Сообщение перспектива развития электротехники

Обновлено: 02.07.2024

Решающая роль в современном научно-техническом прогрессе принадлежит электрификации. Как известно, под электрификацией понимается широкое внедрение электрической энергии в родное хозяйство и быт, и сегодня нет такой области техники, в том или ином виде не использовалась бы электрическая энергия в будущем ее применение будет еще более расширяться.

Под электротехникой в широком смысле слова подразумевается область науки и техники, использующая электрические и магнитные явления для практических целей.

Это общее определение электротехники можно раскрыть более подробно, выделив те основные области, в которых используют электрические и магнитные явления: преобразование энергии природы (энергетическая); превращение вещества природы (технологическая); получение и передача сигналов или информации (информационная). Поэтому более полно электротехнику моя определить, как область науки и техники, использующую электрические и магнитные явления для осуществления процессов преобразования энергии и превращения вещества, а также для передачи сигналов и информации.

Основные этапы развития электротехники

В последние десятилетия из электротехники выделилась промышленная электроника с тремя ее направлениями: информационное, энергетическое и технологическое, которые с каждым годом приобретают все большее значение в ускорении научно-технического прогресса.

В развитии электротехники условно можно выделить следующие шесть этапов.

1. Становление электростатики (до 1800 г.)

К этому периоду относятся первые наблюдения электрических и магнитных явлений, создание первых электростатических машин и приборов, исследования атмосферного электричества, разработка первых теорий электричества, установление закона Кулона, зарождение электромедицины.

2. Закладка фундамента электротехники, ее научных основ

3. Зарождение электротехники (1830—1870 гг.)

Самым знаменательным событием этого периода явилось открытие М. Фарадеем явления электромагнитной индукции, создание первого электромашинного генератора. Разрабатываются разнообразные конструкции электрических машин и приборов, формулируются законы Ленца и Кирхгофа, создаются первые источники электрического освещения, первые электроавтоматические приборы, зарождается электроизмерительная техника. Однако широкое практическое применение электрической энергии было невозможно из-за отсутствия экономичного электрического генератора.

4. Становление электротехники как самостоятельной отрасти техники (1870—1890 гг.)

Создание первого измышленного электромашинного генератора с самовозбуждением (динамомашины) открывает новый этап в развитии электротехники, которая становится самостоятельной отраслью техники.

Одновременно разрабатываются способы передачи электрической энергии на большие расстояния посредством значительного повышения напряжения линий электропередач.

Дальнейшее развитие электрического освещения способствовало совершенствованию электрических машин и трансформаторов; в середине 80-х гг. началось серийное производство однофазных трансформаторов с замкнутой магнитной системой (М. Дери, О. Блати, К. Циперновский).

Идея П. Н. Яблочкова о централизованном производстве и распределении электроэнергии претворяется в жизнь, начинается строительство центральных электростанций переменного тока. Однако развивающееся производство требовало комплексного решения сложнейшей научно-технической проблемы: экономичной передачи электроэнергии на дальние расстояния и создания экономичного и надежного электрического двигателя, удовлетворяющего требованиям промышленного электропривода. Эта проблема была успешно решена на основе многофазных, в частности трехфазных систем.

Основные этапы развития электротехники

5. Становление и развитие электрификации (с 1891 г.)

Важнейшей предпосылкой разработки трехфазных систем явилось открытие (1888 г.) явления вращающегося магнитного поля. Первые многофазные двигатели были двухфазными.

Трехфазная система оказалась наиболее рациональной, так как имела ряд преимуществ как перед однофазными цепями, так и перед другими многофазными системами. В разработку трехфазных систем большой вклад сделали ученые и инженеры разных стран. Но как будет показано далее, наибольшая заслуга принадлежит М. О. Доливо-Добровольскому, сумевшему придать своим работам практический характер, создавшему трехфазные синхронные генераторы и асинхронные двигатели, трансформаторы.

Убедительной иллюстрацией преимуществ трехфазных цепей была знаменитая Лауфен-Франкфуртская электропередача (1891 г.), сооруженная при активном участии Доливо-Добровольского.

С этого времени начинается бурное развитие электрификации: строятся мощные электростанции, возрастает напряжение электропередач, разрабатываются новые конструкции электрических машин, аппаратов и приборов. Электрический двигатель занимает господствующее положение в системе промышленного привода. Процесс электрификации постепенно охватывает все новые области производства: развивается электрометаллургия, электротермия, электрохимия. Электрическая энергия начинает все более широко использоваться в самых разнообразных отраслях промышленности, на транспорте, в сельском хозяйстве и в быту.

Широкое применение переменного тока потребовало теоретического осмысления и математического описания физических процессов, происходящих в электрических машинах, линиях электропередач, трансформаторах. Расширяются исследования явлений в цепях переменного тока с помощью векторных и круговых диаграмм.

Огромную прогрессивную роль в анализе процессов в цепях сыграл комплексный метод, предложенный в 1893—1897 гг. Ч. П. Штейнмецом.

С развитием крупных энергосистем и увеличением дальности электропередач возникла серьезная научно-техническая проблема обеспечения устойчивости параллельной работы генераторов электростанции, которая была решена отечественными и зарубежными учеными. Теоретические основы электротехники становятся базой учебных дисциплин в вузах и фундаментом научных исследований в области электротехники.

Основные этапы развития электротехники

6. Зарождение и развитие электроники (первая четверть XX в.)

Рост потребности в постоянном токе (электрохимия, электротранспорт и др.) вызвал необходимость в развитии преобразовательной техники, что привело к зарождению, а затем бурному развитию промышленной электроники.

Электротехника становится базой для разработки автоматизированных систем управления энергетическими и производственными процессами. Создание разнообразных электронных, в особенности микроэлектронных устройств позволяет коренным образом повысить эффективность автоматизации процессов вычислений, обработки информации, осуществлять моделирование сложных физических явлений, решение логических задач и др. при значительном снижении габаритов, устройств, повышении их надежности и экономичности.

Значительный прогресс в электронике наметился после создания больших интегральных схем (БИС), быстродействие их измеряется миллиардными долями секунды, а минимальные размеры составляют 2—3 мкм. Внедрение БИС привело к созданию микропроцессоров, осуществляющих цифровую обработку информации по программе, и микроЭВМ.

Быстрое развитие микроэлектроники обусловило возникновение и заметный прогресс новой области науки и техники — информатики. Уже в начале 80-х гг. как в нашей стране, так и за рубежом стали изготовлять микропроцессоры и микроЭВМ в одном кристалле. Все это дает огромный эффект в повышении надежности, снижении габаритов и потребляемой энергии микроэлектронных устройств, используемых в различных производственных процессах, автоматизированных систем управления, на транспорте, в бытовых устройствах.

К основным направлениям развития современной электротехники относятся:

§ разработка и выпуск электротехнических устройств и электромашин с использованием современного микропроцессорного управления;

§ повышение эксплуатационной надежности, унификации и улучшение энергетических показателей электротехнических аппаратов;

§ расширение области применения электротехнических аппаратов и электрических машин

§ развитие научно-исследовательских работ по созданию математических моделей и технологических процессов, машинных средств проектирования электротехнических изделий;

§ подготовка инженерно-технических и научных кадров, способных проектировать, создавать и эксплуатировать современные автоматизированный электропривод и электротехнические аппараты.

Решение этих и ряда других проблем позволит существенно улучшить технико-экономические характеристики электротехнических аппаратов и создать тем самым базу для дальнейшего технического прогресса промышленного производства.

Тема 2 Постоянный и переменный ток.

Короткое замыкание. Перегрузки. Тепловая защита

От коротких замыканий электрическую цепь сохраняет предохранитель. Внутри зданий, в отдельных квартирах все провода каждой линии должны быть защищены предохранителями.

Нельзя нарушать правила эксплуатации электроустановок, заменяя в предохранителе плавкую вставку металлическими проволочками, что создаст опасность пожара при коротком замыкании. При защите электромоторов номинальный ток плавкой вставки должен быть Iном = Iпуск/2,5 = 0,4·Iпуск. Но плавкий предохранитель защищает от коротких замыканий, а не защищает от длительных перегрузок.

Для защит электродвигателя от перегрузок устанавливают тепловое реле. Так как тепловое реле из-за биметаллической пластины обладает значительной тепловой энергией, то оно плохо защищает от токов коротких замыканий и плавкий предохранитель является его необходимым дополнением.

Короткие замыкания и перегрузки. Тепловая защита

Коротким замыканием называется всякое ненормальное соединение проводов с малым сопротивлением. КЗ сопровождается резким увеличением тока, большое количество теплоты. Большая часть пожаров происходит из-за коротких замыканий. При использовании теплового действия токов КЗ применяют плавкие предохранители и тепловые реле.

Тема 3 Электрические измерения.

Электроизмерительные приборы. Виды и методы электрических

Классификация электроизмерительных приборов по роду измеримой величины

Электроизмерительные приборы классифицируются и по роду измеряемой ими величины, так как приборы одного и того же принципа действия, но предназначенные для измерения разных величин могут значительно отличаться друг от друга по своей конструкции, не говоря уже о шкале прибора.

В таблице 1 приведен перечень условных обозначений наиболее употребительных электроизмерительных приборов.

Таблица 1. Примеры обозначения единиц измерения, их кратных и дольных значений

Наименование Обозначение Наименование Обозначение
Килоампер kA Коэффициент мощности cos φ
Ампер A Коэффициент реактивной мощности sin φ
Миллиампер mA Тераом
Микроампер μA Мегаом
Киловольт kV Килоом
Вольт V Ом Ω
Милливольт mV Миллиом
Мегаватт MW Микром μΩ
Киловатт kW Милливебер mWb
Ватт W Микрофарада mF
Мегавар MVAR Пикофарада pF
Киловар kVAR Генри H
Вар VAR Миллигенри mH
Мегагерц MHz Микрогенри μH
Килогерц kHz Градус стоградусной температурной шкалы o C
Герц Hz
Градусы угла сдвига фаз φ o

Классификация электроизмерительных приборов по степени точности

Устройство


На рисунке: 1 - вал, 2,6 - подшипники, 3,8 - подшипниковые щиты, 4 - лапы, 5 - кожух вентилятора, 7 - крыльчатка вентилятора, 9 - короткозамкнутый ротор, 10 - статор, 11 - коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.


Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется "беличьей клеткой". В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.


Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов. Подробнее о фазном роторе можно прочитать в статье - асинхронный двигатель с фазным ротором.


Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s - это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении


.

Скольжение — это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр - критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме - 1 - 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Машина постоянного тока — электрическая машина, предназначенная для преобразования механической энергии в электрическую постоянного тока (генератор) или для обратного преобразования (двигатель). Машина постоянного тока обратима.

Машина постоянного тока образуется из синхронной обращённой конструкции, если её якорь снабдить коллектором, который в генераторном режиме играет роль выпрямителя, а в двигательном — преобразователя частоты. Благодаря наличию коллектора по обмотке якоря проходит переменный ток, а во внешней цепи, связанной с якорем, — постоянный.


Различают следующие виды машин постоянного тока:

· по наличию коммутации:

o с коммутацией (обычные);

o без коммутации (униполярный генератор и униполярный электродвигатель);

· по типу переключателей тока:

o с коллекторными переключателями тока (с щёточно-коллекторным переключателем);

o с бесколлекторными переключателями тока (с электронным переключателем (вентильный электродвигатель)).

o микромашины — до 500 Вт;

o малой мощности — 0,5-10 кВт;

o средней мощности — 10-200 кВт;

o большой мощности — более 200 кВт.

· в зависимости от частоты вращения:

o тихоходные — до 300 об./мин.;

o средней быстроходности — 300—1500 об./мин.;

o быстроходные — 1500-6000 об./мин.;

o сверхбыстроходные — более 6000 об./мин.

· по расположению вала:

Принцип действия

Машина постоянного тока может работать в двух режимах: двигательном и генераторном, в зависимости от того, какую энергию к ней подвести — если электрическую, то электрическая машина будет работать в режиме электродвигателя, а если механическую — то будет работать в режиме генератора. Однако электрические машины, как правило, предназначены заводом изготовителем для одного определенного режима работы — или в режиме генератора, или электродвигателя.

Электродвигатель

Электродвигатели постоянного тока стоят почти на каждом автомобиле — это стартер, электропривод стеклоочистителя, вентилятор отопителя салона и др.

В роли индуктора выступает статор, на котором расположена обмотка. На неё подаётся постоянный ток, в результате чего вокруг неё создаётся постоянное магнитное поле. Обмотка ротора состоит из проводников, запитанных через коллектор. В результате на них действуют пары сил Ампера, которые вызывают вращающий момент. Направление сил определяется по правилу "левой руки". Однако этот вращающий момент способен повернуть ротор только на 180 градусов, после чего он остановится. Чтобы это предотвратить, используется щёточно-коллекторный узел, выполняющий роль переключателя полюсов и датчика положения ротора (ДПР).

Генератор

В генераторе индуктором также является статор, создающий постоянное магнитное поле между соответствующими полюсами. При вращении ротора, в проводниках обмотки якоря, перемещающихся в магнитном поле, по закону электромагнитной индукции наводится ЭДС, направление которой определяется по правилу правой руки. Переменная ЭДС обмотки якоря выпрямляется с помощью коллектора, через неподвижные щетки, посредством которых обмотка соединяется с внешней сетью.

Электронная проводимость

Электронная проводимость возникает при введении в кристалл германия с четырехвалентными атомами пятивалентных атомов (например, атомов мышьяка, ​As​).

Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказывается лишним, он легко отрывается от атома мышьяка и становится свободным.

Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки. Примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла, называется донорной примесью. В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника.

Основными носителями заряда являются электроны. Концентрация свободных электронов намного больше концентрации дырок. Такая проводимость называется электронной, а полупроводник, обладающий электронной проводимостью, называется полупроводником ​n​-типа.

Дырочная проводимость

Дырочная проводимость возникает при введении в кристалл германия трехвалентных атомов (например, атомов индия, ​In​). Атом индия с помощью своих валентных электронов создал ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия.

Примесь атомов, способных захватывать электроны, называется акцепторной примесью. В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места – дырки. На эти места могут переходить электроны из соседних ковалентных связей, что приводит к движению дырок по кристаллу.

Наличие акцепторной примеси резко снижает удельное сопротивление полупроводника за счет появления большого числа свободных дырок. Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов.

Проводимость такого типа называется дырочной проводимостью. Примесный полупроводник с дырочной проводимостью называется полупроводником p-типа. Основными носителями заряда в полупроводниках p-типа являются дырки.

p-n переход (электронно-дырочный переход) – это область контакта двух полупроводников с разными типами проводимости.

При контакте двух полупроводников n- и p-типов начинается процесс диффузии: дырки из p-области переходят в n-область, а электроны, наоборот, из n-области в p-область. В результате в n-области вблизи зоны контакта уменьшается концентрация электронов и возникает положительно заряженный слой. В p-области уменьшается концентрация дырок и возникает отрицательно заряженный слой. Таким образом, на границе полупроводников образуется двойной электрический слой, поле которого препятствует процессу диффузии электронов и дырок. Пограничная область раздела полупроводников с разными типами проводимости называется запирающим слоем. Объемные заряды этого слоя создают между p- и n-областями запирающее напряжение ​UЗ​, приблизительно равное 0,35 В для германиевых n-p-переходов и 0,6 В для кремниевых.

p-n-переход обладает свойством односторонней проводимости. Если полупроводник с p-n-переходом подключен к источнику тока так, что положительный полюс источника соединен с n-областью, а отрицательный – с p-областью, то напряженность поля в запирающем слое возрастает. Дырки в p-области и электроны в n-области будут смещаться от p-n-перехода, увеличивая тем самым концентрации неосновных носителей в запирающем слое. Ток через p-n-переход практически не идет. Напряжение, поданное на p-n-переход, в этом случае называют обратным. Незначительный обратный ток обусловлен только собственной проводимостью полупроводниковых материалов.

Если p-n-переход соединить с источником так, чтобы положительный полюс источника был соединен с p-областью, а отрицательный с n-областью, то напряженность электрического поля в запирающем слое будет уменьшаться, что облегчает переход основных носителей через контактный слой. Дырки из p-области и электроны из n-области, двигаясь навстречу друг другу, будут пересекать p-n-переход, создавая ток в прямом направлении. Сила тока через p-n-переход в этом случае будет возрастать при увеличении напряжения источника.

Способность p-n-перехода пропускать ток практически только в одном направлении используется в приборах, которые называются полупроводниковыми диодами.


Полупроводниковые диоды изготавливают из кристаллов кремния или германия. Они используются в выпрямителях для преобразования переменного тока в постоянный. Вольт-амперная характеристика полупроводникового диода приведена на рисунке.


Полупроводниковые диоды имеют малые размеры, длительный срок службы, механическую прочность. Существенным недостатком полупроводниковых диодов является зависимость их параметров от температуры.

Выпрямитель (электрического тока) — преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования входного электрического тока переменного направления в ток постоянного направления [1] (то есть однонаправленный ток), в частном случае — в постоянный выходной электрический ток.

Большинство выпрямителей создаёт не постоянный, а пульсирующий ток, для сглаживания пульсаций применяют фильтры.

Устройство, выполняющее обратную функцию — преобразование постоянного тока в переменный ток называется инвертором.

Из-за принципа обратимости электрических машин выпрямитель и инвертор являются двумя разновидностями одной и той же электрической машины (справедливо только для инвертора на базе электрической машины).

Тема 1 Введение.

Цель и задачи предмета. Перспективы развития электротехники.

Научно-технический прогресс происходит при все более широком при­менении электрической энергии. В наше время нет ни одной отрасли народного хозяйства, ни одной научно-исследовательской работы, где бы она так или иначе не использовалась.

Применение электроэнергии стало возможным с появлением электротехники— науки о практи­ческом применении электрических и магнитных явлений природы и законов, их описывающих.

Электротехника и электроника занимают важнейшее место в жизни современного общества, так как в промышленности, транспорте, сельском хозяйстве, быту, медицине, культуре они способствуют карди­нальному изменению экономических и социальных условий жизни человека.

Совершенствование энергетического оборудования дает воз­можность снижать удельные расходы топлива, капитальные за­траты на сооружение электростанций и себестоимость электро­энергии. Электрическая энергия, вырабатываемая электростан­циями, широко используется в промышленности, сельском хо­зяйстве, на транспорте и для бытовых нужд.

Для привода в движение станков, машин и различных меха­низмов на заводах, фабриках, и на других производст­вах в настоящее время преимущественно пользуются удобными и экономичными электрическими двигателями.

В электрических печах плавят металл, получают сталь и раз­личные сплавы.

Электричество широко применяется при получении алюми­ния, различных химических продуктов и многих других веществ. Электрическая сварка и резка металлов имеют чрезвычайно большое распространение.

Только с развитием электротехники появилась возможность применять в промышленности новые технологические процессы, осуществлять широкую автоматизацию производства, создавать новые высокопроизводительные машины.

Электричество приводит в движение электропоезда, трамваи и троллейбусы, поднимает тяжести, помогает находить руды, уголь и нефть в недрах земли.

Внедрение электрической энергии в сельское хозяйство поз­воляет максимально механизировать большинство самых трудо­емких работ, резко сократить сроки их выполнения и значитель­но увеличить выпуск сельскохозяйственной продукции.

Электрическая энергия широко применяется и в домашнем быту.

Благодаря электричеству стали возможны многие замеча­тельные открытия нашего времени. Радиосвязь и радиолокация, проникновение в недра атома и разрушение его — все это произ­водится при помощи электричества. Электричество позволяет нам слышать за многие тысячи километров, дает возможность видеть в полной темноте и на значительном расстоянии, откры­вает глазу работу внутренних органов человеческого тела и ле­чит болезни.

К основным направлениям развития современной электротехники относятся:

  • разработка и выпуск электротехнических устройств и электромашин с использованием современного микропроцессорного управления;
  • повышение эксплуатационной надежности, унификации и улучшение энергетических показателей электротехнических аппаратов;
  • расширение области применения электротехнических аппаратов и электрических машин
  • развитие научно-исследовательских работ по созданию математических моделей и технологических процессов, машинных средств проектирования электротехнических изделий;
  • подготовка инженерно-технических и научных кадров, способных проектировать, создавать и эксплуатировать современные автоматизированный электропривод и электротехнические аппараты.

Решение этих и ряда других проблем позволит существенно улучшить технико-экономические характеристики электротехнических аппаратов и создать тем самым базу для дальнейшего технического прогресса промышленного производства.

Научно-технический прогресс происходит при все более широком при­менении электрической энергии. В наше время нет ни одной отрасли народного хозяйства, ни одной научно-исследовательской работы, где бы она так или иначе не использовалась.

Применение электроэнергии стало возможным с появлением электротехники— науки о практи­ческом применении электрических и магнитных явлений природы и законов, их описывающих.

Электротехника и электроника занимают важнейшее место в жизни современного общества, так как в промышленности, транспорте, сельском хозяйстве, быту, медицине, культуре они способствуют карди­нальному изменению экономических и социальных условий жизни человека.




Совершенствование энергетического оборудования дает воз­можность снижать удельные расходы топлива, капитальные за­траты на сооружение электростанций и себестоимость электро­энергии. Электрическая энергия, вырабатываемая электростан­циями, широко используется в промышленности, сельском хо­зяйстве, на транспорте и для бытовых нужд.

Для привода в движение станков, машин и различных меха­низмов на заводах, фабриках, и на других производст­вах в настоящее время преимущественно пользуются удобными и экономичными электрическими двигателями.

В электрических печах плавят металл, получают сталь и раз­личные сплавы.

Электричество широко применяется при получении алюми­ния, различных химических продуктов и многих других веществ. Электрическая сварка и резка металлов имеют чрезвычайно большое распространение.

Только с развитием электротехники появилась возможность применять в промышленности новые технологические процессы, осуществлять широкую автоматизацию производства, создавать новые высокопроизводительные машины.

Электричество приводит в движение электропоезда, трамваи и троллейбусы, поднимает тяжести, помогает находить руды, уголь и нефть в недрах земли.

Внедрение электрической энергии в сельское хозяйство поз­воляет максимально механизировать большинство самых трудо­емких работ, резко сократить сроки их выполнения и значитель­но увеличить выпуск сельскохозяйственной продукции.

Электрическая энергия широко применяется и в домашнем быту.

Благодаря электричеству стали возможны многие замеча­тельные открытия нашего времени. Радиосвязь и радиолокация, проникновение в недра атома и разрушение его — все это произ­водится при помощи электричества. Электричество позволяет нам слышать за многие тысячи километров, дает возможность видеть в полной темноте и на значительном расстоянии, откры­вает глазу работу внутренних органов человеческого тела и ле­чит болезни.

К основным направлениям развития современной электротехники относятся:

  • разработка и выпуск электротехнических устройств и электромашин с использованием современного микропроцессорного управления;
  • повышение эксплуатационной надежности, унификации и улучшение энергетических показателей электротехнических аппаратов;
  • расширение области применения электротехнических аппаратов и электрических машин
  • развитие научно-исследовательских работ по созданию математических моделей и технологических процессов, машинных средств проектирования электротехнических изделий;
  • подготовка инженерно-технических и научных кадров, способных проектировать, создавать и эксплуатировать современные автоматизированный электропривод и электротехнические аппараты.

Решение этих и ряда других проблем позволит существенно улучшить технико-экономические характеристики электротехнических аппаратов и создать тем самым базу для дальнейшего технического прогресса промышленного производства.

Одна из основных проблем, стоящих перед электроникой, связана с требованием увеличения количества обрабатываемой информации вычислительными и управляющими электронными системами с одновременным уменьшением их габаритов и потребляемой энергии.

Эта проблема решается путем:

· создания полупроводниковых интегральных схем, обеспечивающих время переключения до 10 -11 сек;

· увеличения степени интеграции на одном кристалле до миллиона и более транзисторов размером менее 1-2 мкм на основе использования нано-технологий и в перспективе – молекулярной электроники;

· использования в интегральных схемах устройств оптической связи и оптоэлектронных преобразователей, сверхпроводников;

· разработки запоминающих устройств емкостью несколько гигабайт на одном кристалле;

· применения лазерной и электронно-лучевой коммутации;

· расширения функциональных возможностей интегральных схем (например, переход от микропроцессора к мини-ЭВМ на одном кристалле);

· перехода от двумерной (планарной) технологии интегральных схем к трехмерной (объемной) и использования сочетания различных свойств твердого тела в одном устройстве;

· разработки и реализации принципов и средств стереоскопического телевидения, обладающего большей информативностью по сравнению с обычном;

· создания электронных приборов, работающих в диапазоне миллиметровых и субмиллиметровых волн, для широкополосных (более эффективных) систем передачи информации, а также приборов для линий оптической связи;

· разработки мощных, с высоким к.п.д., приборов СВЧ и лазеров для энергетического воздействия на вещество и направленной передачи энергии (например, из космоса).

Одна из тенденций развития электроники – проникновение ее методов и средств в биологию (для изучения клеток и структуры живого организма и воздействия на него) и медицину (для диагностики, терапии, хирургии).

Гост

ГОСТ

Основная проблема развития электроники и пути ее решения

Электроника – это наука, занимающаяся изучением взаимодействия между заряженными частицами и электромагнитными полями, а также способов создания электронных приборов, в которых данное взаимодействие применяется для преобразования электромагнитной энергии, главным образом для передачи, хранения и обработки информации.

Одна из основных проблем развития электроники связана с требованием увеличения объема обрабатываемой информации управляющими и вычислительными системами с одновременным уменьшением их габаритов. В настоящее время решить эту проблему пытаются посредством:

  1. Разработки приборов сверхвысоких частот и лазеров с высоким коэффициентом полезного действия, использующиеся для энергетического воздействия на вещество, а также направленной передачи энергии.
  2. Создания электронных приборов, которые функционируют в диапазоне миллиметровых и субмиллиметровых волн, для широкополосных систем передачи информации и линий оптической связи.
  3. Разработки средств и принципов стереоскопического телевидения, обладающие большей информативностью по сравнению с обычным.
  4. Перехода от планарной технологии интегральных схем к объемной и использовании сочетания разнообразных свойств твердого тела в одном приборе.
  5. Расширения функций интегральных схем, например, переход от микропроцессора к мини электронно-вычислительной машине на одном кристалле.
  6. Использования электронно-лучевой и лазерной коммутации.
  7. Разработки запоминающих устройств, емкость которых достигает нескольких гигабайт на одном кристалле.
  8. Использования сверхпроводников, устройств оптической связи, оптоэлектронных преобразователей в интегральных схемах.
  9. Увеличения интеграции на одном кристалле нескольких миллионов транзисторов, размер которых менее 1 мкм на основе использования достижений наноэлектроники и молекулярной электроники.
  10. Создания полупроводниковых интегральных схем, которые обеспечивают минимальное время подключения.

Направления, факторы и тенденции развития электроники

В настоящее время развитие электроники происходит по двум основным направлениям:

  1. Решение проблем с получением и использованием энергии.
  2. Решение проблем информационно-вычислительного обеспечения.

Тенденция развития современных электронных устройств и приборов для создания электронно-вычислительных средств характеризуется уменьшением размеров составляющих, увеличение быстродействия, увеличение степени надежности и качества, снижение объемов потребляемой энергии, рост массового промышленного выпуска, снижение стоимости процессов переработки информации. Наиболее успешно данные вопросы решаются в рамках микроэлектроники.

Энергетическое развитие электроники связано почти со всеми видам электронных устройств. Самым перспективным решением энергетических проблем являются вакуумные приборы сверхвысоких частот и приборы квантовой электроники. Согласно прогнозам ожидается бурное развитие сверхмощной электроники сверхвысоких частот, которая основана на релятивистских эффектах с уровнем мощности, достаточного для осуществления термоядерного управляемого синтеза.

Готовые работы на аналогичную тему

К важным направлениям развития электроники также относится оптоэлектроника, открывающая перспективы создания объемных микросхем, обладающих быстродействием, а также приборов отображения для стереоскопического телевидения. Ожидается совершенствование твердотельных электронных устройств и приборов с кристаллической структурой, концентрация легирующих примесей в которой периодически изменяется. Такие приборы обладают уникальными оптическими и электрическими свойствами (эффективное усиление и генерирование колебаний, умножение частоты в оптических и сверхвысокочастотном диапазона).

Оптоэлектроника – это область электроники, посвященная практике и теории разработки устройств и приборов, работа которых основана на преобразовании электрических сигналов в оптические.

Также предполагается активное развитие акустической электроники на объемных и поверхностных акустических волнах и твердотельной электроники. Их совместное развитие должно привести к появлению новых видов многофункциональных схем. Определенные надежды возлагаются на функциональную электронику, которая связана с изучением динамических неоднородностей. Использование в электронных устройствах и приборах структур с динамическими неоднородностями (солитонами, доменами и вихрями магнитного потока в сверхпроводниках) частично снимает ограничения, связанные с быстродействием и миниатюризацией, например, за счет увеличения эффективности связи или уменьшения выделения тепла.

Читайте также: