Сообщение симметрия в природе и на практике

Обновлено: 05.07.2024

Симме́три́я (др.-гр. συμμετρία – симметрия) – сохранение свойств расположения элементов фигуры относительно центра или оси симметрии в неизменном состоянии при каких-либо преобразованиях.

Симметрия порождает гармонию, которая воспринимается нашим мозгом, как необходимый атрибут прекрасного. А значит, даже наше сознание живёт по законам симметричного мира.

Согласно же Вейлю, симметричным называется такой предмет, с которым можно проделать какую-то операцию, получив в итоге первоначальное состояние.

Симметрия в биологии — закономерное расположение подобных (одинаковых) частей тела или форм живого организма, совокупности живых организмов относительно центра или оси симметрии.

Симметрией обладают объекты и явления живой природы. Она позволяет живым организмам лучше приспособиться к среде обитания и просто выжить.

В живой природе огромное большинство живых организмов обнаруживает различные виды симметрий (формы, подобия, относительного расположения). Причем организмы разного анатомического строения могут иметь один и тот же тип внешней симметрии.

Внешняя симметрия может выступить в качестве основания классификации организмов (сферическая, радиальная, осевая и т.д.) Микроорганизмы, живущие в условиях слабого воздействия гравитации, имеют ярко выраженную симметрию формы.

На явления симметрии в живой природе обратили внимание ещё в Древней Греции пифагорейцы в связи с развитием учения о гармонии (V век до н.э.). В XIX веке появились единичные работы, посвящённые симметрии в растительном и животном мире.

В XX веке усилиями российских учёных – В Беклемишева, В. Вернадского, В Алпатова, Г. Гаузе – было создано новое направление в учении о симметрии – биосимметрика, которое, исследуя симметрии биоструктур на молекулярном и надмолекулярном уровнях, позволяет заранее определить возможные варианты симметрии в биообъектах, строго описывать внешнюю форму и внутреннее строение любых организмов.

Специфика строения растений и животных определяется особенностями среды обитания, к которой они приспосабливаются, особенностями их образа жизни.

Для растений характерна симметрия конуса, которая хорошо видна на примере любого дерева. У любого дерева есть основание и вершина, "верх" и "низ", выполняющие разные функции. Значимость различия верхней и нижней частей, а также направление силы тяжести определяют вертикальную ориентацию поворотной оси "древесного конуса" и плоскостей симметрии. Дерево поглощает из почвы влагу и питательные вещества за счёт корневой системы, то есть внизу, а остальные жизненно важные функции выполняются кроной, то есть наверху. Поэтому направления "вверх" и "вниз" для дерева, существенно различны. А направления в плоскости, перпендикулярной к вертикали, для дерева фактически неразличимы: по всем этим направлениям к дереву в равной мере поступают воздух, свет, и влага. В результате появляется вертикальная поворотная ось и вертикальная плоскость симметрии.

У цветковых растений в большинстве проявляется радиальная и билатеральная симметрия. Цветок считается симметричным, когда каждый околоцветник состоит из равного числа частей. Цветки, имея парные части, считаются цветками с двойной симметрией и т.д. Тройная симметрия обычна для однодольных растений, пятерная – для двудольных.

Для листьев характерна зеркальная симметрия. Эта же симметрия встречается и у цветов, однако у них зеркальная симметрия чаще выступает в сочетании с поворотной симметрией. Нередки случаи и переносной симметрии (веточки акации, рябины). Интересно, что в цветочном мире наиболее распространена поворотная симметрия 5-го порядка, которая принципиально невозможна в периодических структурах неживой природы. Этот факт академик Н. Белов объясняет тем, что ось 5-го порядка – своеобразный инструмент борьбы за существование, "страховка против окаменения, кристаллизации, первым шагом которой была бы их поимка решеткой". Действительно, живой организм не имеет кристаллического строения в том смысле, что даже отдельные его органы не обладают пространственной решеткой. Однако упорядоченные структуры в ней представлены очень широко.

Под симметрией у животных понимают соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, находящихся на противоположных сторонах разделяющей линии.

Сферическая симметрия имеет место у радиолярий и солнечников, тела которых сферической формы, а части распределены вокруг центра сферы и отходят от неё. У таких организмов нет ни передней, ни задней, ни боковых частей тела, любая плоскость, проведённая через центр, делит животное на одинаковые половинки.

При радиальной или лучистой симметрии тело имеет форму короткого или длинного цилиндра либо сосуда с центральной осью, от которого отходят в радиальном порядке части тела. Это кишечнополостные, иглокожие, морские звёзды.

При зеркальной симметрии осей симметрии три, но симметричных сторон только одна пара. Потому что две другие стороны – брюшная и спинная – друг на друга не похожи. Этот вид симметрии характерен для большинства животных, в том числе насекомых, рыб, земноводных, рептилий, птиц, млекопитающих.

Кроме направления движения, симметрию живых существ определяет еще одно направление – направление силы тяжести. Оба направления существенны; они задают плоскость симметрии живого существа.

Билатеральная (зеркальная) симметрия – характерная симметрия всех представителей животного мира. Эта симметрия хорошо видна у бабочки; симметрия левого и правого проявляется здесь с почти математической строгостью. Можно сказать, что каждое животное (а также насекомое, рыба, птица) состоит из двух энантиоморфов – правой и левой половин. Энантиоморфами являются также парные детали, одна из которых попадает в правую, а другая в левую половину тела животного. Так, энантиоморфами являются правое и левое ухо, правый и левый глаз, правый и левый рог и т.д.

Человеческое тело обладает билатеральной симметрией (внешний облик и строение скелета). Эта симметрия всегда являлась и является основным источником нашего эстетического восхищения хорошо сложенным человеческим телом. Тело человека построено по принципу двусторонней симметрии.

Большинство из нас рассматривает мозг как единую структуру, в действительности он разделён на две половины. Эти две части – два полушария – плотно прилегают друг к другу. В полном соответствии с общей симметрией тела человека каждое полушарие представляет собой почти точное зеркальное отображение другого

Управление основными движениями тела человека и его сенсорными функциями равномерно распределено между двумя полушариями мозга. Левое полушарие контролирует правую сторону мозга, а правое - левую сторону.

Физическая симметрия тела и мозга не означает, что правая сторона и левая равноценны во всех отношениях. Достаточно обратить внимание на действия наших рук, чтобы увидеть начальные признаки функциональной симметрии. Лишь немногие люди одинаково владеют обеими руками; большинство же имеет ведущую руку.

2. осевая (зеркальная)

6. поступательная (метамерия)

Известны всего два основных типа симметрии – вращательная и поступательная. Кроме того, встречается модификация из совмещения этих двух основных типов симметрии – вращательно-поступательная симметрия.

Поступательная симметрия. Для поступательной симметрии характерным элементом являются метамеры (meta – один за другим; mer – часть). В этом случае части тела расположены не зеркально друг против друга, а последовательно друг за другом вдоль главной оси тела.

Метамерия – одна из форм поступательной симметрии. Она особенно ярко выражена у кольчатых червей, длинное тело которых состоит из большого числа почти одинаковых сегментов. Этот случай сегментации называют гомономной. У членистоногих животных число сегментов может быть относительно небольшим, но каждый сегмент несколько отличается от соседних или формой, или придатками (грудные сегменты с ногами или крыльями, брюшные сегменты). Такую сегментацию называют гетерономной.

Вращательно-поступательная симметрия . Этот тип симметрии имеет ограниченное распространение в животном мире. Эта симметрия характерна тем, что при повороте на определённый угол часть тела немного проступает вперед и её размеры каждый следующий логарифмически увеличивает на определённую величину. Таким образом, происходит совмещение актов вращения и поступательного движения. Примером могут служить спиральные камерные раковины фораминифер, а также спиральные камерные раковины некоторых головоногих моллюсков. С некоторым условием к этой группе можно отнести также и некамерные спиральные раковины брюхоногих моллюсков

Если стать в центре здания и слева от вас окажется то же количество этажей, колонн, окон, что и справа, значит здание симметрично. Если бы можно было перегнуть его по центральной оси, то обе половинки дома совпали бы при наложении. Такая симметрия получила название зеркальной. Этот вид симметрии весьма популярен в животном царстве, сам человек скроен по ее канонам.

Ось симметрии – это ось вращения. В этом случае у животных, как правило, отсутствует центр симметрии. Тогда вращение может происходить только вокруг оси. При этом ось чаще всего имеет разнокачественные полюса. Например, у кишечнополостных, гидры или актинии, на одном полюсе расположен рот, на другом – подошва, которой эти неподвижные животные прикреплены к субстрату. Ось симметрии может совпадать морфологически с переднезадней осью тела.

При зеркальной симметрии меняются правая и левая части предмета.

Плоскость симметрии – это плоскость, проходящая через ось симметрии, совпадающая с ней и рассекающая тело на две зеркальные половины. Эти половины, расположенные друг против друга, называют антимерами (anti – против; mer – часть). Например, у гидры плоскость симметрии должна пройти через ротовое отверстие и через подошву. Антимеры противоположных половин должны иметь равное число щупалец, расположенных вокруг рта гидры. У гидры можно провести несколько плоскостей симметрии, число которых будет кратно числу щупалец. У актиний с очень большим числом щупалец можно провести много плоскостей симметрии. У медузы с четырьмя щупальцами на колоколе число плоскостей симметрии будет ограничено числом, кратным четырём. У гребневиков только две плоскости симметрии – глоточная и щупальцевая. Наконец, у двустороннесимметричных организмов только одна плоскость и только две зеркальные антимеры – соответственно правая и левая стороны животного.

Переход от лучевой или радиальной к двусторонней или билатеральной симметрии связан с переходом от сидячего образа жизни к активному передвижению в среде. Для сидячих форм отношения со средой равноценны во всех направлениях: радиальная симметрия точно соответствует такому образу жизни. У активно перемещающихся животных передний конец тела становится биологически не равноценным остальной части туловища, происходит формирование головы, становятся различимы правая и левая сторона тела. Благодаря этому теряется радиальная симметрия, и через тело животного можно провести лишь одну плоскость симметрии, делящую тело на правую и левую стороны. Двусторонняя симметрия означает, что одна сторона тела животного представляет собой зеркальное отражение другой стороны. Такой тип организации характерен для большинства беспозвоночных, в особенности для кольчатых червей и для членистоногих – ракообразных, паукообразных, насекомых, бабочек; для позвоночных – рыб, птиц, млекопитающих. Впервые двусторонняя симметрия появляется у плоских червей, у которых передний и задний концы тела различаются между собой.

У кольчатых червей и членистоногих наблюдается ещё и метамерия – одна из форм поступательной симметрии, когда части тела располагаются последовательно друг за другом вдоль главной оси тела. Особенно ярко она выражена у кольчатых червей (дождевой червь). Кольчатые черви обязаны своим названием тому, что их тело состоит из ряда колец или сегментов (члеников). Сегментированы как внутренние органы, так и стенки тела. Так что животное состоит примерно из сотни более или менее сходных единиц - метамеров, каждая из которых содержит по одному или по паре органов каждой системы. Членики отделены друг от друга поперечными перегородками. У дождевого червя почти все членики сходны между собой. К кольчатым червям относятся полихеты – морские формы, которые свободно плавают в воде, роются в песке. На каждом сегменте их тела имеется пара боковых выступов, несущих по плотному пучку щетинок. Членистоногие получили своё название за характерные для них членистые парные придатки (как органы плавания, ходильные конечности, ротовые части). Для всех них характерно сегментированное тело. Каждое членистоногое имеет строго определённое число сегментов, которое остаётся неизменным в течение всей жизни. Зеркальная симметрия хорошо видна у бабочки; симметрия левого и правого проявляется здесь с почти математической строгостью. Можно сказать, что каждое животное, насекомое, рыба, птица состоит из двух энантиоморфов – правой и левой половин. Так, энантиоморфами являются правое и левое ухо, правый и левый глаз, правый и левый рог и т.д.

Радиальная симметрия – форма симметрии, при которой тело (или фигура) совпадает само с собой при вращении объекта вокруг определённой точки или прямой. Часто эта точка совпадает с центром симметрии объекта, то есть той точкой, в которой пересекается бесконечное количество осей двусторонней симметрии.

В биологии о радиальной симметрии говорят, когда через трёхмерное существо проходят одна или более осей симметрии. При этом радиальносимметричные животные могут и не иметь плоскостей симметрии. Так, у сифонофоры Velella имеется ось симметрии второго порядка и нет плоскостей симметрии.

Обычно через ось симметрии проходят две или более плоскости симметрии. Эти плоскости пересекаются по прямой – оси симметрии. Если животное будет вращаться вокруг этой оси на определённый градус, то оно будет отображаться само на себе (совпадать само с собой).
Таких осей симметрии может быть несколько (полиаксонная симметрия) или одна (монаксонная симметрия). Полиаксонная симметрия распространена среди протистов (например, радиолярий).

Как правило, у многоклеточных животных два конца (полюса) единственной оси симметрии неравноценны (например, у медуз на одном полюсе (оральном) находится рот, а на противоположном (аборальном) – верхушка колокола. Такая симметрия (вариант радиальной симметрии) в сравнительной анатомии называется одноосно-гетеропольной. В двухмерной проекции радиальная симметрия может сохраняться, если ось симметрии направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения.
Радиальная симметрия характерна для многих стрекающих, а также для большинства иглокожих. Среди них встречается так называемая пентасимметрия, базирующаяся на пяти плоскостях симметрии. У иглокожих радиальная симметрия вторична: их личинки двустороннесимметричны, а у взрослых животных наружная радиальная симметрия нарушается наличием мадрепоровой пластинки.

Кроме типичной радиальной симметрии существует двулучевая радиальная симметрия (две плоскости симметрии, к примеру, у гребневиков). Если плоскость симметрии только одна, то симметрия билатеральная (такую симметрию имеют двусторонне-симметричные).

У цветковых растений часто встречаются радиальносимметричные цветки: 3 плоскости симметрии (водокрас лягушачий), 4 плоскости симметрии (лапчатка прямая), 5 плоскостей симметрии (колокольчик), 6 плоскостей симметрии (безвременник). Цветки с радиальной симметрией называются актиноморфные, цветки с билатеральной симметрией – зигоморфные.

Если окружающая животное среда со всех сторон более или менее однородна и животное равномерно соприкасается с нею всеми частями своей поверхности, то форма тела обычно шарообразна, а повторяющиеся части располагаются по радиальным направлениям. Шарообразны многие радиолярии, входящие в состав так называемого планктона, т.е. совокупности организмов, взвешенных в толще воды и неспособных к активному плаванию; шарообразные камеры имеют немногочисленные планктонные представители фораминифер (простейшие, обитатели морей, морские раковинные амёбы). Фораминиферы заключены в раковинки разнообразной, причудливой формы. Шаровидное тело солнечников посылает во все стороны многочисленные тонкие, нитевидные радиально расположенные псевдоподии, тело лишено минерального скелета. Такой тип симметрии называют равноосным, так как он характеризуется наличием многих одинаковых осей симметрии.

Равноосный и полисимметрический типы встречаются преимущественно среди низкоорганизованных и малодифференцированных животных. Если вокруг продольной оси располагается 4 одинаковых органа, то радиальная симметрия в этом случае называется четырёхлучевой. Если таких органов шесть, то и порядок симметрии будет шестилучевым, и т.д. Так как количество таких органов ограничено (часто 2,4,8 или кратное от 6), то и плоскостей симметрии можно провести всегда несколько, соответствующее количеству этих органов. Плоскости делят тело животного на одинаковые участки с повторяющимися органами. В этом заключается отличие радиальной симметрии от полисимметрического типа. Радиальная симметрия характерна для малоподвижных и прикрепленных форм. Экологическое значение лучевой симметрии понятно: сидячее животное окружено со всех боковых сторон одинаковой средою и должно вступать во взаимоотношения с этой средой при помощи одинаковых, повторяющихся в радиальных направлениях органов. Именно сидячий образ жизни способствует развитию лучистой симметрии.

Очень часто флора и фауна одалживают внешние формы друг у друга. Морские звезды, ведущие растительный образ жизни, обладают поворотной симметрией, а листья — зеркальной.

Винтовая симметрия есть симметрия относительно комбинации двух преобразований – поворота и переноса вдоль оси поворота, т.е. идёт перемещение вдоль оси винта и вокруг оси винта. Встречаются левые и правые винты.

Примерами природных винтов являются: бивень нарвала (небольшого китообразного, обитающего в северных морях) – левый винт; раковина улитки – правый винт; рога памирского барана – энантиоморфы (один рог закручен по левой, а другой по правой спирали). Спиральная симметрия не бывает идеальной, например, раковина у моллюсков сужается или расширяется на конце.

Симметрия, проявляясь в самых различных объектах материального мира, несомненно, отражает наиболее общие, наиболее фундаментальные его свойства. Поэтому исследование симметрии разнообразных природных объектов и сопоставление его результатов является удобным и надежным инструментом познания основных закономерностей существования материи.

Симметрия — это и есть равенство в широком смысле этого слова. Значит, если имеет место симметрия, то чего-то не произойдет и, значит, что-то обязательно останется неизменным, сохранится.

1. Урманцев Ю. А. “Симметрия природы и природа симметрии”. Москва, Мысль, 1974г.

2. В.И. Вернадский. Химическое строение биосферы Земли и ее окружения. М., 1965.

Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого знания, его широко используют все без исключения направления современной науки. Принципы симметрии играют важную роль в физике и математике, химии и биологии, физике и архитектуре, живописи и скульптуре, поэзии и музыке. Законы природы, управляющие неисчерпаемой в своём многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии.

Содержание

Введение
1. Симметрия и виды симметрии.
─ осевая,
─ центральная,
─ скользящая,
─ зеркальная.
2. Симметрия в растениях.
3. Симметрия в мире насекомых, рыб, птиц, животных.
4. Симметрия в неживой природе.
5. Симметрия в архитектуре, скульптуре.
Заключение.
Литература.

Вложенные файлы: 1 файл

геомтрия.docx

Выполнила обучающаяся 10 б класса

Учитель математике Иванова Е.В.

1. Симметрия и виды симметрии.

2. Симметрия в растениях.

3. Симметрия в мире насекомых, рыб, птиц, животных.

4. Симметрия в неживой природе.

5. Симметрия в архитектуре, скульптуре.

Симметрия – это идея, с помощью которой

человек веками пытался объяснить и создать

порядок, красоту и совершенство.

Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого знания, его широко используют все без исключения направления современной науки. Принципы симметрии играют важную роль в физике и математике, химии и биологии, физике и архитектуре, живописи и скульптуре, поэзии и музыке. Законы природы, управляющие неисчерпаемой в своём многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии.

С симметрией мы встречаемся всюду. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого знания; его широко используют все без исключения направления современной науки.

Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке. Законы природы, управляющие неисчерпаемой в своем многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии.

Существуют, в принципе, две группы симметрий.

К первой группе относится симметрия положений, форм, структур. Это та симметрия, которую можно непосредственно видеть. Она может быть названа геометрической симметрией.

Вторая группа характеризует симметрию физических явлений и законов природы. Эта симметрия лежит в самой основе естественнонаучной картины мира: ее можно назвать физической симметрией.

На протяжении тысячелетий в ходе общественной практики и познания законов объективной действительности человечество накопило многочисленные данные, свидетельствующие о наличии в окружающем мире двух тенденций: с одной стороны, к строгой упорядоченности, гармонии, а с другой - к их нарушению. Люди давно обратили внимание на правильность формы кристаллов, цветов, пчелиных сот и других естественных объектов и воспроизводили эту пропорциональность в произведениях искусства, в создаваемых ими предметах, через понятие симметрии.

В одном смысле симметричное означает нечто весьма пропорциональное, сбалансированное; симметрия показывает тот способ согласования многих частей, с помощью которого они объединяются в целое. Второй смысл этого слова - равновесие. Еще Аристотель говорил о симметрии как о таком состоянии, которое характеризуется соотношением крайностей. Из этого высказывания следует, что Аристотель, пожалуй, был ближе всех к открытию одной из самых фундаментальных закономерностей Природы - закономерности о ее двойственности.

В настоящее время в естествознании преобладают определения категорий симметрии и асимметрии на основании перечисления определенных признаков. Например, симметрия определяется как совокупность свойств: порядка, однородности, соразмерности, гармоничности. Все признаки симметрии во многих ее определениях рассматриваются равноправными, одинаково существенными, и в отдельных конкретных случаях, при установлении симметрии какого-то явления, можно пользоваться любым из них. Так, в одних случаях симметрия - это однородность, в других - соразмерность и т. д. То же самое можно сказать и о существующих в частных науках определениях асимметрии.

1.Симметрия и виды симметрии.

Преобразование, при котором каждая точка А фигуры (или тела) преобразуется в симметричную ей относительно некоторой оси l точку А', называется осевой симметрией (l - ось симметрии).

Если точка А лежит на оси l , то она симметрична самой себе, т. е. А совпадает с А'. В частности, если при преобразовании симметрии относительно оси l фигура F переходит сама в себя, то она называется симметричной относительно оси l , а ось l называется осью симметрии.

Преобразование, переводящее каждую точку А фигуры (тела) в точку А', симметричную ей относительно центра О, называется преобразованием центральной симметрии или просто центральной симметрией.

Точка О называется центром симметрии и является неподвижной. Других неподвижных точек это преобразование не имеет.

Если при преобразовании центральной симметрии относительно центра О фигура F преобразуется в себя, то она называется симметричной относительно центра О. При этом центр О называется центром симметрии фигуры F.

Примерами фигур, обладающих центром симметрии, являются параллелограмм, окружность и т. д.

Скользящей симметрией называется такое преобразование, при котором последовательно выполняются осевая симметрия и параллельный перенос.

Все перечисленные преобразования будем называть преобразованиями симметрии.

Для преобразований симметрии имеют место следующие свойства:

1) отрезок переходит в равный ему отрезок;

2) угол переходит в равный ему угол;

3) окружность переходит в равную ей окружность;

4) любой многоугольник переходит в равный ему многоугольник и т. д.

5) параллельные прямые переходят в параллельные, перпендикулярные в перпендикулярные.

В геометрии существует еще один вид симметрии - симметрия относительно плоскости.

Если преобразование симметрии относительно плоскости переводит фигуру (тело) в себя, то фигура называется симметричной относительно плоскости, а данная плоскость – плоскостью симметрии этой фигуры.

В некоторых источниках, такую симметрию называют зеркальной. А зеркало не просто копирует объект, но и меняет местами передние и задние по отношению к зеркалу части объекта. В сравнении с самим объектом его зазеркальный двойник оказывается, вывернутым вдоль направления, перпендикулярного плоскости зеркала.

Примерами фигур – зеркальных отражений одна другой – могут служить правая и левая рука человека, правый и левый винты, части архитектурных форм, некоторые природные кристаллы и орнаменты.

2. Симметрия в растениях.

Исторически сложилось, что именно зеркальная симметрия (её называют геральдической) использовалась разными народами для изготовления предметов быта.

Внимательное наблюдение обнаруживает, что основу красоты многих форм, созданных природой, составляет симметрия, точнее все ее виды – от простейших до самых сложных.

В основе строения любой живой формы принцип симметрии.

Когда мы хотим нарисовать лист растения или бабочку, то нам приходится учитывать их осевую симметрию. Средняя жилка для листа и туловище для бабочки служит осью симметрии. Центральная симметрия характерна для кристаллов, низших животных и цветов.

Мы видим, что природа проектирует любой живой организм согласно определённой геометрической схеме, причём законы мироздания имеют чёткое обоснование.

Ярко выраженной симметрией обладают листья, ветви, цветы, плоды.

Зеркальная симметрия характерна для листьев, но встречается и у цветов.

Для цветов характерна поворотная симметрия.

3. Симметрия в мире насекомых, рыб, птиц, животных.

Симметрия встречается и в животном мире. Однако в отличие от мира растений симметрия в животном мире наблюдается не так часто.

Можно сказать, что каждое животное состоит из правой и левой половин. Например, правое и левое ухо, правый и левый глаз, правый и левый рог и т. д

Отметим, наконец, зеркальную симметрию человеческого тела (речь идёт о внешнем облике и строении скелета). Эта симметрия всегда являлась и является основным источником нашего эстетического восхищения хорошо сложенным человеческим телом.

4. Симметрия в неживой природе.

Воздействие на облик земной поверхности таких природных факторов, как ветер, вода, солнечный свет, весьма стихийно и часто носит беспорядочный характер. Однако песчаные дюны, галька на морском берегу, кратер потухшего вулкана имеют, как правило, геометрически правильные формы.

Именно кристаллы вносят в мир неживой природы очарование симметрии.

Он сыплет с неба мелкой крупой, летает вокруг фонарей огромными пушистыми хлопьями, стоит столбом в лунном свете ледяными иглами. Казалось бы, какая ерунда! Всего-то замёрзшая вода. Но сколько вопросов возникает у человека, глядящего на снежинки.

Раньше снежинки рассматривали исключительно как один из вариантов кристаллизированного вещества. Учёные задались вопросом том, почему они все разные и в то же время симметричные.

В итоге выяснилось, что снежинка – это группа кристалликов, образованная более чем из двухсот ледяных частичек.

Снежные кристаллы образуются из расположенных в безупречном порядке молекул воды. Каждая снежинка формируется из шестиугольной молекулы воды, поэтому все снежинки шестиугольные.

По мнению специалистов, главная особенность, определяющая форму кристалла, - это крепкая связь между молекулами воды, подобная соединению звеньев в цепи. Отсюда и симметрия.

Симметрия – это свойство кристаллов совмещаться друг с другом в различных положениях путём поворотов, параллельных переносов, отражений.

Существует две основные формы снежинок – шестиугольная пластинка и шестиугольная звёздочка. Но в их пределах возможны самые различные комбинации, сейчас их насчитывают около 130.

5. Симметрия в архитектуре, скульптуре.

Нагляднее всего видна симметрия в архитектуре. Особенно блистательно использовали симметрию в архитектурных сооружениях древние зодчие. Причём древнегреческие архитекторы были убеждены, что в своих произведениях они руководствуются законами, которые управляют природой. В сознании древних греков симметрия стала олицетворением закономерности, целесообразности, красоты.

Не говоря уже об архитектуре и скульптуре, симметрия господствует в изобразительном искусстве Древнего Египта, Древней Греции и Рима, Средневековья и Возрождения.

Зеркальная симметрия широко встречается в произведениях искусства примитивных цивилизаций и в древней живописи. Средневековые религиозные картины также характеризуются этим видом симметрии. Композиция таких картин скучна, поскольку симметрия слишком очевидна.

Человеческие представления о красивом формируются под влиянием того, что человек видит в живой природе. В различных своих творениях, очень далёких друг от друга, она может использовать одни и те же принципы. И человек в живописи, скульптуре, архитектуре, музыке применяет эти же принципы. Основополагающими принципами красоты при этом являются пропорции (в частности "золотая пропорция") и симметрия.

Трудно найти человека, который не имел бы какого-либо представления о симметрии, которая объясняет наличие определенного порядка, закономерность в расположении частей чего-либо.

2. Компанеец А.С. Симметрия в микро- и макро мире.- М., Наука, 1978. с. 276.

3. Наливкин Д.В. Элементы симметрии органического мира. – Изв. Биол. Науч – исслед. ин-та при Пермском ун-те, т. 3, 1952, вып. 8, с. 291-297.

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.



Министерство образования и науки Российской Федерации

Набережные Челны 2013

2.Виды геометрических симметрий

4.Симметрия в религиозных символах

5.Симметрия в социальных взаимодействиях

Отсутствие или нарушение симметрии называется асимметрией или аритмией .

В математике — симметрийные свойства описываются с помощью теории групп .

Симметрии могут быть точными или приближёнными.

Геометрическая симметрия — это наиболее известный тип симметрии для многих людей. Геометрический объект называется симметричным, если после того как он был преобразован геометрически, он сохраняет некоторые исходные свойства. Например, круг повёрнутый вокруг своего центра будет иметь ту же форму и размер, что и исходный круг. Поэтому круг называется симметричным относительно вращения (имеет осевую симметрию). Виды симметрий возможных для геометрического объекта, зависят от множества доступных геометрических преобразований и того какие свойства объекта должны оставаться неизменными после преобразования.

Виды геометрических симметрий:

  • Зеркальная симметрия
  • Осевая симметрия
  • Вращательная симметрия
  • Центральная симметрия
  • Скользящая симметрия
  • Точечная симметрия
  • Поступательная симметрия
  • Винтовая симметрия
  • Неизометричная симметрия
  • Фрактальные симметрии

Зеркальная симметрия или отражение — движение евклидова пространства , множество неподвижных точек которого является гиперплоскостью (в случае трехмерного пространства — просто плоскостью). Термин зеркальная симметрия употребляется также для описания соответствующего типа симметрии объекта, то есть, когда объект при операции отражения переходит в себя. Это математическое понятие описывает соотношение в оптике объектов и их (мнимых) изображений при отражении в плоском зеркале, а также многие законы симметрии (в кристаллографии, химии, физике, биологии и т.д., а также в искусстве и искусствоведении)

Осевая симметрия. В размерности 2 (то есть на плоскости) гиперплоскость представляет собой прямую , говорят об осевой симметрии или симметрии относительно прямой . Для фигуры, переходящей в себя при осевой симметрии, прямая, образованная неподвижными точками движения, называется осью симметрии этой фигуры. Примером оси симметрии отрезка является его серединный перпендикуляр . Любое движение плоскости можно представить в виде композиции не более чем трёх осевых симметрий.

Вращательная симметрия — термин, означающий симметрию объекта относительно всех или некоторых собственных вращений m -мерного евклидова пространства . Собственными вращениями называются разновидности изометрии , сохраняющие ориентацию. Таким образом, группа симметрии, отвечающая вращениям, есть подгруппа группы E +( m ).

Трансляционная симметрия может рассматриваться как частный случай вращательной — вращение вокруг бесконечно-удалённой точки. При таком обобщении группа вращательной симметрии совпадает с полной E +( m ). Такого рода симметрия неприменима к конечным объектам, поскольку делает всё пространство однородным, однако она используется в формулировке физических закономерностей.

Совокупность собственных вращений вокруг фиксированной точки пространства образуют специальную ортогональную группу SO(m) — группу ортогональных матриц m × m с определителем , равным 1. Для частного случая m = 3 группа носит специальное название — группа вращений .

Центральной симметрией (иногда центральной инверсией) относительно точки A называют преобразование пространства , переводящее точку X в такую точку X′ , что A — середина отрезка XX′ . Центральная симметрия с центром в точке A обычно обозначается через , в то время как обозначение можно перепутать с осевой симметрией . Фигура называется симметричной относительно точки A, если для каждой точки фигуры симметричная ей точка относительно точки A также принадлежит этой фигуре. Точка A называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией. Другие названия этого преобразования — симметрия с центром A . Центральная симметрия в планиметрии является частным случаем поворота , точнее, является поворотом на 180 градусов .

Скользящая симметрия — изометрия евклидовой плоскости . Скользящей симметрией называют композицию симметрии относительно некоторой прямой и переноса на вектор , параллельный (этот вектор может быть и нулевым). Скользящую симметрию можно представить в виде композиции 3 осевых симметрий ( теорема Шаля ).

Асимметрия — отсутствие симметрии. Иногда этот термин используется для описания организмов, лишённых симметрии первично, в противоположность диссимметрии — вторичной утрате симметрии или отдельных её элементов.

Понятия симметрии и асимметрии альтернативны. Чем более симметричен организм, тем менее он асимметричен и наоборот. Небольшое количество организмов полностью асимметричны. При этом следует различать изменчивость формы (например у амёбы ) от отсутствия симметрии. В природе и, в частности, в живой природе симметрия не абсолютна и всегда содержит некоторую степень асимметрии. Например, симметричные листья растений при сложении пополам в точности не совпадают.

Симметрия в религиозных символах:

ряд 1. христианском , иудейском , даосийском ;
ряд 2. исламском , буддийском , синтоистском ;
ряд 3. сикхском , в вере Бахаи , индуистском .

Предполагается, что тенденция людей видеть цель в симметрии, является одной из причин, почему симметрия часто является неотъемлемой частью символов мировых религий. Вот лишь некоторые из многих примеров, изображённые на рисунке справа.

Симметрия в социальных взаимодействиях .

Руководитель – учитель математики Бакова Татьяна Геннадьевна.

  1. Введение………………………………………………………… стр. 3
  2. Основная часть.
  1. Понятие симметрии……………………………………….стр. 4
  2. Виды симметрии…………………………………………..стр. 5
  3. Симметрия в жизни…………………………..…………. стр. 5
  4. Симметричность букв…………………………………….стр. 6
  5. Симметрия в одежде.……………………………………..стр. 6
  6. Асимметрия………………..………………………………стр. 7
  1. Заключение……………………………………………………….стр. 7
  2. Список использованных источников ………………. стр. 7
  3. Приложение……………………………………………………. стр. 8

Мы живём в разнообразии форм живой и неживой природы. Нам встречаются такие идеальные образцы, чей вид привлекает наше внимание. Мы постоянно смотрим на различные сооружения, наблюдаем за цветами и любуемся их красотой. Основу красоты многих форм, созданных природой и человеком, составляет симметрия, точнее, все ее виды – от простейших до самых сложных.

Надеюсь, что моя работа будет интересна широкому кругу любителей математики.

Цель исследования: научиться видеть симметричные фигуры, исследовать симметрию в природе и на практике.

Объект исследования : симметрия

Предмет исследования: симметрия в природе и на практике

  • анализ источников информации;
  • наблюдение;
  • анкетирование;
  • обработка полученных результатов.

Существует старинная притча о буридановом осле. У одного философа по имени Буридан был осёл. Однажды, уезжая надолго, философ положил перед ослом две совершенно одинаковые охапки сена - одну слева, а другую справа. Осёл не смог решить, с какой охапки ему начать, и умер с голоду.

Притча об осле - это шутка. Однако если посмотреть на уравновешенные весы, то они напоминают чем-то притчу о буридановом осле. Левое и правое настолько одинаковы, что нельзя отдать предпочтение ни тому, ни другому. Иными словами, в обоих случаях мы имеем дело с симметрией, которая нам показывает равноправие левого и правого (Приложение 1).

Что такое симметрия? Почему симметрия буквально царит во всём окружающем мире?

Понятие симметрии приходит через всю многовековую историю человеческого творчества.

Математически представление о симметрии было дано сравнительно недавно – в XIX веке. В наиболее простой трактовке известного немецкого математика Германа Вейля (1855-1955) современное определение симметрии выглядит так: симметричным называется такой объект, который можно как-то изменять, получая в результате то же, с чего начали.

Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство (Г. Вейль)

Основных видов симметрии – три: осевая, центральная и зеркальная. Об этом знают 13% опрошенных. По одному виду указали 13%, по два вида симметрии – 31 % (Приложение 2).

В курсе математики 5 класса мы познакомились с симметричными фигурами, т.е. с фигурами, которые имеют ось симметрии.

Точки M и N называют симметричными относительно прямой l, если прямая l перпендикулярна отрезку MN и делит его пополам.

Заметим, что любые две фигуры, симметричные относительно некоторой прямой, равны (Приложение 3).

Все точки фигуры, имеющие ось симметрии, не принадлежащие этой оси, можно разделить на пары симметричных точек.

Кроме осевой симметрии, можно рассматривать и центральную симметрию.

Точки A и А 1 называют симметричными относительно точки О, если точка О является серединой отрезка АА 1 .

Любые две фигуры, симметричные относительно некоторой точки, равны (Приложение 4).

Все точки окружности можно разбить на пары точек, симметричных относительно точки О. В этом случае говорят, что окружность имеет центр симметрии – точку О. Также центр симметрии имеют, например, прямоугольник, эллипс, отрезок.

Симметрию можно обнаружить практически везде, если знать, как её искать. Наши ответчики знают, что симметрия встречается почти везде: в природе, в геометрии, в жизни, вокруг нас, в творениях человека, в архитектуре, в домашнем обиходе, в строительстве. А симметричными фигурами являются очки, бабочка, цветок, соты пчёл, тело человека, лист дерева, снежинки.

Симметричны практически все транспортные средства, начиная с телеги и кончая реактивным лайнером, предметы домашнего обихода (мебель, посуда), некоторые музыкальные инструменты: гитара, скрипка, барабан…

Симметрия есть в зубчатом колесе, цилиндре и других запчастях.

На уроках математики мы рассмотрели симметричность букв в русском языке. Имеют вертикальную ось симметрии: А; Д; Л; М; П; Т; Ф; Ш.
горизонтальную ось симметрии: В; Е; З; К; С; Э; Ю.
и вертикальную, и горизонтальную оси симметрии: Ж; Н; О; Х.
Ни вертикальные, ни горизонтальные оси: Б; Г; И; Й; Р; У; Ц; Ч; Щ; Я.

Симметрия у живых организмов служит не только для красоты; она прежде всего связана с приспособлением их к окружающему миру, с их жизнестойкостью. Благодаря симметрии организм приобретает устойчивость. На симметрию в живой природе обратили внимание ещё в Древней Греции в 5 веке до нашей эры ученики Пифагора (Приложение 5).

Наблюдая за симметрией в природе, человек стал воспринимать ее как своеобразную норму прекрасного.

В одежде симметрия может наблюдаться в различных проявлениях: в силуэте, в конструкции, размещении деталей (карманов, клапанов, погончиков и т.д.), распределении цветовых пятен и т.п.. Симметричная одежда красива. Представьте себе брюки, у которых одна штанина короче другой, или пиджак, у которого с одной стороны есть воротник, а с другой – нет. Отсутствие симметрии в некоторых деталях недопустимо, т.к. это некрасиво (Приложение 6).

В русском языке есть симметричные слова – палиндромы, которые можно читать одинаково в двух направлениях: шалаш, казак, радар, Алла, Анна, кок, поп.

Могут быть палиндромическими и предложения. Написаны тысячи таких предложений.

А роза упала на лапу Азора.

Кинь лёд зебре бобёр бездельник.

Наблюдая и осмысливая симметрию в природе, человек стал воспринимать ее как своеобразную норму прекрасного. Симметрия присутствует также в регулярности смены дня и ночи, времен года.

Природа – наука – искусство. Во всём мы обнаруживаем извечное единоборство симметрии и асимметрии.

Именно симметрия - это уравновешенность, упорядоченность, красота, совершенство, наконец, целесообразность.

Работая над темой, я убедился, что знание математических фактов и законов необходимо для изучения внешнего мира.

4. Список использованных источников

1. Тарасов Л. В. Этот удивительно симметричный мир: Пособие для учащихся. – М.: Просвещение, 1982. – 176с., ил.

2. Математика: 6 класс: учебник для обучающихся образовательных организаций / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. – 3-е изд., стереотип. – М.: Вентана - Граф, 2018. – 304с.: ил.

Читайте также: