следовательно, вынуждающая сила будет непрерывно совершать положительную работу. Т.о., механическая энергия системы, а, соответственно, и амплитуда будут возрастать. При отсутствии сопротивления среды амплитуда стремится к бесконечно большим значениям. При вынуждающая сила на одних перемещениях совершает положительную работу, а на других – отрицательную, и потому амплитуда вынужденных колебаний невелика.

Математический маятник. – угловое отклонение маятника от положения равновесия, – смещение маятника по дуге

Если обозначить через линейное смещение маятника от положения равновесия по дуге окружности радиуса , то его угловое смещение будет равно . Второй закон Ньютона, записанный для проекций векторов ускорения и силы на направление касательной, дает:

Это соотношение показывает, что математический маятник представляет собой сложную нелинейную систему, так как сила, стремящаяся вернуть маятник в положение равновесия, пропорциональна не смещению , а

Только в случае малых колебаний , когда приближенно можно заменить на математический маятник является гармоническим осциллятором , т. е. системой, способной совершать гармонические колебания. Практически такое приближение справедливо для углов порядка ; при этом величина отличается от не более чем на . Колебания маятника при больших амплитудах не являются гармоническими.

Для малых колебаний математического маятника второй закон Ньютона записывается в виде

Таким образом, тангенциальное ускорение маятника пропорционально его смещению , взятому с обратным знаком. Это как раз то условие, при котором система является гармоническим осциллятором. По общему правилу для всех систем, способных совершать свободные гармонические колебания, модуль коэффициента пропорциональности между ускорением и смещением из положения равновесия равен квадрату круговой частоты:

Эта формула выражает собственную частоту малых колебаний математического маятника .

Любое тело, насаженное на горизонтальную ось вращения, способно совершать в поле тяготения свободные колебания и, следовательно, также является маятником. Такой маятник принято называть физическим (рис. 2.3.2). Он отличается от математического только распределением масс. В положении устойчивого равновесия центр масс физического маятника находится ниже оси вращения на вертикали, проходящей через ось. При отклонении маятника на угол возникает момент силы тяжести, стремящийся возвратить маятник в положение равновесия:

.

Здесь – расстояние между осью вращения и центром масс .

Здесь – собственная частота малых колебаний физического маятника .

Более строгий вывод формул для и можно сделать, если принять во внимание математическую связь между угловым ускорением и угловым смещением: угловое ускорение есть вторая производная углового смещения по времени:

Поэтому уравнение, выражающее второй закон Ньютона для физического маятника, можно записать в виде

Это уравнение свободных гармонических колебаний (см. уравнение (*) §2.2). Коэффициент в этом уравнении имеет смысл квадрата круговой частоты свободных гармонических колебаний физического маятника.

По теореме о параллельном переносе оси вращения (теорема Штейнера) момент инерции можно выразить через момент инерции относительно оси, проходящей через центр масс маятника и параллельной оси вращения:

.

Окончательно для круговой частоты свободных колебаний физического маятника получается выражение:

Читайте также: