Все методы генетики в биологии сообщение

Обновлено: 18.05.2024

Наследственность — свойство организмов передавать свои признаки от одного поколения к другому.

Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.

Признак — любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее.

Фенотип — совокупность всех внешних и внутренних признаков организма.

Ген — функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген — участок ДНК, определяющий возможность развития отдельного элементарного признака.

Генотип — совокупность генов организма.

Локус — местоположение гена в хромосоме.

Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом.

Гомозигота — организм, имеющий аллельные гены одной молекулярной формы.

Гетерозигота — организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.

Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

Методы генетики

Основным является гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Отличительные особенности метода: 1) целенаправленный подбор родителей, различающихся по одной, двум, трем и т. д. парам контрастных (альтернативных) стабильных признаков; 2) строгий количественный учет наследования признаков у гибридов; 3) индивидуальная оценка потомства от каждого родителя в ряду поколений.

Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным, двух пар — дигибридным, нескольких пар — полигибридным. Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак — цвет горошин, альтернативные признаки — желтый цвет, зеленый цвет горошин.

Кроме гибридологического метода, в генетике используют: генеалогический — составление и анализ родословных; цитогенетический — изучение хромосом; близнецовый — изучение близнецов; популяционно-статистический метод — изучение генетической структуры популяций.

Генетическая символика

Предложена Г. Менделем, используется для записи результатов скрещиваний: Р — родители; F — потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F1 — гибриды первого поколения — прямые потомки родителей, F2 — гибриды второго поколения — возникают в результате скрещивания между собой гибридов F1); × — значок скрещивания; G — мужская особь; E — женская особь; A — доминантный ген, а — рецессивный ген; АА — гомозигота по доминанте, аа — гомозигота по рецессиву, Аа — гетерозигота.

Закон единообразия гибридов первого поколения, или первый закон Менделя

Другие материалы по теме:

Успеху работы Менделя способствовал удачный выбор объекта для проведения скрещиваний — различные сорта гороха. Особенности гороха: 1) относительно просто выращивается и имеет короткий период развития; 2) имеет многочисленное потомство; 3) имеет большое количество хорошо заметных альтернативных признаков (окраска венчика — белая или красная; окраска семядолей — зеленая или желтая; форма семени — морщинистая или гладкая; окраска боба — желтая или зеленая; форма боба — округлая или с перетяжками; расположение цветков или плодов — по всей длине стебля или у его верхушки; высота стебля — длинный или короткий); 4) является самоопылителем, в результате чего имеет большое количество чистых линий, устойчиво сохраняющих свои признаки из поколения в поколение.

Опыты Менделя были тщательно продуманы. Если его предшественники пытались изучить закономерности наследования сразу многих признаков, то Мендель свои исследования начал с изучения наследования всего лишь одной пары альтернативных признаков.

Мендель взял сорта гороха с желтыми и зелеными семенами и произвел их искусственное перекрестное опыление: у одного сорта удалил тычинки и опылил их пыльцой другого сорта. Гибриды первого поколения имели желтые семена. Аналогичная картина наблюдалась и при скрещиваниях, в которых изучалось наследование других признаков: при скрещивании растений, имеющих гладкую и морщинистую формы семян, все семена полученных гибридов были гладкими, от скрещивания красноцветковых растений с белоцветковыми все полученные — красноцветковые. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает. Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый — рецессивным.

При моногибридном скрещивании гомозиготных особей, имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу.

( А — желтый цвет горошин, а — зеленый цвет горошин)

Р ♀ AA
желтые
× ♂ аа
зеленые
Типы гамет А а
F1
желтые
100%

Закон расщепления, или второй закон Менделя

Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Результаты опытов приведены в таблице.

Признаки Доминантные Рецессивные Всего
Число % Число %
Форма семян 5474 74,74 1850 25,26 7324
Окраска семядолей 6022 75,06 2001 24,94 8023
Окраска семенной кожуры 705 75,90 224 24,10 929
Форма боба 882 74,68 299 25,32 1181
Окраска боба 428 73,79 152 26,21 580
Расположение цветков 651 75,87 207 24,13 858
Высота стебля 787 73,96 277 26,04 1064
Всего: 14949 74,90 5010 25,10 19959

Анализ данных таблицы позволил сделать следующие выводы:

  1. единообразия гибридов во втором поколении не наблюдается: часть гибридов несет один (доминантный), часть — другой (рецессивный) признак из альтернативной пары;
  2. количество гибридов, несущих доминантный признак, приблизительно в три раза больше, чем гибридов, несущих рецессивный признак;
  3. рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и проявляется во втором гибридном поколении.

Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть — рецессивный, называют расщеплением. Причем, наблюдающееся у гибридов расщепление не случайное, а подчиняется определенным количественным закономерностям. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении.

При моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

Генетическая схема закона расщепления Менделя

( А — желтый цвет горошин, а — зеленый цвет горошин):

P ♀ Aa
желтые
× ♂ Aa
желтые
Типы гамет A a A a
F2 AA
желтые
Aa
желтые
75%
Aa
желтые
aa
зеленые
25%

Закон чистоты гамет

Купить проверочные работы
и тесты по биологии


Биология. Животные. Работаем по новым стандартам. Проверочные работы

Биология. Человек. Работаем по новым стандартам. Проверочные работы
Биология. 9 класс. Тесты

  1. за формирование признаков отвечают какие-то дискретные наследственные факторы;
  2. организмы содержат два фактора, определяющих развитие признака;
  3. при образовании гамет в каждую из них попадает только один из пары факторов;
  4. при слиянии мужской и женской гамет эти наследственные факторы не смешиваются (остаются чистыми).

В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.

Р ♀ Аа
желтые
× ♂ aа
зеленые
Типы гамет A a a
F Аа
желтые
50%
аa
зеленые
50%

Цитологические основы первого и второго законов Менделя

Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой А , а зеленую — а . Поскольку Мендель работал с чистыми линиями, оба скрещиваемых организма — гомозиготны, то есть несут два одинаковых аллеля гена окраски семян (соответственно, АА и аа ). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном А , а другого — с геном а .

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа ; один вариант генотипа даст один вариант фенотипа — желтый цвет горошин.

У гибридного организма, имеющего генотип Аа во время мейоза, хромосомы расходятся в разные клетки и образуется два типа гамет — половина гамет будет нести ген А , другая половина — ген а . Оплодотворение — процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую яйцеклетку. Поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех вариантов зигот. Половина из них — гетерозиготы (несут гены А и а ), 1/4 — гомозиготы по доминантному признаку (несут два гена А ) и 1/4 — гомозиготы по рецессивному признаку (несут два гена а ). Гомозиготы по доминанте и гетерозиготы дадут горошины желтого цвета (3/4), гомозиготы по рецессиву — зеленого (1/4).

Закон независимого комбинирования (наследования) признаков, или третий закон Менделя

Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые). Желтая окраска ( А ) и гладкая форма ( В ) семян — доминантные признаки, зеленая окраска ( а ) и морщинистая форма ( b ) — рецессивные признаки.

Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F1 с желтыми и гладкими семенами. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1).

Анализируя полученное потомство, Мендель обратил внимание на то, что: 1) наряду с сочетаниями признаков исходных сортов (желтые гладкие и зеленые морщинистые семена), при дигибридном скрещивании появляются и новые сочетания признаков (желтые морщинистые и зеленые гладкие семена); 2) расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании. Из 556 семян 423 были гладкими и 133 морщинистыми (соотношение 3:1), 416 семян имели желтую окраску, а 140 — зеленую (соотношение 3:1). Мендель пришел к выводу, что расщепление по одной паре признаков не связано с расщеплением по другой паре. Для семян гибридов характерны не только сочетания признаков родительских растений (желтые гладкие семена и зеленые морщинистые семена), но и возникновение новых комбинаций признаков (желтые морщинистые семена и зеленые гладкие семена).

При дигибридном скрещивании дигетерозигот у гибридов имеет место расщепление по фенотипу в отношении 9:3:3:1, по генотипу в отношении 4:2:2:2:2:1:1:1:1, признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Р ♀ АABB
желтые, гладкие
× ♂ aаbb
зеленые, морщинистые
Типы гамет AB ab
F1 AaBb
желтые, гладкие, 100%
P ♀ АaBb
желтые, гладкие
× ♂ AаBb
желтые, гладкие
Типы гамет AB Ab aB ab AB Ab aB ab

Генетическая схема закона независимого комбинирования признаков:

Гаметы: AB Ab aB ab
AB AABB
желтые
гладкие
AABb
желтые
гладкие
AaBB
желтые
гладкие
AaBb
желтые
гладкие
Ab AABb
желтые
гладкие
AАbb
желтые
морщинистые
AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aB AaBB
желтые
гладкие
AaBb
желтые
гладкие
aaBB
зеленые
гладкие
aaBb
зеленые
гладкие
ab AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aaBb
зеленые
гладкие
aabb
зеленые
морщинистые

Анализ результатов скрещивания по фенотипу: желтые, гладкие — 9/16, желтые, морщинистые — 3/16, зеленые, гладкие — 3/16, зеленые, морщинистые — 1/16. Расщепление по фенотипу 9:3:3:1.

Анализ результатов скрещивания по генотипу: AaBb — 4/16, AABb — 2/16, AaBB — 2/16, Aabb — 2/16, aaBb — 2/16, ААBB — 1/16, Aabb — 1/16, aaBB — 1/16, aabb — 1/16. Расщепление по генотипу 4:2:2:2:2:1:1:1:1.

Если при моногибридном скрещивании родительские организмы отличаются по одной паре признаков (желтые и зеленые семена) и дают во втором поколении два фенотипа (2 1 ) в соотношении (3 + 1) 1 , то при дигибридном они отличаются по двум парам признаков и дают во втором поколении четыре фенотипа (2 2 ) в соотношении (3 + 1) 2 . Легко посчитать, сколько фенотипов и в каком соотношении будет образовываться во втором поколении при тригибридном скрещивании: восемь фенотипов (2 3 ) в соотношении (3 + 1) 3 .

Если расщепление по генотипу в F2 при моногибридном поколении было 1:2:1, то есть было три разных генотипа (3 1 ), то при дигибридном образуется 9 разных генотипов — 3 2 , при тригибридном скрещивании образуется 3 3 — 27 разных генотипов.

Третий закон Менделя справедлив только для тех случаев, когда гены анализируемых признаков находятся в разных парах гомологичных хромосом.

Цитологические основы третьего закона Менделя

Пусть А — ген, обусловливающий развитие желтой окраски семян, а — зеленой окраски, В — гладкая форма семени, b — морщинистая. Скрещиваются гибриды первого поколения, имеющие генотип АаВb . При образовании гамет из каждой пары аллельных генов в гамету попадает только один, при этом в результате случайного расхождения хромосом в первом делении мейоза ген А может попасть в одну гамету с геном В или с геном b , а ген а — с геном В или с геном b . Таким образом, каждый организм образует четыре сорта гамет в одинаковом количестве (по 25%): АВ , Ab , aB , ab . Во время оплодотворения каждый из четырех типов сперматозоидов может оплодотворить любую из четырех типов яйцеклеток. В результате оплодотворения возможно появление девяти генотипических классов, которые дадут четыре фенотипических класса.

Гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений.

  • целенаправленный подбор родителей, различающихся по одной, двум, трём и т. д. парам альтернативных признаков;
  • строгий количественный учёт наследования признаков у гибридов;
  • индивидуальная оценка потомства от каждого родителя в ряду поколений.

Анализ родословных применяется для организмов, у которых невозможно скрещивание (человек) или размножение происходит медленно.

Схема 7.jpg

С помощью этого метода можно установить особенности наследования признаков. Если признак проявляется в каждом поколении, то он доминантный; если признак проявляется через поколение, то он рецессивный. Если признак чаще проявляется у одного пола, то это признак, сцепленный с полом.

Близнецовый метод позволяет изучать роль генотипа и среды в формировании конкретных признаков организма. Однояйцевые близнецы имеют одинаковый генотип, поэтому они всегда одного пола и похожи друг на друга. Различия, которые возникают у таких близнецов в течение жизни, связаны с воздействием условий окружающей среды.

Цитогенетический метод — микроскопическое изучение числа, формы и размеров хромосом в делящихся клетках организма.

Исследование кариотипа организма с помощью микроскопа используется для установления геномных и хромосомных мутаций.

Биохимический метод — анализ состава веществ, содержащихся в организме, и биохимических реакций, протекающих в его клетках.

Гибридологический метод использовался еще Г. Менделем в его опытах по скрещиванию растений. Система, предложенная ученым, до сих пор актуальна. Гибридологические исследования позволяют выявить закономерности наследования признаков в первом и последующем поколениях. Большое значение в процессе опытов имеет количественный учет по результатам скрещиваний.

Основные методы современной генетики:

  • цитогенетический;
  • генеалогический;
  • биохимический;
  • мутационный;
  • близнецовый;
  • популяционный;
  • онтогенетический;
  • гибридологический.

Методы генетических исследований

Основные методы:

  1. Популяционный — изучение генетических особенностей популяций, характера распределения генов в них.
  2. Генеалогический — заключается в анализе родословных, изучении наследования признаков, заболеваний в семьях.
  3. Онтогенетический и близнецовый — используется для изучения индивидуального развития, анализа проявления признаков у близнецов. Возможна оценка влияния генотипа и среды обитания на изменчивость.
  4. Цитологический— заключается в изучении числа хромосом, их структуры, поведения при делении клетки, выявлении связи между изменениями строения носителей информации и признаков.
  5. Биохимический и физико-химический — позволяют более детально исследовать структуру и функции хромосом, генов.

Благодаря современным приборам и веществам стали возможны опыты с клетками и молекулами.


В настоящее время генетика развивается огромными темпами. Ученые уже создали лекарства от многих болезней, которые раньше считались неизлечимыми, и научились клонировать живые организмы. На повестке дня — создание лекарственных препаратов от ВИЧ и рака.

Что такое методы генетики

Все открытия в области генетики, настоящие и будущие, стали возможны благодаря специальным методам исследования.

Методы исследования в генетике — это способы исследования генов живых организмов, которые позволяют отследить закономерность передачи нормальных и патологических признаков из поколения в поколение; создать условия для диагностики, профилактики и лечения наследственных заболеваний.

Кратко о разнообразии исследований

В генетике применяются многие способы исследования. В зависимости от того, кто является объектом изучения — растение, микроорганизм, животное или человек, применяются различные подходы для получения и анализа генетической информации.

Основными методами генетики являются:

  • гибридологический;
  • цитогенетический;
  • биохимический;
  • популяционный;
  • генеалогический;
  • близнецовый;
  • метод генной инженерии;
  • математический или метод математического моделирования.

Список методов изучения

Каждый способ имеет свои особенности, рассмотрим их подробнее.

Гибридологический, основной метод науки

Гибридологический — это основной универсальный метод генетики, который заключается в скрещивании или гибридизации организмов, отличающихся друг от друга по одному или нескольким признакам. Потомки, полученные в результате скрещивания, называется гибридами. Метод был разработан и экспериментально доказан ученым монахом Грегором Менделем. Мендель скрестил два сорта гороха разного цвета и на основании их потомства вывел ряд закономерностей, которые легли в основу современной генетики.

Мендель

Гибридологический метод состоит из:

  • скрещивания организмов;
  • статистического анализа наблюдений.

Гибридологический метод

Особенности подхода заключаются в том, что:

По социально-этическим причинам не используется для изучения генетики человека.

Цитогенетический

В основе этого метода лежит микроскопическое изучение хромосом в клетках человека. С помощью цитогенетического исследования можно изучать наследственный материал клетки:

  1. Совокупность хромосом тела — кариотипирование.
  2. Наличие и количество X-хромосом — определение полового хроматина.

Объектом исследования являются клетки:

  • фибробласты кожи;
  • костного мозга;
  • из околоплодной жидкости;
  • лимфоциты периферической крови.

Кровь больного переносят в среду, где находятся все необходимые питательные вещества для роста клеток, и стимулируют их деление. Добавляют специальное вещество колхицин, чтобы остановить процесс деления клеток на стадии, пригодной для анализа. Цитогенетический метод позволяет определить перестроенную хромосому, идентифицировать тип перестройки и происхождение поврежденной хромосомы.

Особенности данного метода заключаются в:

  • отборе клеток и выращивании их культуры в питательной среде;
  • окрашивании хромосом специальными красителями;
  • подсчете их числа, определении форм и размеров, чередовании светлых и темных полос в соответствии с нормами.

Цитогенетический метод

Такое исследование проводится, если есть подозрение на наличие хромосомной болезни. При пренатальной диагностике данный метод позволяет выявить наиболее часто встречающиеся хромосомные болезни:

  • синдром Дауна;
  • синдром Эдвардса;
  • синдром Орбели;
  • синдром Патау и другие.

Биохимический

Биохимический метод позволяет выявить генные мутации, которые невозможно разглядеть в микроскоп. Исследование заключается в выявлении с помощью химических реакций или бактериальных маркеров накопившихся метаболитов, указывающих на нарушение обмена веществ.

Биохимические методы

Объектами биохимической диагностики могут быть:

  • моча;
  • пот;
  • амниотическая жидкость;
  • сыворотка и плазма крови;
  • форменные элементы крови и т.д.

Этот метод позволяет обнаружить нарушения в обмене веществ, которые вызваны мутациями генов и, как следствие, изменением активности различных ферментов. Он помогает выявить наследственную предрасположенность к заболеваниям и своевременно предупредить развитие болезни.

С помощью данного способа исследования получается выявить наследственные болезни, заключающиеся в нарушении:

  • углеводного обмена (сахарный диабет);
  • обмена аминокислот (фенилкетонурия);
  • липидного обмена (болезнь Тея-Сакса).

Популяционный

Данный метод исследует распространения генов в человеческих популяциях. Он позволяет изучать географическое распространение и частоту тех или иных генов и влияние на эти показатели различных факторов.

Популяционный метод

Объектом изучения популяционного метода являются популяции. Само исследование основано на сборе и анализе статистических данных о частотах того или иного признака. На основании обработанных данных появляется информация о распространенности в популяции изменчивых признаков, их норме реакции, об особых группах риска генетических заболеваний или о летальности этих признаков.

Сущность метода заключается в определении частоты встречаемости генов и генотипов в популяции. Например, исследование позволяет оценить вероятность рождения ребенка с определенным признаком в данной популяции, а также рассчитать частоту встречаемости определенных генов.

В основе метода лежит закон Харди-Вайнберга, который верен для анализа генетических процессов в крупных популяциях (от 4,5 тысяч людей), где происходит свободное скрещивание.

Закон Харди-Вайнберга

Генеалогический

Генеалогический метод, разработанный в 1865 году Ф. Гальтоном, заключается в анализе родословных и позволяет определить тип наследования нормального или патологического признака:

  • доминантный/рецессивный;
  • аутосомный/сцепленный с полом;
  • моногамность/полигамность.

Генеалогическое исследование состоит из нескольких этапов:

  1. Сбор данных обо всех кровных родственниках обследуемого (пробанда) с максимально широким охватом сведений по восходящей и нисходящей линии, а также в боковом направлении.
  2. Графическое построение родословной, сопровождаемое поясняющим описанием.
  3. Анализ родословной и формулировка выводов.

Пробанд — это человек, с которого начинается генетическое обследование семьи и составление родословной.

На основе полученных сведений прогнозируется вероятность проявления изучаемого признака в потомстве, что имеет большое значение для предупреждения наследственных заболеваний.

Близнецовый

В 1876 году Ф. Гальтон предложил использовать метод анализа близнецов для разграничения роли наследственности и среды в развитии различных признаков у человека.

Данный способ исследования характеризуется сравнением качеств монозиготных близнецов, имеющих идентичный набор генов, и дизиготных близнецов, генотипы которых отличаются.

Близнецовый метод

Задачами близнецового метода являются:

  1. Оценка степени влияния наследственности и среды на развитие какого-нибудь нормального или патологического признака.
  2. Изучение экспрессивности генов.
  3. Оценка эффективности использования лекарств.
  4. Оценка эффективности методов обучения и воспитания.
  5. Изучение коэффициента IQ.

Генная инженерия

Метод генной инженерии заключается в том, что в генотип организмов встраиваются или исключаются из него отдельные гены или группы генов, в результате чего в клетке возникают новые процессы, например, происходит синтез белков, которые ранее не синтезировался.

Генной инженерией называется комплекс молекулярно-генетических методов, к которым относятся:

  • расщепление ДНК рестрицирующими нуклеотидами;
  • секвенирование всех нуклеотидов в очищенном фрагменте ДНК;
  • конструирование рекомбинантной ДНК;
  • гибридизация нуклеиновых кислот;
  • клонирование ДНК;
  • введение рекомбинантной ДНК в клетки или организмы.

Этапы генной инженерии

Генная инженерия решает следующие задачи:

  1. Получение генов путем их синтеза или выделения из клеток.
  2. Получение рекомбинантных молекул ДНК.
  3. Клонирование генов или генетических структур.
  4. Введение в клетку генов или генетических структур и синтез чужеродного белка.

Методы генной инженерии активно применяются в медицинских научно-исследовательских центрах.

Математический

Математическое моделирование — это исследование путем создания и изучения математических моделей. Его применяют для расчета частот генов в популяциях при различных воздействиях и изменениях окружающей среды. Математические методы широко применяются в тех случаях, когда невозможно использовать экспериментальные, например, при анализе большого количества сцепленных генов у человека.

Также математический метод является неотъемлемой составной частью других методов исследования в генетике, например, гибридологического и популяционного.

Примеры использования методов и результатов их исследования

Изучение генетики имеет огромное значение для жизни и здоровья человечества. Вот лишь несколько примеров, которые наглядно иллюстрируют роль генетики в профилактике и лечении серьезных заболеваний:

  1. В ходе исследования близнецов стало известно, что для возникновения таких болезней, как корь, коклюш, ветряная оспа необходимо только инфекционное начало, а для появления таких заболеваний, как дифтерия, паротит, воспаление легких, полиомиелит и туберкулез играют роль наследственные свойства организма.
  2. Близнецовый метод также помог выяснить наследственную предрасположенность к эпилепсии, сахарному диабету и шизофрении.
  3. Методом рекомбинантных плазмид ген инсулина был встроен в ДНК бактерии кишечной палочки, которая начала активно синтезировать гормон. В 1982 году инсулин стал одним из первых лекарственных препаратов, который был получен при помощи генной инженерии.
  4. Таким же способом с 1980 года в мире получают соматотропин — гормон роста. Человеческий ген, который был встроен в геном бактерии, синтезирует гормон, инъекции которого врачи используют для лечения карликовости у детей.

Генетика и способы ее исследования — очень увлекательная и интересная тема. Но она требует времени, чтобы разобраться во всех нюансах. Если времени совсем нет, а сроки сдачи работы горят, обращайтесь за помощью к специалистам Феникс.Хелп.

Читайте также: