За сборку пакетов в единое сообщение отвечает протокол ip netbios ipx tcp

Обновлено: 05.07.2024

1. Лекция - Введение. Адресация. Протоколы (IP, TCP, UDP). Порты.

Официальная документация по Internet

Все разработчики должны придерживаться этой документации, но на практике, не всегда так происходит.

Адресация в сети Internet.

Типы адресов.

Физический (MAC-адрес)

Сетевой (IP-адрес)

Символьный (DNS-имя)

Компьютер в сети TCP/IP может иметь адреса трех уровней (но не менее двух):

Локальный адрес компьютера. Для узлов, входящих в локальные сети - это МАС-адрес сетевого адаптера. Эти адреса назначаются производителями оборудования и являются уникальными адресами.

IP-адрес, состоящий из 4 байт, например, 109.26.17.100. Этот адрес используется на сетевом уровне. Он назначается администратором во время конфигурирования компьютеров и маршрутизаторов.

IPv4 - адрес является уникальным 32-битным идентификатором IP-интерфейса в Интернет.

IP-адреса принято записывать разбивкой всего адреса по октетам (8), каждый октет записывается в виде десятичного числа, числа разделяются точками. Например, адрес


10100000010100010000010110000011
записывается как

Перевод адреса из двоичной системы в десятичную

IP-адрес хоста состоит из номера IP-сети, который занимает старшую область адреса, и номера хоста в этой сети, который занимает младшую часть.

160.81.5. - номер сети

131 - номер хоста

Базовые протоколы (IP, TCP, UDP)

Стек протоколов TCP/IP

TCP/IP - собирательное название для набора (стека) сетевых протоколов разных уровней, используемых в Интернет. Особенности TCP/IP:

Открытые стандарты протоколов, разрабатываемые независимо от программного и аппаратного обеспечения;

Независимость от физической среды передачи;

Система уникальной адресации;

Стандартизованные протоколы высокого уровня для распространенных пользовательских сервисов.

Стек протоколов TCP/IP

Стек протоколов TCP/IP делится на 4 уровня:

Физический и канальный.

Позже была принята 7-ми уровневая модель ISO.

Данные передаются в пакетах. Пакеты имеют заголовок и окончание, которые содержат служебную информацию. Данные, более верхних уровней вставляются, в пакеты нижних уровней.

Пример инкапсуляции пакетов в стеке TCP/IP

Физический и канальный уровень.

Стек TCP/IP не подразумевает использования каких-либо определенных протоколов уровня доступа к среде передачи и физических сред передачи данных. От уровня доступа к среде передачи требуется наличие интерфейса с модулем IP, обеспечивающего передачу IP-пакетов. Также требуется обеспечить преобразование IP-адреса узла сети, на который передается IP-пакет, в MAC-адрес. Часто в качестве уровня доступа к среде передачи могут выступать целые протокольные стеки, тогда говорят об IP поверх ATM, IP поверх IPX, IP поверх X.25 и т.п.

Межсетевой уровень и протокол IP.

Основу этого уровня составляет IP-протокол.

IP (Internet Protocol) – интернет протокол.

Первый стандарт IPv4 определен в RFC-760 (DoD standard Internet Protocol J. Postel Jan-01-1980)

Последняя версия IPv4 - RFC-791 (Internet Protocol J. Postel Sep-01-1981).

Первый стандарт IPv6 определен в RFC-1883 (Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden December 1995)

Последняя версия IPv6 - RFC-2460 (Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden December 1998).

Протокол IP доставляет блоки данных от одного IP-адреса к другому.

Программа, реализующая функции того или иного протокола, часто называется модулем, например, “IP-модуль”, “модуль TCP”.

Когда модуль IP получает IP-пакет с нижнего уровня, он проверяет IP-адрес назначения.

Если IP-пакет адресован данному компьютеру, то данные из него передаются на обработку модулю вышестоящего уровня (какому конкретно - указано в заголовке IP-пакета).

Также может потребоваться, на границе сетей с различными характеристиками, разбить IP-пакет на фрагменты (фрагментация), а потом собрать в единое целое на компьютере-получателе.

Структура дейтограммы IP. Слова по 32 бита.

Версия - версия протокола IP (например, 4 или 6)

Длина заг. - длина заголовка IP-пакета.

Тип сервиса (TOS - type of service) - Тип сервиса (подробнее рассмотрен в лекции 8).

TOS играет важную роль в маршрутизации пакетов. Интернет не гарантирует запрашиваемый TOS, но многие маршрутизаторы учитывают эти запросы при выборе маршрута (протоколы OSPF и IGRP).

Идентификатор дейтаграммы, флаги (3 бита) и указатель фрагмента - используются для распознавания пакетов, образовавшихся путем фрагментации исходного пакета.

Время жизни (TTL - time to live) - каждый маршрутизатор уменьшает его на 1, что бы пакеты не блуждали вечно.

Протокол - Идентификатор протокола верхнего уровня указывает, какому протоколу верхнего уровня принадлежит пакет (например: TCP, UDP).

Коды некоторые протоколов RFC-1700 (1994)

Протокол IP является маршрутизируемый, для его маршрутизации нужна маршрутная информация.

Маршрутная информация, может быть:

Статической (маршрутные таблицы прописываются вручную)

Динамической (маршрутную информацию распространяют специальные протоколы)

Протоколы динамической маршрутизации:

RIP (Routing Information Protocol) - протокол передачи маршрутной информации, маршрутизаторы динамически создают маршрутные таблицы.

OSPF (Open Shortest Path First) - протокол "Открой кротчайший путь первым", является внутренним протоколом маршрутизации.

IGP (Interior Gateway Protocols) - внутренние протоколы маршрутизации, распространяет маршрутную информацию внутри одной автономной системе.

EGP (Exterior Gateway Protocols) - внешние протоколы маршрутизации, распространяет маршрутную информацию между автономными системами.

BGP (Border Gateway Protocol) - протокол граничных маршрутизаторов.

Другие служебные IP-протоколы

IGMP (Internet Group Management Protocol) - позволяет организовать многоадресную рассылку средствами IP.

RSVP (Resource Reservation Protocol) - протокол резервирования ресурсов.

ARP (Address Resolution Protocol) - протокол преобразования IP-адреса и адреса канального уровня.

Транспортный уровень

Протоколы транспортного уровня обеспечивают прозрачную доставку данных между двумя прикладными процессами. Процесс, получающий или отправляющий данные с помощью транспортного уровня, идентифицируется на этом уровне номером, который называется номером порта. Таким образом, роль адреса отправителя и получателя на транспортном уровне выполняет номер порта (или проще - порт).

Анализируя заголовок своего пакета, полученного от межсетевого уровня, транспортный модуль определяет по номеру порта получателя, какому из прикладных процессов направлены данные, и передает эти данные соответствующему прикладному процессу. Номера портов получателя и отправителя записываются в заголовок транспортным модулем, отправляющим данные; заголовок транспортного уровня содержит также и другую служебную информацию; формат заголовка зависит от используемого транспортного протокола.

На транспортном уровне работают два основных протокола: UDP и TCP.

Первая и последняя версия TCP - RFC-793 (Transmission Control Protocol J. Postel Sep-01-1981).

Посылает запрос на следующий пакет, указывая его номер в поле "Номер подтверждения" (AS). Тем самым, подтверждая получение предыдущего пакета.

Делает проверку целостности данных, если пакет битый посылает повторный запрос.

Структура дейтограммы TCP. Слова по 32 бита.

Длина заголовка - задается словами по 32бита.

Размер окна - количество байт, которые готов принять получатель без подтверждения.

Контрольная сумма - включает псевдо заголовок, заголовок и данные.

Указатель срочности - указывает последний байт срочных данных, на которые надо немедленно реагировать.

URG - флаг срочности, включает поле "Указатель срочности", если =0 то поле игнорируется.

ACK - флаг подтверждение, включает поле "Номер подтверждения, если =0 то поле игнорируется.

PSH - флаг требует выполнения операции push, модуль TCP должен срочно передать пакет программе.

RST - флаг прерывания соединения, используется для отказа в соединении

SYN - флаг синхронизация порядковых номеров, используется при установлении соединения.

FIN - флаг окончание передачи со стороны отправителя

UDP (Universal Datagram Protocol) - универсальный протокол передачи данных, более облегченный транспортный протокол, чем TCP.

Основные отличия от TCP:

Отсутствует соединение между модулями UDP.

При потере пакета запрос для повторной передачи не посылается

UDP используется если не требуется гарантированная доставка пакетов , например, для потокового видео и аудио, DNS (т.к. данные небольших размеров). Если проверка контрольной суммы выявила ошибку или если процесса, подключенного к требуемому порту, не существует, пакет игнорируется (уничтожается). Если пакеты поступают быстрее, чем модуль UDP успевает их обрабатывать, то поступающие пакеты также игнорируются.

Структура дейтограммы UDP. Слова по 32 бита.


Не все поля UDP-пакета обязательно должны быть заполнены. Если посылаемая дейтаграмма не предполагает ответа, то на месте адреса отправителя могут помещаться нули.

Протокол реального времени RTP

RTP (Real Time Protocol) - транспортный протокол для приложений реального времени.

RTCP (Real Time Control Protocol) - транспортный протокол обратной связи для приложения RTP..

Назначение портов

По номеру порта транспортные протоколы определяют, какому приложению передать содержимое пакетов.

Порты могут принимать значение от 0-65535 (два байта 2^16).

Некоторые заданные порты RFC-1700 (1994)

Программа Ping

Программа для проверки соединения и работы с удаленным хостом.

Программа TraceRoute - позволяет проверить маршрут до удаленного хоста.

Чтобы двое людей могли разговаривать, они должны владеть одним и тем же языком. Однако им не требуется строго придерживаться грамматике и формальных языковых структур, чтобы понимать друг друга. Для обмена информации между компьютерами все должно быть четко определено и структурировано. Поэтому следует использовать стандарты передачи и обработки различных видов информации. Протоколы установлены международным соглашением и гарантируют обмен информацией между любыми компьютерами в любом месте. Существует множество различных протоколов для различных нужд и типов информации.

IP, ICMP, TCP и UDP

IP (Internet Protocol – интернет протокол) и TCP (Transmission Control Protocol – протокол управления передачей) — это два совершенно различных протокола, которые обычно связывают друг с другом. Часто употребляются комбинации сразу нескольких протоколов, так как функции различных протоколов могут быть совмещены таким образом, чтобы получить решение поставленной задачи. В комбинации каждый протокол выполняет операции на своем уровне.

При передачи информации по интернету, её разбивают на мелкие части – интернет пакеты, которые передаются независимо друг от друга. Это существенно ускоряет передачу информации за счет того, что различные части могут передаваться по разным маршрутам, после чего вновь собираются на месте получения в единое целое. Это также мера предотвращения потери информации в процессе передачи. Протокол TCP отвечает за создание интернет пакетов и из обратную сборку в нужном порядке в месте получения, а также проверяет целостность информации. Если часть пакетов утеряна в процессе передачи, они передаются повторно.

Интернет протокол (IP) используется для доставки информации по нужному адресу. Каждый компьютер, который имеет подключение к интернету имеет свой уникальный адрес – IP-адрес. Каждый отправленный пакет содержит адрес доставки. Интернет пакет может пройти через много маршрутизаторов прежде, чем достигнет своего места назначения. Интернет протокол отвечает за маршрутизацию пакета к указанному компьютеру. IP не создает физических подключений между компьютерами. Он может быть использован совместно с другими протоколами, которые создают подключения.

Для передачи малых кусков информации можно использовать протокол UDP (User Datagram Protocol – протокол пользовательских дейтаграмм). Он также используется совместно с интернет протоколом, но намного проще чем TCP. В отличии от TCP, UDP не гарантирует доставку пакетов в нужной последовательности и не дублирует передачу утерянных пакетов, соответственно он потребляет меньше системных ресурсов, а скорость передачи существенно выше. Он применяется в приложениях которым, требуется большая пропускная способность линий связи, либо малое время доставки данных, например для аудио или видео связи.

Почтовые протоколы – SMTP, POP, IMAP

Для передачи и получения электронной почты требуются свои собственные протоколы. Почту обычно отправляют по протоколу SMTP (Simple Mail Transfer Protocol – простой протокол передачи почты). Его также используют для передачи почты между почтовыми серверами. При настройке почтовых клиентов (например, Outlook Express) требуется указывать адрес SMTP сервера. Для получения почты с сервера почтового ящика почтовые клиенты обычно используют протокол POP (Post Office Protocol – протокол почтового отделения). На текущий момент действует его третья редакция (версия), которая называется POP3 (Post Office Protocol Version 3 – протокол почтового отделения, версия 3). Для возможности получения почты при настройке в почтовом клиенте необходимо указать адрес POP3 сервера. Адреса SMTP и POP3 серверов могут совпадать, а могут и не совпадать, их следует уточнить у почтового провайдера. Протоколы SMTP и POP3 работают совместно с TCP протоколом для передачи и доставки почты через интернет.

Существует и более функциональный, но менее известный протокол для чтения электронной почты – IMAP (Internet Message Access Protocol – протокол доступа к электронной почте интернета). Данный протокол позволяет получить доступ к письмам хранящимся в почтовом ящике на сервере без необходимости загрузки её на локальный компьютер. Это очень удобно, когда требуется доступ к письмам почтового ящика с нескольких компьютеров. IMAP также работает совместно с протоколом TCP.

Протокол передачи файлов – FTP

Протокол передачи файлов (FTP – File Transfer Protocol) предназначен для передачи файлов в компьютерных сетях с одного компьютера на другой. Он обеспечивает возможность простого управления файлами на удаленном компьютере. Это достаточно старый протокол, который был введен в эксплуатацию до всемирной паутины (WWW – World Wide Web). В настоящее время он используется в основном для загрузки файлов на веб сервера, однако существуют и файловые хранилища, работающие по протоколу FTP. Он работает совместно с протоколом TCP. Адреса URL использующие FTP протокол начинаются с „ftp:”.

Руководство по стеку протоколов TCP/IP для начинающих

Cтек протоколов TCP/IP широко распространен. Он используется в качестве основы для глобальной сети интернет. Разбираемся в основных понятиях и принципах работы стека.

Основы TCP/IP

Стек протоколов TCP/IP (Transmission Control Protocol/Internet Protocol, протокол управления передачей/протокол интернета) — сетевая модель, описывающая процесс передачи цифровых данных. Она названа по двум главным протоколам, по этой модели построена глобальная сеть — интернет. Сейчас это кажется невероятным, но в 1970-х информация не могла быть передана из одной сети в другую, с целью обеспечить такую возможность был разработан стек интернет-протоколов также известный как TCP/IP.

Разработкой этих протоколов занималось Министерство обороны США, поэтому иногда модель TCP/IP называют DoD (Department of Defence) модель. Если вы знакомы с моделью OSI, то вам будет проще понять построение модели TCP/IP, потому что обе модели имеют деление на уровни, внутри которых действуют определенные протоколы и выполняются собственные функции. Мы разделили статью на смысловые части, чтобы было проще понять, как устроена модель TCP/IP:


Уровневая модель TCP/IP

Три верхних уровня — прикладной, транспортный и сетевой — присутствуют как в RFC, так и у Таненбаума и других авторов. А вот стоит ли говорить только о канальном или о канальном и физическом уровнях — нет единого мнения. В RFC они объединены, поскольку выполняют одну функцию. В статье мы придерживаемся официального интернет-стандарта RFC и не выделяем физический уровень в отдельный. Далее мы рассмотрим четыре уровня модели.

Канальный уровень (link layer)

Предназначение канального уровня — дать описание тому, как происходит обмен информацией на уровне сетевых устройств, определить, как информация будет передаваться от одного устройства к другому. Информация здесь кодируется, делится на пакеты и отправляется по нужному каналу, т.е. среде передачи.

Этот уровень также вычисляет максимальное расстояние, на которое пакеты возможно передать, частоту сигнала, задержку ответа и т.д. Все это — физические свойства среды передачи информации. На канальном уровне самым распространенным протоколом является Ethernet, но мы рассмотрим его на примере в конце статьи.

Межсетевой уровень (internet layer)

Каждая индивидуальная сеть называется локальной, глобальная сеть интернет позволяет объединить все локальные сети. За объединение локальных сетей в глобальную отвечает сетевой уровень. Он регламентирует передачу информации по множеству локальных сетей, благодаря чему открывается возможность взаимодействия разных сетей.

Межсетевое взаимодействие — это основной принцип построения интернета. Локальные сети по всему миру объединены в глобальную, а передачу данных между этими сетями осуществляют магистральные и пограничные маршрутизаторы.

Маска подсети и IP-адреса


Маска подсети помогает маршрутизатору понять, как и куда передавать пакет. Подсетью может являться любая сеть со своими протоколами. Маршрутизатор передает пакет напрямую, если получатель находится в той же подсети, что и отправитель. Если же подсети получателя и отправителя различаются, пакет передается на второй маршрутизатор, со второго на третий и далее по цепочке, пока не достигнет получателя.

Протокол интернета — IP (Internet Protocol) используется маршрутизатором, чтобы определить, к какой подсети принадлежит получатель. Свой уникальный IP-адрес есть у каждого сетевого устройства, при этом в глобальной сети не может существовать два устройства с одинаковым IP. Он имеет два подвида, первым был принят IPv4 (IP version 4, версии 4) в 1983 году.

IPv4 предусматривает назначение каждому устройству 32-битного IP-адреса, что ограничивало максимально возможное число уникальных адресов 4 миллиардами (2 32 ). В более привычном для человека десятичном виде IPv4 выглядит как четыре блока (октета) чисел от 0 до 255, разделенных тремя точками. Первый октет IP-адреса означает его класс, классов всего 4: A, B, C, D.

IPv6 имеет вид восьми блоков по четыре шестнадцатеричных значения, а каждый блок разделяется двоеточием. IPv6 выглядит следующим образом:

Так как IPv6 адреса длинные, их разрешается сокращать по следующим правилам: ведущие нули допускается опускать, например в адресе выше :00FF: позволяется записывать как :FF:, группы нулей, идущие подряд тоже допустимо сокращать и заменять на двойное двоеточие, например, 2DAB:FFFF::01AA:00FF:DD72:2C4A. Допускается делать не больше одного подобного сокращения в адресе IPv6.

IP предназначен для определения адресата и доставки ему информации, он предоставляет услугу для вышестоящих уровней, но не гарантирует целостность доставляемой информации.

ICMP и IGMP


ICMP никогда не вызывается сетевыми приложениями пользователя, кроме случаев диагностики сети, к примеру, пинг (ping) или traceroute (tracert). ICMP не передает данные, это отличает его от транспортных TCP и UDP, расположенных на L3, которые переносят любые данные. ICMP работает только с IP четвертой версии, с IPv6 взаимодействует ICMPv6.

Сетевые устройства объединяются в группы при помощи IGMP, используемый хостами и роутерами в IPv4 сетях. IGMP организует multicast-передачу информации, что позволяет сетям направлять информацию только хостам, запросившим ее. Это удобно для онлайн-игр или потоковой передаче мультимедиа. IGMP используется только в IPv4 сетях, в сетях IPv6 используется MLD (Multicast Listener Discovery, протокол поиска групповых слушателей), инкапсулированный в ICMPv6.

Транспортный уровень (transport layer)

Постоянные резиденты транспортного уровня — протоколы TCP и UDP, они занимаются доставкой информации.

TCP (протокол управления передачей) — надежный, он обеспечивает передачу информации, проверяя дошла ли она, насколько полным является объем полученной информации и т.д. TCP дает возможность двум хостам производить обмен пакетами через установку соединения. Он предоставляет услугу для приложений, повторно запрашивает потерянную информацию, устраняет дублирующие пакеты, регулируя загруженность сети. TCP гарантирует получение и сборку информации у адресата в правильном порядке.

UDP (протокол пользовательских датаграмм) — ненадежный, он занимается передачей автономных датаграмм. UDP не гарантирует, что всех датаграммы дойдут до получателя. Датаграммы уже содержат всю необходимую информацию, чтобы дойти до получателя, но они все равно могут быть потеряны или доставлены в порядке отличном от порядка при отправлении.

UDP обычно не используется, если требуется надежная передача информации. Использовать UDP имеет смысл там, где потеря части информации не будет критичной для приложения, например, в видеоиграх или потоковой передаче видео. UDP необходим, когда делать повторный запрос сложно или неоправданно по каким-то причинам.

Протоколы L3 не интерпретируют информацию, полученную с верхнего или нижних уровней, они служат только как канал передачи, но есть исключения. RSVP (Resource Reservation Protocol, протокол резервирования сетевых ресурсов) может использоваться, например, роутерами или сетевыми экранами в целях анализа трафика и принятия решений о его передаче или отклонении в зависимости от содержимого.

Прикладной уровень (application layer)

В модели TCP/IP отсутствуют дополнительные промежуточные уровни (представления и сеансовый) в отличие от OSI. Функции форматирования и представления данных делегированы библиотекам и программным интерфейсам приложений (API) — своего рода базам знаний. Когда службы или приложения обращаются к библиотеке или API, те в ответ предоставляют набор действий, необходимых для выполнения задачи и полную инструкцию, каким образом эти действия нужно выполнять.

Зачем нужен порт и что означает термин сокет

IP присваивается каждому компьютеру межсетевым уровнем, но обмен данными происходит не между компьютерами, а между приложениями, установленными на них. Чтобы получить доступ к тому или иному сетевому приложению недостаточно только IP, для идентификации приложений применяют порты. Комбинация IP-адреса и порта называется сокетом или гнездом (socket). Поэтому обмен информацией происходит между сокетами. Нередко слово сокет употребляют как синоним для хоста или пользователя, также сокетом называют гнездо подключения процессора.

Из привилегий у приложений на прикладном уровне можно выделить наличие собственных протоколов для обмена данными, а также фиксированный номер порта для обращения к сети. Администрация адресного пространства интернет (IANA), занимающаяся выделением диапазонов IP-адресов, отвечает еще за назначение сетевым приложениям портов.


Процесс, кодирования данных на прикладном уровне, передача их на транспортном, а затем на межсетевом и, наконец, на канальном уровне называется инкапсуляцией данных. Обратная передача битов информации по иерархии, с канального на прикладной уровни, называют декапсуляцией. Оба процесса осуществляются на компьютерах получателя и отправителя данных попеременно, это позволяет долго не удерживать одну сторону канала занятой, оставляя время на передачу информации другому компьютеру.

Стек протоколов, снова канальный уровень

После ознакомления с уровневой структурой модели становится понятно, что информация не может передаваться между двумя компьютерами напрямую. Сначала кадры передаются на межсетевой уровень, где компьютеру отправителя и компьютеру получателя назначается уникальный IP. После чего, на транспортном уровне, информация передается в виде TCP-фреймов либо UDP-датаграмм.

На каждом этапе, подобно снежному кому, к уже имеющейся информации добавляется служебная информация, например, порт на прикладном уровне, необходимый для идентификации сетевого приложения. Добавление служебной информации к основной обеспечивают разные протоколы — сначала Ethernet, поверх него IP, еще выше TCP, над ним порт, означающий приложение с делегированным ему протоколом. Такая вложенность называется стеком, названным TCP/IP по двум главным протоколам модели.

Point-to-Point протоколы


Отдельно расскажем о Point-to-Point (от точки к точке, двухточечный) протоколе также известном как PPP. PPP уникален по своим функциям, он применяется для коммуникации между двумя маршрутизаторами без участия хоста или какой-либо сетевой структуры в промежутке. При необходимости, PPP обеспечивает аутентификацию, шифрование, а также сжатие данных. Он широко используется при построении физических сетей, например, кабельных телефонных, сотовых телефонных, сетей по кабелю последовательной передачи и транк-линий (когда один маршрутизатор подключают к другому для увеличения размера сети).

У PPP есть два подвида — PPPoE (PPP по Ethernet) и PPPoA (PPP через асинхронный способ передачи данных — ATM), интернет-провайдеры часто их используют для DSL соединений.

PPP и его старший аналог SLIP (протокол последовательной межсетевой связи) формально относятся к межсетевому уровню TCP/IP, но в силу особого принципа работы, иногда выделяются в отдельную категорию. Преимущество PPP в том, что для установки соединения не требуется сетевая инфраструктура, а необходимость маршрутизаторов отпадает. Эти факторы обуславливают специфику использования PPP протоколов.

Заключение

Стек TCP/IP регламентирует взаимодействие разных уровней. Ключевым понятием в здесь являются протоколы, формирующие стек, встраиваясь друг в друга с целью передать данные. Рассмотренная модель по сравнению с OSI имеет более простую архитектуру.

Сама модель остается неизменной, в то время как стандарты протоколов могут обновляться, что еще дальше упрощает работу с TCP/IP. Благодаря всем преимуществам стек TCP/IP получил широкое распространение и использовался сначала в качестве основы для создания глобальной сети, а после для описания работы интернета.

Рис. 2.1. Концептуальная модель многоуровневой системы протоколов

Рис. 2.2. Модель реализации стека протоколов

ПРИМЕЧАНИЕ
Шлюз — это программа, при помощи которой можно передавать информацию между двумя сетевыми системами, использующими различные протоколы обмена данными.

Протоколы канального уровня

Протоколы, обеспечивающие взаимодействие компьютера с сетью на самом низком, аппаратном уровне, во многом определяют топологию локальной сети, а также ее внутреннюю архитектуру. В настоящее время на практике достаточно часто применяется несколько различных стандартов построения локальных сетей, наиболее распространенными среди которых являются технологии Ethernet, Token Ring, Fiber Distributed Data Interface (FDDI) и ArcNet.
На сегодняшний день локальные сети, построенные на основе стандарта Ethernet, являются наиболее популярными как в нашей стране, так и во всем мире. На долю сетей Ethernet приходится почти девяносто процентов всех малых и домашних локальных сетей, что не удивительно, поскольку именно эта технология позволяет строить простые и удобные в эксплуатации и настройке локальные сети с минимумом затрат. Именно поэтому в качестве основного рассматриваемого нами стандарта будет принята именно технология Ethernet. Протоколы канального уровня поддержки Ethernet, как правило, встроены в оборудование, обеспечивающее подключение компьютера к локальной сети на физическом уровне. Стандарт Ethernet является широковещательным, то есть каждый подключенный к сети компьютер принимает всю следующую через его сетевой сегмент информацию — как предназначенную именно для этого компьютера, так и данные, направляемые на другую машину. Во всех сетях Ethernet применяется один и тот же алгоритм разделения среды передачи информации — множественный доступ с контролем несущей и обнаружением конфликтов (Carrier Sense Multiple Access with Collision Detection, CSMA/CD).
В рамках технологии Ethernet сегодня различается несколько стандартов организации сетевых коммуникаций, определяющих пропускную способность канала связи и максимально допустимую длину одного сегмента сети, то есть расстояние между двумя подключенными к сети устройствами. Об этих стандартах мы побеседуем в следующей главе, посвященной изучению сетевого оборудования, пока же необходимо отметить, что в рамках стандарта Ethernet применяется, как правило, одна из двух различных топологий: конфигурация сети с общей шиной или звездообразная архитектура.

Протоколы межсетевого уровня

Протоколы уровня межсетевого взаимодействия, как уже упоминалось ранее, предназначены для определения маршрутов следования информации в локальной сети, приема и передачи дейтаграмм, а также для трансляции принятых данных протоколам более высокого уровня, если эти данные предназначены для обработки на локальном компьютере. К протоколам межсетевого уровня принято относить протоколы маршрутизации, такие как RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол контроля и управления передачей данных ICMP (Internet Control Message Protocol). Но вместе с тем одним из самых известных протоколов межсетевого уровня является протокол IP.

Протокол IP

Таблица 2.1. Соответствие классов сетей значению первого октета IP-адреса

Читайте также: