Благодаря какой части спектра солнечного излучения у растений осуществляется фотосинтез кратко

Обновлено: 05.07.2024

Всё живое на Земле зависит от фотосинтеза, он снабжает растения и животных энергией и углеродом, обеспечивает выделение кислорода в атмосферу. Растения поглощают около 1% падающей на Землю солнечной энергии, связывают углекислый газ атмосферы, а также и воду, превращая их в 150 млрд т сухого органического топлива в год (около 1 кг/м 2 ). Часть этого органического вещества поедается травоядными животными, которыми питаются хищные животные и человек. Растительные и животные остатки разлагаются бактериями и грибами до уровня исходных неорганических веществ. Затем этот круговорот замыкается: энергия солнечного излучения, поглощённая растениями, переходит в тепло и излучается Землёй в космическое пространство. Можно сказать, что жизнь на Земле есть процесс поглощения солнечного света.

Важнейшей особенностью процесса фотосинтеза является его протекание с использованием энергии солнечного света. Лучистая энергия – это энергия электромагнитных колебаний, которая характеризуется определённой длиной волны , частотой колебаний и скоростью распространения c – скоростью света, равной 3 · 10 8 м/с. Эти величины связаны между собой следующим образом: Е = c/. Собственно свет, или область электромагнитных колебаний, воспринимаемая человеческим глазом, лежит в диапазоне длин волн 400–700 нм. Более короткие волны характерны для ультрафиолетовых (УФ) лучей, а более длинные – для инфракрасных (ИК). Окраска видимого света зависит от длины волны. Обладая волновыми свойствами, свет проявляет и корпускулярные свойства. Лучистая энергия излучается и распространяется в виде дискретных единиц – квантов, или фотонов. Квант света обладает энергией E = h = h·c/, где h – постоянная Планка. Из этой формулы ясно, что величина энергии квантов для разных участков спектра различна: чем короче длина волны, тем она больше:

2. Значение отдельных участков солнечного спектра для фотосинтеза

Согласно первому закону фотохимии, только поглощённые лучи могут быть использованы в химических реакциях. В том случае, если реагирующие молекулы бесцветны и не поглощают свет, фотохимические реакции могут идти только в присутствии специальных веществ – фотосенсибилизаторов. Фотосенсибилизаторы – вещества, поглощающие энергию света и передающие её той или иной бесцветной молекуле.

Положение о том, что в процессе фотосинтеза могут быть использованы только поглощённые лучи, впервые получило экспериментальное подтверждение в опытах К.А.Тимирязева. До этого господствовало ошибочное представление, что наибольшее значение в процессе фотосинтеза имеют жёлтые лучи солнечного спектра, которые хлорофиллом не поглощаются. К.А.Тимирязев показал, что процесс усвоения CO2 на свету представляет собой фотохимический процесс и подчиняется законам фотохимии, что процесс фотосинтеза проходит именно в тех лучах, которые поглощаются хлорофиллом. Хлорофилл является оптическим сенсибилизатором, поглощающим энергию света.

Наиболее интенсивное усвоение углекислого газа наблюдается в красных лучах. Затем, в направлении зелёной части спектра процесс фотосинтеза постепенно ослабевает, зелёные лучи хлорофиллом почти не поглощаются. В сине-фиолетовой части спектра наблюдается второй подъём интенсивности фотосинтеза. Таким образом, кривая интенсивности фотосинтеза имеет два максимума соответственно двум максимумам поглощения хлорофилла. Интенсивность процесса фотосинтеза в различных участках спектра получила название спектра действия.

II. Экспериментальная часть

1. Цель: 1) выявить влияние световых волн разной длины на прорастание семян злаковых растений; 2) выявить влияние световых волн разной длины на интенсивность фотосинтеза в листьях растений.

Оборудование: четыре ёмкости с землёй; семена злаковых растений; штатив с укреплённой на нём люминесцентной лампой; световые фильтры (по 4 штуки сине-фиолетового, зелёного и оранжево-красного цветов); контейнер; сушильный шкаф; фарфоровые чашечки.

1-й этап выполнение работы

• 08.01.07 в четыре ёмкости с землёй были посеяны семена одинаковой злаковой культуры – овса.

• После посадки и первого полива три ёмкости поместили в контейнер под светофильтры разных цветов. Одна ёмкость – контрольная, семена в ней прорастали при естественном освещении.

• С этого дня полив осуществлялся регулярно.

• 10.01.07 появились первые всходы в ёмкости под сине-фиолетовым светофильтром.

• Почти одновременно с ними, через несколько часов, появились всходы под оранжево-красным светофильтром.

• Через два дня, 12 января, появились всходы под зелёным светофильтром.

• И последними, 13 января, проросли семена в контрольной ёмкости.

2-й этап выполнения работы

• 18.01.07 и 25.01.07 были произведены срезы листьев растений и замеры площади и сырой массы срезанных листьев (см. таблицу).

• Для определения сухой массы растения были помещены в сушильный шкаф в фарфоровых чашечках на один час.

• После сушки растения были взвешены на весах (см. таблицу внизу).

2. Методика работы

• Определение площади листа. Метод основан на сопоставлении листа с некоторой простой геометрической фигурой, достаточно хорошо совпадающей с его конфигурацией. Лист вписывают в соответствующую фигуру так, чтобы основные параметры были общими. Так, листья злаков легко вписываются в вытянутый прямоугольник. Измеряя длину a и ширину b такого прямоугольника, находят его площадь: S = a · b.

где B1 и B2 – сухая масса растений в начале и конце учётного периода; (B2 – B1) – прирост сухой массы в течение n дней между двумя последовательными сроками наблюдений; Л1 и Л2 – площадь листьев в начале и в конце периода, м 2 ; 0,5 (Л1 + Л2) – средняя работавшая площадь листьев за время опыта.

• Показатели чистой продуктивности фотосинтеза в природных условиях обычно колеблются от 0,1 до 20 г (и более) сухого вещества на 1 м 2 в сутки: у злаков в фазе интенсивного роста 40–50 г/ (м 2 · сут.), у основных сельскохозяйственных культур 4–10 г/ (м 2 · сут.).

3. Выводы на основе наблюдений

1. Площадь листьев быстрее нарастает у растений, находящихся под оранжево-красным и сине-фиолетовым светофильтрами.

2. ЧПФ имеет два пика: при красном (37,37 г/м 2 ) и при сине-фиолетовом (26,3 г/м 2 ) облучениях.

3. ЧПФ минимальна при зелёном облучении, т.к. зелёные световые лучи не поглощаются хлорофиллом, а отражаются от него.

III. Значение фотосинтеза в продукционном процессе. Фотосинтез и урожай

Чтобы перейти от массы усвоенного углекислого газа к сухому веществу, необходимо ввести коэффициент 0,64 (1 г усвоенного CO2 соответствует 0,64 г углеводов). Однако не всё образовавшееся сухое вещество накапливается. Частично оно расходуется в процессе дыхания, теряется при опадении отдельных органов, а также при экзосмосе, – эти потери составляют 25–30%. Вместе с тем определённое количество веществ поступает через корневую систему (5–10% от общей массы растения). В итоге можно считать Кэф = 0,5.

Следовательно, общее накопление сухой массы растений зависит от интенсивности фотосинтеза, коэффициента эффективности (куда входит трата на процесс дыхания), размера листовой пластины и суммы дней вегетационного периода.

Как видно из приведённых уравнений, накопление сухой массы зависит не только от площади листьев, но и от интенсивности фотосинтеза. Расчёты показывают, что интенсивность фотосинтеза может достигать 100 мг CO2/(дм 2 · ч), а обычно составляет 10–15 мг CO2/(дм 2 · ч). Необходимо учесть, что в агрономической практике важен не столько биологический, сколько хозяйственный урожай. Хозяйственный урожай – это доля полезного продукта, ради которой возделывают данное растение (зерно, корнеплоды, волокно и т.д.): Ухоз = Убиол · Кхоз. Коэффициент Кхоз может колебаться от 50% для сахарной свёклы до 1% для волокна хлопчатника, а также значительно изменяться и для одного и того же растения.

В большей степени биологический, а следовательно, и хозяйственный урожай зависят от площади листьев. Необходимо добиваться быстрого развития листовой поверхности в начале вегетационного периода. Однако при чрезмерном развитии листьев они затеняют друг друга, их работоспособность уменьшается. Могут быть даже случаи, когда листья из снабжающих органов становится потребляющими. Вместе с тем лист – это не только орган фотосинтеза, но и орган транспирации. Следовательно, чем больше площадь листьев, тем больше растение теряет воды в процессе испарения.

КПД фотосинтеза в естественных условиях ничтожно мал. Для его повышения очень важно уменьшать затраты солнечной энергии на транспирацию. В частности, это может быть достигнуто улучшением условий корневого питания.

Наконец, для получения наибольшего хозяйственного урожая большое значение имеет повышение Кхоз, иначе говоря, увеличение доли полезного продукта в урожае. Это может быть достигнуто прежде всего путём изменения направления оттока ассимилянтов из листьев и связанной с этим различной скоростью роста отдельных органов. В этом отношении существенную роль должно сыграть умелое применение регуляторов роста – фитогормонов. Важно также, чтобы в конце вегетационного периода питательные вещества как можно полнее использовались на формирование хозяйственно ценных органов. В связи с этим могут быть полезны все приёмы, которые усиливают отток ассимилянтов и даже отмирание листа в конце вегетационного периода

Наконец, большую роль играет селекционный отбор растений. В настоящее время показана возможность отбора сортов сельскохозяйственных растений, характеризующихся более высокой интенсивностью как световых, так и темновых реакций.

Подводя итоги, можно сказать, что, отмечая важность фотосинтеза в продукционном процессе, необходимо учитывать его связь с процессами роста, развития, дыхания, водного и минерального питания.

Грин Н., Стаут У., Тейлор Д. Биология: В 3 томах. Пер. с англ. /Под ред. Р.Сопера – 2-е издание. – М: Мир , 1996.

Дубнищева Т.Я. Концепции современного естествознания. – Новосибирск: ООО ЮКЭА, 1997.

Практикум по физиологии растений: Под ред. Н.Н.Третьякова. – М.: Колос, 1982.

Якушкина Н.Н., Бахтенко Е.Ю. Физиология растений: Учеб. для студентов вузов. – М: Владос, 2005.

Евдокия Панкратова получила аттестат с отличием по окончании основной школы, сейчас учится в 10-м классе естественно-математического профиля. Участвовала в прошлом учебном году в пяти олимпиадах и на четырёх заняла 1-е место, а на одной – 2-е. В нынешнем учебном году из пяти олимпиад выиграла четыре, на одной заняла 3-е место. Стипендиат Главы г. Лобни за 2007 г. Собирается поступать в медицинский институт.

Среда обитания – это часть природы, окружающая живые организмы и оказывающая на них прямое или косвенное воздействие.

2. Какие факторы относят к факторам неживой природы?

В процессе исторического развития организмы приспосабливаются к определённому комплексу абиотических факторов, которые становятся обязательными условиями их существования. При этом в процессе жизнедеятельности организмы сами участвуют в формировании абиотической (неживой) среды. В ходе фотосинтеза растения поглощают углекислый газ и выделяют в атмосферу кислород, животные-фильтраторы очищают воду, зелёные насаждения препятствуют эрозии почвы, а растения из семейства бобовых обогащают почву азотом – подобных примеров можно приводить множество.

Стр. 136 – 137. Вопросы для повторения и задания.

1. Какие приспособления к изменениям температуры окружающей среды существуют у растений и животных?

Хорошо выдерживают температурные перепады покоящиеся стадии организмов – цисты, куколки насекомых, семена растений. Споры некоторых бактерий способны переносить колебания температур от -273 до +140 oС. Теплокровные животные – птицы и млекопитающие – поддерживают постоянную температуру тела при помощи высокого уровня обмена веществ, совершенной терморегуляции и хорошей теплоизоляции. К примеру, некоторые китообразные и ластоногие, благодаря наличию толстого слоя подкожного жира, живут в северных морях, где температура воды постоянно около 0 oС. На зиму многие млекопитающие отращивают более плотный мех, часть из них (например, сурки) впадают в спячку. У птиц увеличивается масса перьев, многие виды мигрируют в более теплые зоны. Способны организмы защитить себя и от повышенных температур. Днем в пустыне температура превышает 60 oС, поэтому многие животные прячутся в норах и выходят на поверхность лишь в ночное время. В жару растения увеличивают испарение с поверхности листьев. У многих млекопитающих защитой от перегрева служит активное выделение пота. Наиболее впечатляющим примером адаптации к высоким температурам являются водоросли и бактерии горячих источников, где температура воды превышает 70 oС. Благодаря особой структуре их белки способны противостоять денатурации.

2. Расскажите о приспособлениях живых организмов к недостатку воды.

Вода – необходимый компонент клетки, поэтому ее количество в том или ином местообитании определяет характер растительности и животного мира в данной местности. В некоторой зависимости от количества воды в окружающей среде находится и содержание ее в теле растений и животных и их устойчивость к высыханию.

Засухоустойчивые растения (верблюжья колючка, саксаул, пустынная полынь) обладают очень длинной, уходящей в глубину на 10 и более метров корневой системой. Их листья обычно узкие и жесткие, с восковым налетом на поверхности, что снижает потери воды при испарении. У некоторых растений (кактусы, молочаи) образуется толстый стебель с хорошо развитой фотосинтезирующей и водозапасающей тканью, а листья превращаются в колючки или чешуйки. Ряд трав успевает вырасти и отцвести за влажный весенний период, а затем переживает засуху в состоянии семян, луковиц, клубней. В жаркий день листья некоторых растений могут поворачиваться к падающим лучам солнца "ребром", например, как это происходит у дикого салата (отрицательный гелиотропизм). Эвкалипт для снижения транспирации тоже поворачивает листья ребром к солнцу. Такая ориентация пластинок защищает организм от чрезмерной потери воды и перегрева. Многие животные также хорошо приспособлены к условиям пониженной влажности. Часть из них никогда не пьет, используя метаболическую воду и воду из пищи. Членистоногих защищает от испарения плотный хитиновый панцирь, а пресмыкающихся – ороговевшие покровы, утратившие кожные железы. Продуктом выделения у многих животных является практически безводная мочевая кислота. Существует и множество поведенческих адаптации: ночной образ жизни, спячка в засушливый период и т.д.

3. Благодаря какой части спектра солнечного излучения у растений осуществляется фотосинтез?

Для осуществления фотосинтеза растения используют видимую часть спектра. При этом водоросли и высшие растения, обладающие зеленым светочувствительным пигментом (хлорофиллом), более эффективно используют крайние участки спектра – красно-оранжевый и сине-фиолетовый. Зеленый цвет листьев обусловлен тем, что именно эту составляющую солнечного излучения хлорофилл поглощает слабее (а значит, сильнее отражает). Бурые и красные водоросли, обладающие несколько иными светочувствительными пигментами, настроены преимущественно на сине-зеленую часть спектра.

4. Расскажите, что вам известно о биологических ритмах живых организмов.

Поведенческая и физиологическая активность очень многих организмов характеризуется ритмичностью: дыхание и сердцебиение, деятельность, синхронная с приливами и отливами (т.е. с фазами луны), и т.д. Наиболее распространенный фактор, определяющий биологические ритмы, – это освещенность, которая меняется в течение суток и сезонно. Растения и животные реагируют на соотношение между продолжительностью периода освещенности и темноты в течение суток или времени года. Это явление называется фотопериодизмом. Фотопериодизм регулирует суточные и сезонные ритмы жизнедеятельности организмов, а также представляет собой климатический фактор, который определяет жизненные циклы многих видов. У растений фотопериодизм проявляется в синхронизации периода цветения и созревания плодов с периодом наиболее активного фотосинтеза; у животных – в совпадении периода размножения с обилием пищи, в миграциях птиц, смене шерстного покрова у млекопитающих, впадении в спячку, изменениях в поведении и т.д. Многие цветы открываются и закрываются в определенное время; животные также организуют свой распорядок дня в зависимости от освещенности (дневная либо ночная активность). Целый ряд биохимических и физиологических процессов в организме человека изменяется с ритмом в 24 часа (сон и бодрствование, температура тела, артериальное давление, выделение гормонов). Для сезонных ритмов определяющей является длина светового дня. От нее зависят сроки цветения и созревания плодов, а также начало листопада у растений, миграция птиц, смена шерстного покрова у млекопитающих, начало брачного сезона, подготовка к спячке и т.д.

Подумайте и выполните.

1. Какие климатические условия и почва характерны для вашего региона?

Климат Урала переходит от умеренно-континентального к континентальному. Континентальность повышается при движении с запада на восток и с севера на юг. Огромная протяженность Урала с севера на юг проявляется в зональной смене типов его климата (Северные и южные районы имеют разные циркуляционные и радиационные режимы). Север лежит в субарктике; юг – в центральных аридных областях. Контрасты между севером и югом усиливаются летом. Средняя температура июля на севере 60С – 80С, на юге – 220С; 240С. Зимой контрасты температур сглаживаются -220С;-200С на севере; -150С на юге. Урал пересекают следующие почвенно-растительные зоны: тундра, лесотундра, лесная, лесостепная, степная, полупустынная. Зональность здесь горно-широтная (отличается смещением почвенно-растительных зон к югу). В предгорьях сказывается барьерная роль Урала (на Южном Урале вместо степных и южнолесостепных ландшафтов распространены лесные и северолесостепные). Горные почвы Урала всех типов обладают общими чертами: 1. Они не имеют сплошного распространения, а прерываются скалистыми выступами и курумами; 2. Имеют укороченный профиль и большую насыщенность обломочным материалом. Имеются значительные различия в почвенном покрове при движении с запада на восток (состав горных пород).

2. Как вы думаете, почему при постоянном направленном изменении абиотических условий среды приспособление живых организмов к этим изменениям не может быть бесконечным?

Абиотичeскиe – знaчит нeподходящиe для жизни, a со врeмeнeм свои рeсурсы исчeрпaются, окружaющиe условия могут измeнится, a приспособлeния к ним нe окaжeтся.

3. Почему на птицефермах и в тепличном хозяйстве применяют дополнительное искусственное освещение, увеличивающее длину светового дня?

На птицефермах используется дополнительное искусственное освещение для увеличения производительности продукции. Птица, живущая в естественных условиях, очень чувствительна к сезонным изменениям окружающей среды. Осенью и зимой световой период довольно короткий, из-за чего куры практически перестают нестись. Их обманывают, чтобы те давали больше яиц, искусственно увеличивая длину светового дня.


Спектр солнечного излучения и фотосинтез

Благодаря какой части спектра солнечного излучения у растений осуществляется фотосинтез?

Для осуществления фотосинтеза растения используют видимую часть спектра. При этом водоросли и высшие растения, обладающие зеленым светочувствительным пигментом (хлорофиллом), более эффективно используют крайние участки спектра — красно-оранжевый и сине-фиолетовый. Зеленый цвет листьев обусловлен тем, что именно эту составляющую солнечного излучения хлорофилл поглощает слабее (а значит, сильнее отражает). Бурые и красные водоросли, обладающие несколько иными светочувствительными пигментами, настроены преимущественно на сине-зеленую часть спектра.

Оглянитесь вокруг! Пожалуй, в каждом доме есть хотя бы одно зеленое растение, а за окном несколько деревьев или кустарников. Благодаря сложному химическом процессу происходящего в них фотосинтеза стало возможно зарождение жизни на Земле и существование человека. Разберем историю его открытия, суть процесса и реакции, которые протекают в разных фазах.

История открытия фотосинтеза

В настоящее время школьники впервые знакомятся со сложными процессами фотосинтеза уже в 6 классе.

Первым и очевидным ответом было предположение, что из земли. Однако, в далеком 1600 году фламандский ученый Ян Батист ван Гельмонт решил проверить влияние почвы на рост растений и провел уникальный в своей простоте опыт. Естествоиспытатель взял веточку ивы и бочку с почвой. Предварительно их взвесил. А затем посадил отросток ивы в бочку с почвой.

Долгие пять лет ван Гельмонт поливал молодое деревце лишь дождевой водой. А через пять лет выкопал деревце, и вновь взвесил отдельно деревце и отдельно почву. Каково же было его удивление, когда весы показали, что деревце увеличило свой вес практически в тридцать раз, и совсем не походило на тот скромный прутик, что был посажен в кадку. А вес почвы уменьшился всего на 56 граммов.

Ученый сделал вывод. что почва практически не дает строительного материала растениям, а все необходимые вещества растение получает из воды.

Одним из тех, кто попытался возразить этой теории был М.В. Ломоносов. И строил он свои возражения на том, что на пустых, скудных северных землях с редкими дождями растут высокие, мощные деревья. Михаил Васильевич предположил, что часть питательных веществ растения впитывают через листья, но доказать свою теорию экспериментально он не смог.

И как часто бывает в науке, помог его величество случай.

Однажды нерадивая мышь, решившая поживиться церковными запасами, случайно перевернула банку и оказалась в ловушке. И через некоторое время погибла. К нашей удаче, эту мышь в банке обнаружил Джозеф Пристли, который был не просто священником, а по совместительству ученым-химиком, и очень интересовался химией газов и способами очистки испорченного воздуха. И тут церковным мышам не повезло. Они стали участницами различных опытов английского ученого.

Джозеф Пристли ставил под одну банку горящую свечу, а в другую сажал мышь. Свеча тухла, грызун погибал.

В наше время его самого зоозащитники посадили бы в банку, но в далеком 1771 году ученому никто не помешал продолжить свои опыты. Пристли посадил мышь в банку, где до этого потухла свеча. Животное погибло еще быстрее.

И тогда Пристли сделал вывод, что раз все живое на Земле до сих пор не погибло, Бог (мы же помним, что Пристли был священником), придумал некий процесс, чтобы воздух вновь был пригоден для жизни. И скорее всего, основная роль в нем принадлежит растениям.

Чтобы доказать это, ученый взял воздух из банки где погибла мышь, и разделил его на две части. В одну банку он поставил мяту в горшочке. А другая банка ждала своего часа. Через 8 дней растение не только не погибло, а даже выпустило несколько новых побегов. И он опять посадил грызунов в банки. В той, где росла мята — мышь была бодра и закусывала листиками. А в той, где мяты не было — практически моментально лежала дохлая мышиная тушка.

Рисунок 1

Опыты Пристли вдохновили ученых, и во всем мире начали отлавливать мелких грызунов и пытаться повторить его эксперименты.

Но мы же помним, что Пристли был священником и весь день, до вечерней службы мог заниматься исследованиями.

А Карл Шееле, аптекарь из Швейцарии, экспериментировал в домашней лаборатории в свободное от работы время, т.е. по ночам, и мыши дохли у него независимо от присутствия мяты в банке. В результате его экспериментов получалось, что растения не улучшают воздух, а делают его непригодным для жизни. И Шееле обвинил Пристли в обмане научной общественности. Пристли не уступил, и в результате противостояния ученых было установлено, что для восстановления воздуха растениям необходим солнечный свет.

Именно эти опыты положили начало изучению фотосинтеза.

Исследование фотосинтеза стремительно продолжалось. Уже в 1782 году, спустя всего лишь 11 лет после исследований Пристли, швейцарский ботаник Жан Сенебье доказал, что органоиды растений разлагают углекислый газ в присутствии солнечного света. И практически еще сто лет провальных и удачных экспериментов понадобилась ученым разных специальностей, чтобы в 1864 году немецкий ученый Юлиус Сакс смог доказать, что растения потребляют углекислый газ и выделяют кислород в соотношении 1:1.

Биология. 6 класс. Рабочая тетрадь №1.

Значение фотосинтеза для жизни на Земле

И теперь становится понятна важность процесса фотосинтеза для жизни на земле. Именно благодаря этому сложному химическом процессу стало возможно зарождение жизни на земле и существование человека.

Кто-то может возразить, что на Земле есть места, где не растут ни деревья ни кустарники, например, пустыни или Арктические льды. Ученые доказали, что доля кислорода, выделяемого зеленой массой лесов, кустарников и трав — т. е. растений, что обитают на поверхности суши, составляет всего около 20% газообмена, а 80% кислорода приходится на мельчайшие морские и океанские водоросли, которые потоками воздуха переносятся по всей планете, позволяя дышать животным в экстремальных, практически лишенных растительности регионах нашей удивительной планеты.

Благодаря фотосинтезу вокруг нашей планеты сформировался защитный озоновый экран, защищающий все живое на земле от космической и солнечной радиации, и живые организмы смогли выйти на сушу из глубин океана.

К сожалению, в настоящее время кислород потребляют не только живые существа, но и промышленность. Уничтожаются тропические леса, загрязняются океаны, что приводит к снижению газообмена и увеличению дефицита кислорода.

Определение и формула фотосинтеза

Определение и формула фотосинтеза

Схема фотосинтеза, на первый взгляд, проста:

Вода + квант света + углекислый газ → кислород + углевод

или (на языке формул):

Если копнуть поглубже и посмотреть на лист в электронный микроскоп, выяснится удивительная вещь: вода и углекислый газ ни в одной из структурных частей листа непосредственно друг с другом не взаимодействуют.

Фазы фотосинтеза

К фотосинтезу способны не только растения, но и многие одноклеточные животные благодаря специальным органоидам, которые называются хлоропласты.

Хлоропласты — это пластиды зеленого цвета фотосинтезирующих эукариот. В состав хлоропластов входят:

  1. две мембраны;
  2. стопки гранов;
  3. диски тилакоидов;
  4. строма — внутреннее вещество хлоропласта;
  5. люмен — внутреннее вещество тилакоида.

Сложный процесс фотосинтеза состоит из двух фаз: световой и темновой. Как понятно из названия, световая (светозависимая) фаза происходит с участием квантов света. Название темновая фаза вовсе не означает, что процесс происходит в темноте. Более точное определение — светонезависимая. Т.е. для реакций, происходящих в этой этой фазе, свет не нужен, а протекает она одновременно со световой, только в других отделах хлоропласта.

Многие делают ошибку, говоря, что в процессе фотосинтеза происходит производство растениями такого необходимого человечеству кислорода. На самом деле фотосинтез — это синтез углеводов (например, глюкозы), а кислород — лишь побочный продукт реакции.

Световая фаза фотосинтеза

Световая фаза фотосинтеза происходит на мембранах тилакоидов. Фотон света, попадая на хлорофилл, возбуждает его и происходит выделение электронов и скопление отрицательно заряженных электронов на мембране. После того, как хлорофилл потерял все свои электроны, квант света продолжает воздействовать на воду, вызывая фотолиз Н2О.

Положительно заряженные протоны водорода накапливаются на внутренней мембране тилакоида.

Получается такой бутерброд: с одной стороны отрицательно заряженные электроны хлорофилла, с другой – положительно заряженные протоны водорода, а между ними – внутренняя мембрана тилакоида.

Гидроксильные ионы идут на производство кислорода:

Когда количество протонов водорода и электронов достигает максимума, запускается специальный переносчик — АТФ-синтаза. АТФ-синтаза выталкивает протоны водорода в строму, где их подхватывает специальный переносчик никотинамиддинуклеотидфосфат или сокращенно НАДФ. НАДФ — специфический переносчик протонов водорода в реакциях углеводов.

Прохождение протонов водорода через АТФ-синтазу сопровождается синтезом молекул АТФ из АДФ и фосфата или фотофосфорилированием, в отличие от окислительного фосфорилирования.

На этом световая фаза фотосинтеза заканчивается, а НАДФН+ и АТФ переходят в темновую фазу.

Повторим ключевые процессы световой фазы фотосинтеза:

  1. Фотон попадает на хлорофилл с выделением электронов.
  2. Фотолиз воды.
  3. Выделение кислорода.
  4. Накопление НАДФН+.
  5. Накопление АТФ.

Всё живое на Земле зависит от фотосинтеза, он снабжает растения и животных энергией и углеродом, обеспечивает выделение кислорода в атмосферу. Растения поглощают около 1% падающей на Землю солнечной энергии, связывают углекислый газ атмосферы, а также и воду, превращая их в 150 млрд т сухого органического топлива в год (около 1 кг/м 2 ). Часть этого органического вещества поедается травоядными животными, которыми питаются хищные животные и человек. Растительные и животные остатки разлагаются бактериями и грибами до уровня исходных неорганических веществ. Затем этот круговорот замыкается: энергия солнечного излучения, поглощённая растениями, переходит в тепло и излучается Землёй в космическое пространство. Можно сказать, что жизнь на Земле есть процесс поглощения солнечного света.

Важнейшей особенностью процесса фотосинтеза является его протекание с использованием энергии солнечного света. Лучистая энергия – это энергия электромагнитных колебаний, которая характеризуется определённой длиной волны , частотой колебаний и скоростью распространения c – скоростью света, равной 3 · 10 8 м/с. Эти величины связаны между собой следующим образом: Е = c/. Собственно свет, или область электромагнитных колебаний, воспринимаемая человеческим глазом, лежит в диапазоне длин волн 400–700 нм. Более короткие волны характерны для ультрафиолетовых (УФ) лучей, а более длинные – для инфракрасных (ИК). Окраска видимого света зависит от длины волны. Обладая волновыми свойствами, свет проявляет и корпускулярные свойства. Лучистая энергия излучается и распространяется в виде дискретных единиц – квантов, или фотонов. Квант света обладает энергией E = h = h·c/, где h – постоянная Планка. Из этой формулы ясно, что величина энергии квантов для разных участков спектра различна: чем короче длина волны, тем она больше:

2. Значение отдельных участков солнечного спектра для фотосинтеза

Согласно первому закону фотохимии, только поглощённые лучи могут быть использованы в химических реакциях. В том случае, если реагирующие молекулы бесцветны и не поглощают свет, фотохимические реакции могут идти только в присутствии специальных веществ – фотосенсибилизаторов. Фотосенсибилизаторы – вещества, поглощающие энергию света и передающие её той или иной бесцветной молекуле.

Положение о том, что в процессе фотосинтеза могут быть использованы только поглощённые лучи, впервые получило экспериментальное подтверждение в опытах К.А.Тимирязева. До этого господствовало ошибочное представление, что наибольшее значение в процессе фотосинтеза имеют жёлтые лучи солнечного спектра, которые хлорофиллом не поглощаются. К.А.Тимирязев показал, что процесс усвоения CO2 на свету представляет собой фотохимический процесс и подчиняется законам фотохимии, что процесс фотосинтеза проходит именно в тех лучах, которые поглощаются хлорофиллом. Хлорофилл является оптическим сенсибилизатором, поглощающим энергию света.

Наиболее интенсивное усвоение углекислого газа наблюдается в красных лучах. Затем, в направлении зелёной части спектра процесс фотосинтеза постепенно ослабевает, зелёные лучи хлорофиллом почти не поглощаются. В сине-фиолетовой части спектра наблюдается второй подъём интенсивности фотосинтеза. Таким образом, кривая интенсивности фотосинтеза имеет два максимума соответственно двум максимумам поглощения хлорофилла. Интенсивность процесса фотосинтеза в различных участках спектра получила название спектра действия.

II. Экспериментальная часть

1. Цель: 1) выявить влияние световых волн разной длины на прорастание семян злаковых растений; 2) выявить влияние световых волн разной длины на интенсивность фотосинтеза в листьях растений.

Оборудование: четыре ёмкости с землёй; семена злаковых растений; штатив с укреплённой на нём люминесцентной лампой; световые фильтры (по 4 штуки сине-фиолетового, зелёного и оранжево-красного цветов); контейнер; сушильный шкаф; фарфоровые чашечки.

1-й этап выполнение работы

• 08.01.07 в четыре ёмкости с землёй были посеяны семена одинаковой злаковой культуры – овса.

• После посадки и первого полива три ёмкости поместили в контейнер под светофильтры разных цветов. Одна ёмкость – контрольная, семена в ней прорастали при естественном освещении.

• С этого дня полив осуществлялся регулярно.

• 10.01.07 появились первые всходы в ёмкости под сине-фиолетовым светофильтром.

• Почти одновременно с ними, через несколько часов, появились всходы под оранжево-красным светофильтром.

• Через два дня, 12 января, появились всходы под зелёным светофильтром.

• И последними, 13 января, проросли семена в контрольной ёмкости.

2-й этап выполнения работы

• 18.01.07 и 25.01.07 были произведены срезы листьев растений и замеры площади и сырой массы срезанных листьев (см. таблицу).

• Для определения сухой массы растения были помещены в сушильный шкаф в фарфоровых чашечках на один час.

• После сушки растения были взвешены на весах (см. таблицу внизу).

2. Методика работы

• Определение площади листа. Метод основан на сопоставлении листа с некоторой простой геометрической фигурой, достаточно хорошо совпадающей с его конфигурацией. Лист вписывают в соответствующую фигуру так, чтобы основные параметры были общими. Так, листья злаков легко вписываются в вытянутый прямоугольник. Измеряя длину a и ширину b такого прямоугольника, находят его площадь: S = a · b.

где B1 и B2 – сухая масса растений в начале и конце учётного периода; (B2 – B1) – прирост сухой массы в течение n дней между двумя последовательными сроками наблюдений; Л1 и Л2 – площадь листьев в начале и в конце периода, м 2 ; 0,5 (Л1 + Л2) – средняя работавшая площадь листьев за время опыта.

• Показатели чистой продуктивности фотосинтеза в природных условиях обычно колеблются от 0,1 до 20 г (и более) сухого вещества на 1 м 2 в сутки: у злаков в фазе интенсивного роста 40–50 г/ (м 2 · сут.), у основных сельскохозяйственных культур 4–10 г/ (м 2 · сут.).

3. Выводы на основе наблюдений

1. Площадь листьев быстрее нарастает у растений, находящихся под оранжево-красным и сине-фиолетовым светофильтрами.

2. ЧПФ имеет два пика: при красном (37,37 г/м 2 ) и при сине-фиолетовом (26,3 г/м 2 ) облучениях.

3. ЧПФ минимальна при зелёном облучении, т.к. зелёные световые лучи не поглощаются хлорофиллом, а отражаются от него.

III. Значение фотосинтеза в продукционном процессе. Фотосинтез и урожай

Чтобы перейти от массы усвоенного углекислого газа к сухому веществу, необходимо ввести коэффициент 0,64 (1 г усвоенного CO2 соответствует 0,64 г углеводов). Однако не всё образовавшееся сухое вещество накапливается. Частично оно расходуется в процессе дыхания, теряется при опадении отдельных органов, а также при экзосмосе, – эти потери составляют 25–30%. Вместе с тем определённое количество веществ поступает через корневую систему (5–10% от общей массы растения). В итоге можно считать Кэф = 0,5.

Следовательно, общее накопление сухой массы растений зависит от интенсивности фотосинтеза, коэффициента эффективности (куда входит трата на процесс дыхания), размера листовой пластины и суммы дней вегетационного периода.

Как видно из приведённых уравнений, накопление сухой массы зависит не только от площади листьев, но и от интенсивности фотосинтеза. Расчёты показывают, что интенсивность фотосинтеза может достигать 100 мг CO2/(дм 2 · ч), а обычно составляет 10–15 мг CO2/(дм 2 · ч). Необходимо учесть, что в агрономической практике важен не столько биологический, сколько хозяйственный урожай. Хозяйственный урожай – это доля полезного продукта, ради которой возделывают данное растение (зерно, корнеплоды, волокно и т.д.): Ухоз = Убиол · Кхоз. Коэффициент Кхоз может колебаться от 50% для сахарной свёклы до 1% для волокна хлопчатника, а также значительно изменяться и для одного и того же растения.

В большей степени биологический, а следовательно, и хозяйственный урожай зависят от площади листьев. Необходимо добиваться быстрого развития листовой поверхности в начале вегетационного периода. Однако при чрезмерном развитии листьев они затеняют друг друга, их работоспособность уменьшается. Могут быть даже случаи, когда листья из снабжающих органов становится потребляющими. Вместе с тем лист – это не только орган фотосинтеза, но и орган транспирации. Следовательно, чем больше площадь листьев, тем больше растение теряет воды в процессе испарения.

КПД фотосинтеза в естественных условиях ничтожно мал. Для его повышения очень важно уменьшать затраты солнечной энергии на транспирацию. В частности, это может быть достигнуто улучшением условий корневого питания.

Наконец, для получения наибольшего хозяйственного урожая большое значение имеет повышение Кхоз, иначе говоря, увеличение доли полезного продукта в урожае. Это может быть достигнуто прежде всего путём изменения направления оттока ассимилянтов из листьев и связанной с этим различной скоростью роста отдельных органов. В этом отношении существенную роль должно сыграть умелое применение регуляторов роста – фитогормонов. Важно также, чтобы в конце вегетационного периода питательные вещества как можно полнее использовались на формирование хозяйственно ценных органов. В связи с этим могут быть полезны все приёмы, которые усиливают отток ассимилянтов и даже отмирание листа в конце вегетационного периода

Наконец, большую роль играет селекционный отбор растений. В настоящее время показана возможность отбора сортов сельскохозяйственных растений, характеризующихся более высокой интенсивностью как световых, так и темновых реакций.

Подводя итоги, можно сказать, что, отмечая важность фотосинтеза в продукционном процессе, необходимо учитывать его связь с процессами роста, развития, дыхания, водного и минерального питания.

Грин Н., Стаут У., Тейлор Д. Биология: В 3 томах. Пер. с англ. /Под ред. Р.Сопера – 2-е издание. – М: Мир , 1996.

Дубнищева Т.Я. Концепции современного естествознания. – Новосибирск: ООО ЮКЭА, 1997.

Практикум по физиологии растений: Под ред. Н.Н.Третьякова. – М.: Колос, 1982.

Якушкина Н.Н., Бахтенко Е.Ю. Физиология растений: Учеб. для студентов вузов. – М: Владос, 2005.

Евдокия Панкратова получила аттестат с отличием по окончании основной школы, сейчас учится в 10-м классе естественно-математического профиля. Участвовала в прошлом учебном году в пяти олимпиадах и на четырёх заняла 1-е место, а на одной – 2-е. В нынешнем учебном году из пяти олимпиад выиграла четыре, на одной заняла 3-е место. Стипендиат Главы г. Лобни за 2007 г. Собирается поступать в медицинский институт.

Читайте также: