Сообщение об одном из двух равновероятных результатов некоторого события несет

Обновлено: 05.07.2024

Чтобы рассмотреть участие информации в информационном процессе нужно её измерять.

Существует 2 подхода к измерению количества информации.

Пример: Представим что в ящике лежат 2 шара (синий и красный). Перед вытаскиванием мы знаем о том что возможны 2 события:

Для нас эти 2 события равновероятны. После того, как шар вытащен, наступает полная определённость: какой шар – вытащен, а какой остался в ящике.

Что такое Вероятность?

Если N – общее число возможных вариантов (событий), а из них интересующее нас событие может произойти k раз, то вероятность этого события можно определить по формуле:

Для примера с шарами, вероятность вытаскивания одного из шаров, равна 1/2 или 0,5, другими словами они равновероятны. Если, к примеру, в ящике лежали бы все шары одного цвета, синего, то вероятность была бы равна 1.

Т.е. событие достоверно, если мы достали синий шар, и событие невозможно, если из 2-х синих шаров мы достали красный.

Теперь усложним задачу: Представим, что у нас в ящике лежат: 3 красных шара и 1 синий. Вытаскиваем 1 шар, т.е. у нас возникает одно из возможных событий, учитывая, что красных шаров больше, мы понимаем что скорей всего будет вытащен именно красный шар, но может быть и синий. Тогда по формуле посчитает вероятность соответствующих событий:

p(кр.)=1/4=0,25; p(син.)=3/4=0,75

Какая информация для нас будет ценнее? О том что мы вытащили красный шар или синий?

количество информации

Если событие достоверно, его вероятность равна 1, то оно неинформативно, т.е. количество информации в нём равно 0. Чем меньше вероятность какого-либо события, тем большую ценность имеет информация об этом событии и тем больше будет значение i.

Единицей измерения количества информации является бит (от англ. bit – binary digit – двоичная цифра).

1 бит — количество информации, которое необходимо для того чтобы различить два равновероятных события.

1 бит

Количество информации можно рассчитать методом Р. Хартли и К.Шеннона:

Например, при угадывании числа из набора (1……100), мы получим:

Количество информации

Этот метод расчёта верен, если мы имеет равновероятные события.

Для решения задач с неодинаковой вероятностью возможных событий используется формула Шеннона:

Формула Шеннона

Для ситуации с 4 шарами, получим (для расчётов логарифмов можно воспользоваться он-лайн калькулятором):

Формула Шеннона-пример

Ответ: 0,815 бит.

Для того чтобы получить информацию о том, что мы достали синий шар, подставим данные в нашу формулу и получим:

Ответ: 2 бита.

Этого и следовало ожидать, ведь жёлтых шаров в 3 раза больше, а информации о том, что “Мы достали синий шар из корзины“, мы получили больше, так как эта ситуация менее вероятна, а значит, более неожиданна.

Следовательно, информация о том, что случилось это событие уменьшает наше незнание в два раза.

Допустим, вы бросаете монету, загадывая, что выпадет: орел или решка.

Есть всего два возможных результата бросания монеты. Причем ни один из этих результатов не имеет преимущества перед другим. В таком случае говорят, что они равновероятны.

В случае с монетой перед ее подбрасыванием неопределенность знания о результате равна двум.

Игральный кубик с шестью гранями может с равной вероятностью упасть на любую из них. Значит, неопределенность знания о результате бросания кубика равна шести.

Неопределенность знания о результате некоторого события (бросание монеты или игрального кубика, жребий и др.) — это количество возможных результатов.

Задание 1:

При игре в кости используются 2 кубика с шестью гранями. Сколько бит информации получает игрок при бросании кубиков?

Формула Хартли:

Шахматная доска состоит из 64 полей: 8 столбцов на 8 строк.

Поскольку выбор любой из 64 клеток равновероятен, то количество бит находится из формулы:



В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Измерение информации. Содержательный подход"

· содержательный подход к измерению информации;

· неопределённость знания об исходе некоторого события;

· единица измерения количества информации в рамках содержательного подхода.




Корреляция, корреляционная зависимость — это зависимость между величинами, каждая из которых подвергается неконтролируемому разбросу (неинформативно, так как непонятно).


Необходимо отличать понятия информация и информативность.

Например, содержит ли учебник по информатике для десятого класса информацию? Конечно содержит, но для кого он будет информативным – для ученика десятого класса или первого класса? Естественно для ученика десятого класса. Первоклассник ничего из этого учебника не поймёт.


Теперь мы можем сделать вывод: количество информации зависит от информативности.

Информативность можно обозначить единицей, неинформативная информация равна нулю. Но это не даёт точного определения количества информации.

Алфавитный подход применяется для измерения информации, используемой компьютером. Так как компьютер не понимает смысла информации.

Содержательный подход применяется для измерения информации, используемой человеком.


Допустим, вы бросаете монету, загадывая, что выпадет: орёл или решка. Есть всего два возможных результата бросания монеты.


Причём ни один из этих результатов не имеет преимущества перед другим. В таком случае говорят, что они равновероятны.

В данном случае с монетой, перед её подбрасыванием неопределённость знания о результате равна 2.

Если же бросать игральный кубик с шестью гранями, то он может с равной вероятностью упасть на любую из них. Значит, неопределённость знания о результате бросания кубика равна 6.


Или такая ситуация: спортсмены-бегуны перед забегом путём жеребьёвки определяют свои порядковые номера на старте. Допустим, что в забеге участвует 100 спортсменов, тогда неопределённость знания спортсмена о своём номере до жеребьёвки равна 100.

Неопределённость знания о результате некоторого события - это количество возможных результатов исхода события.

Вернёмся к спортсменам-бегунам.

Здесь событие – это жеребьёвка спортсменов; исход – спортсмену выпал, например, номер 34.


Итак, в первом примере возможны два варианта ответа: орёл, решка; во втором примере шесть вариантов: 1, 2, 3, 4, 5, 6.

В третьем примере – 100 вариантов, может выпасть номер от 1 до 100.

В 40-х годах 20 века Клод Шеннон — американский учёный и инженер, один из создателей математической теории информации, решил проблему измерения информации.


Шеннон дал такое определение информации: Информация – это снятая неопределённость знания человека об исходе какого-то события.


Или такой пример. Вы подошли к светофору на пешеходном переходе, когда горел красный свет. Загорелся зелёный. Здесь вы также получили один бит информации.


Значит в примерах с кубиком и спортсменами количество информации будет больше. Давайте выясним как измерить это количество.


Подумав староста класса задала следующие вопросы:

1 вопрос. Номер кабинета меньше 9? – Да. Ответил учитель

2 вопрос. Номер кабинета больше 4? – Да.

3 вопрос. Номер кабинета чётный? – Нет.

4 вопрос. Номер кабинета 5? – Нет.

Ученики поняли, что занятия состоятся в кабинете номер 7.

Итак, сколько же информации получили ученики?

Первоначально неопределённость знания (количество возможных кабинетов) была равна 16. С ответом на каждый вопрос неопределённость знания уменьшалась в два раза и, следовательно, согласно данному выше определению, передавался 1 бит информации.

Первоначально было 16 вариантов. После первого вопроса осталось 8 вариантов, и ученики получили 1 бит информации.

После 2 вопроса осталось 4 варианта, и ученики получили ещё 1 бит информации.

После 3 вопроса осталось 2 варианта и был получен ещё 1 бит информации.

И, наконец после 4 вопроса, остался 1 вариант и получен ещё 1 бит информации.

То есть мы можем сделать вывод, что ученики получили четыре бит информации.

Такой способ нахождения количества информации, называется методом половинного деления: здесь ответ на каждый заданный вопрос уменьшает неопределённость знания, которая имеется до ответа на этот вопрос, наполовину. Каждый такой ответ несёт 1 бит информации.

Нужно отметить, что методом половинного деления наиболее удобно решать подобные проблемы. Таким способом всегда можно угадать, например, любой из 32 вариантов максимум за 5 вопросов.

Теперь мы можем полученные результаты описать с помощью следующих определений:

Для того чтобы при измерении одной и той же информации получалось одно и то же значение количества информации, необходимо договориться об использовании определённого алфавита.

Вернёмся к нашим примерам.


Обратите внимание, между данными величинами есть связь, которая выражается формулой.

Эта формула вам уже знакома. Также вы с ней встретитесь ещё не раз. Эта формула очень важна, поэтому её называют главной формулой информатики.


В математике такое уравнение называется показательным.


Рассмотрим следующий пример.


Итак, мы уже говорили о том, что с формулой 2 i = N мы уже встречались на прошлом уроке, когда говорили об алфавитном подходе к измерению информации. Тогда N рассматривалось как мощность алфавита, a i — как информационный вес каждого символа алфавита.


То есть, если значение N равно целой степени двойки, то показательное уравнение легко решить, а если нет, как в нашем примере. Как поступить в этом случае?

Можно догадаться, что решением уравнения будет дробное число, которое находится между 6 и 7.

В математике существует функция, с помощью которой решаются показательные уравнения. Эта функция называется логарифмом.

Тогда решение показательного уравнения запишется i равно логарифм N по основанию 2. Это означает, что мы должны найти степень, в которую нужно возвести основание, в нашем случае 2, чтобы получить N.


Например, для целых степеней двойки получим:


Значения логарифмов находятся с помощью специальных логарифмических таблиц. Также можно использовать инженерный калькулятор или табличный процессор.



Формула для измерения количества информации была предложена американским учёным-электронщиком Ральфом Хартли, который является одним из основоположников теории информации.


Данный пример показал, что количество информации, определяемое с использованием содержательного подхода, может быть дробной величиной, если же находить информационный объем, путём применения алфавитного подхода, то там может быть только целочисленное значение.

Один бит - это минимальная единица измерения количества информации.


Для измерения количества информации применяется формула Хартли:

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Лекция 8. Единицы измерения информации. Содержательный подход к измерению информации .

Мы постоянно что-то измеряем — время, длину, скорость, массу. И для каждой величины есть своя единица измерения, а зачастую несколько. Метры и километры, килограммы и тонны, секунды и часы — все это нам знакомо. А как же измерить информацию? Для информации тоже придумали единицу измерения и назвали ее бит .

Бит — это минимальная единица измерения информации.

В одном бите содержится очень мало информации. Он может принимать только одно из двух значений (1 или 0, да или нет, истина или ложь). Измерять информацию в битах очень неудобно — числа получаются огромные. Ведь не измеряют же массу автомобиля в граммах.

Например, если представить объем флешки в 4Гб в битах мы получим 34 359 738 368 бит. Представьте, пришли вы в компьютерный магазин и просите продавца дать вам флешку объемом 34 359 738 368 бит. Вряд ли он вас поймет

Поэтому в информатике и в жизни используются производные от бита единицы измерения информации. Но у них у всех есть замечательное свойство — они являются степенями двойки с шагом 10.

Итак, возьмем число 2 и возведем его в нулевую степень. Получим 1 (любое число в нулевой степени равно 1). Это будет байт.

В одном байте 8 бит.

Теперь возведем 2 в 10-ю степень — получим 1024. Это килобайт (Кбайт).

В одном килобайте 1024 байт.

Если возвести 2 в 20 степень — получим мегабайт (Мбайт).

1Мбайт = 1024 Кбайт.

И так далее. Удобнее эти данные отобразить в виде таблицы:

Единицы измерения информации

Вы уже знаете, что за единицу измерения информации принимается 1 бит.

1 бит - минимальная единица измерения количества информации.

Проблема измерения информации исследована в теории информации, основатель которой - Клод Шеннон .

В теории информации для бита дается следующее определение:

Что такое неопределенность знания, поясним на примерах.

Допустим, вы бросаете монету, загадывая, что выпадет: орел или решка. Есть всего два возможных результата бросания монеты. Причем ни один из этих результатов не имеет преимущества перед другим. В таком случае говорят, что они равновероятны .

В случае с монетой перед ее подбрасыванием неопределенность знания о результате равна двум.

Игральный же кубик с шестью гранями может с равной вероятностью упасть на любую из них. Значит, неопределенность знания о результате бросания кубика равна шести.

Еще пример: спортсмены-лыжники перед забегом путем жеребьевки определяют свои порядковые номера на старте. Допустим, что имеется 100 участников соревнований, тогда неопределенность знания спортсмена о своем номере до жеребьевки равна 100 .

Следовательно, можно сказать так:

Неопределенность знания о результате некоторого события (бросание монеты или игрального кубика, вытаскивание жребия и др.) - это количество возможных результатов.

Данная формула является показательным уравнением относительно неизвестного i .

Из математики известно, что решение такого уравнения имеет вид:

i=log2N - логарифм N по основанию 2 .

Шахматная доска состоит из 64 полей: 8 столбцов на 8 строк.

Решение.

Поскольку выбор любой из 64 клеток равновероятен, то количество бит находится из формулы:

i=log264=6, так как 26=64 .

Следовательно, i=6 бит.

В противном случае количество информации становится нецелой величиной, и для решения задачи придется воспользоваться таблицей двоичных логарифмов .

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

§ 2. Подходы к измерению информации

Информатика. 10 класса. Босова Л.Л. Оглавление

Информация и её свойства

Информация и её свойства являются объектом исследования целого ряда научных дисциплин, таких как:

? теория информации (математическая теория систем передачи информации);

? кибернетика (наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе);

? информатика (изучение процессов сбора, преобразования, хранения, защиты, поиска и передачи всех видов информации и средств их автоматизированной обработки);

? семиотика (наука о знаках и знаковых системах);

? теория массовой коммуникации (исследование средств массовой информации и их влияния на общество) и др.

Рассмотрим более детально подходы к определению понятия информации, важные с позиций её измерения:

1) определение К. Шеннона, применяемое в математической теории информации;

2) определение А. Н. Колмогорова, применяемое в отраслях информатики, связанных с использованием компьютеров.

2.1. Содержательный подход к измерению информации


Информация — это снятая неопределённость. Величина неопределённости некоторого события — это количество возможных результатов (исходов) данного события.

Такой подход к измерению информации называют содержательным.

Итак, количество возможных результатов (исходов) события, состоящего в том, что книга поставлена в шкаф, равно восьми: 1, 2, 3, 4, 5, 6, 7 и 8.

Метод поиска, на каждом шаге которого отбрасывается половина вариантов, называется методом половинного деления. Этот метод широко используется в компьютерных науках.


1) обойтись минимальным количеством вопросов;





1) Да — Да — Да — Да;

2) Нет — Нет — Нет — Нет;

3) Да — Нет — Да — Нет.

При N, равном целой степени двойки (2, 4, 8, 16, 32 и т. д.), это уравнение легко решается в уме. Решать такие уравнения при других N вы научитесь чуть позже, в курсе математики 11 класса.


2.2. Алфавитный подход к измерению информации

Однако при хранении и передаче информации с помощью технических устройств целесообразно отвлечься от её содержания и рассматривать информацию как последовательность символов (букв, цифр, кодов цвета точек изображения и т. д.) некоторого алфавита.

Информация — последовательность символов (букв, цифр, кодов цвета точек изображения и т. д.) некоторого алфавита.

Минимальная мощность алфавита (количество входящих в него символов), пригодного для кодирования информации, равна 2. Такой алфавит называется двоичным. Один символ двоичного алфавита несёт 1 бит информации.


Андрей Николаевич Колмогоров (1903-1987) — один из крупнейших математиков XX века. Им получены основополагающие результаты в математической логике, теории сложности алгоритмов, теории информации, теории множеств и ряде других областей математики и её приложений.

В отличие от определения количества информации по Колмогорову в определении информационного объёма не требуется, чтобы число двоичных символов было минимально возможным. При оптимальном кодировании понятия количества информации и информационного объёма совпадают.

Из курса информатики основной школы вы знаете, что двоичные коды бывают равномерные и неравномерные. Равномерные коды в кодовых комбинациях содержат одинаковое число символов, неравномерные — разное.

Первый равномерный двоичный код был изобретён французом Жаном Морисом Бодо в 1870 году. В коде Бодо используются сигналы двух видов, имеющие одинаковую длительность и абсолютную величину, но разную полярность. Длина кодов всех символов алфавита равна пяти (рис. 1.7).


Рис. 1.7. Фрагмент кодовой таблицы кода Бодо

Всего с помощью кода Бодо можно составить 2 5 = 32 комбинации.

Пример 5. Слово WORD, закодированное с помощью кода Бодо, будет выглядеть так:


Пример 6. Для двоичного представления текстов в компьютере чаще всего используется равномерный восьмиразрядный код. С его помощью можно закодировать алфавит из 256 символов (2 8 = 256). Фрагмент кодовой таблицы ASCII представлен на рисунке 1.8.


Рис. 1.8. Фрагмент кодовой таблицы ASCII

Слово WORD, закодированное с помощью таблицы ASCII:


Из курса информатики основной школы вам известно, что с помощью i-разрядного двоичного кода можно закодировать алфавит, мощность N которого определяется из соотношения:

2 i = N.

Иными словами, зная мощность используемого алфавита, всегда можно вычислить информационный вес символа — минимально возможное количество бит, требуемое для кодирования символов этого алфавита. При этом информационный вес символа должен быть выражен целым числом.

Соотношение для определения информационного веса символа алфавита можно получить и из следующих соображений.

1) определить мощность используемого алфавита N;

2) из соотношения 2 i = N определить i — информационный вес символа алфавита в битах (длину двоичного кода символа из используемого алфавита мощности N);

I = К * i,

где I — информационный вес символа в битах, связанный с мощностью используемого алфавита N соотношением:

2 i = N.

Пример 7. Для регистрации на некотором сайте пользователю надо придумать пароль, состоящий из 10 символов. В качестве символов можно использовать десятичные цифры и шесть первых букв латинского алфавита, причём буквы используются только заглавные. Пароли кодируются посимвольно. Все символы кодируются одинаковым и минимально возможным количеством бит. Для хранения сведений о каждом пользователе в системе отведено одинаковое и минимально возможное целое число байт.

Необходимо выяснить, какой объём памяти потребуется для хранения 100 паролей.


2.3. Единицы измерения информации

Итак, в двоичном коде один двоичный разряд несёт 1 бит информации. 8 бит образуют один байт. Помимо бита и байта, для измерения информации используются более крупные единицы:

1 Кбайт (килобайт) = 2 10 байт;

1 Мбайт (мегабайт) = 2 10 Кбайт = 2 20 байт;

1 Гбайт (гигабайт) = 2 10 Мбайт = 2 20 Кбайт = 2 30 байт;

1 Тбайт (терабайт) = 2 10 Гбайт = 2 20 Мбайт = 2 30 Кбайт = 2 40 байт;

1 Пбайт (петабайт) = 2 10 Тбайт = 2 20 Гбайт = 2 30 Мбайт = 2 40 Кбайт = 2 50 байт.

Это произошло потому, что 2 10 = 1024 ? 1000 = 10 3 . Поэтому 1024 байта и стали называть килобайтом, 2 10 килобайта стали называть мегабайтом и т. д.

Чтобы избежать путаницы с различным использованием одних и тех же приставок, в 1999 г. Международная электротехническая комиссия ввела новый стандарт наименования двоичных приставок. Согласно этому стандарту, 1 килобайт равняется 1000 байт, а величина 1024 байта получила новое название — 1 кибибайт (Кибайт).

Пример 8. При регистрации в компьютерной системе каждому пользователю выдаётся пароль длиной в 12 символов, образованный из десятичных цифр и первых шести букв английского алфавита, причём буквы могут использоваться как строчные, так и прописные — соответствующие символы считаются разными. Пароли кодируются посимвольно. Все символы кодируются одинаковым и минимально возможным количеством бит. Для хранения сведений о каждом пользователе в системе отведено одинаковое и минимально возможное целое число байт.

Кроме собственно пароля для каждого пользователя в системе хранятся дополнительные сведения, для которых отведено 12 байт. На какое максимальное количество пользователей рассчитана система, если для хранения сведений о пользователях в ней отведено 200 Кбайт?

Прежде всего, выясним мощность алфавита, используемого для записи паролей: N — 6 (буквы прописные) + 6 (буквы строчные) + 10 (десятичные цифры) = 22 символа.

Для кодирования одного из 22 символов требуется 5 бит памяти (4 бита позволят закодировать всего 2 4 = 16 символов, 5 бит позволят закодировать уже 2 5 = 32 символа); 5 — минимально возможное количество бит для кодирования 22 разных символов алфавита, используемого для записи паролей.

Для хранения всех 12 символов пароля требуется 12 • 5 = 60 бит. Из условия следует, что пароль должен занимать целое число байт; т. к. 60 не кратно восьми, возьмём ближайшее большее значение, которое кратно восьми: 64 = 8 • 8. Таким образом, один пароль занимает 8 байт.

Информация о пользователе занимает 20 байт, т. к. содержит не только пароль (8 байт), но и дополнительные сведения (12 байт).



САМОЕ ГЛАВНОЕ

I = K * i, где i — информационный вес символа в битах, связанный с мощностью используемого алфавита N соотношением 2 i = N. Единицы измерения информации:

1 Кбайт (килобайт) = 2 10 байт;

1 Мбайт (мегабайт) = 2 10 Кбайт = 2 20 байт;

1 Гбайт (гигабайт) = 2 10 Мбайт = 2 20 Кбайт = 2 30 байт;

1 Тбайт (терабайт) = 2 10 Гбайт = 2 20 Мбайт = 2 30 Кбайт = 2 40 байт;

1 Пбайт (петабайт) = 2 10 Тбайт = 2 20 Гбайт = 2 30 Мбайт = 2 40 Кбайт = 2 50 байт.

Вопросы и задания

1. Что такое неопределённость знания о результате какого-либо события? Приведите пример.

2. В чём состоит суть содержательного подхода к определению количества информации? Что такое бит с точки зрения содержательного подхода?

3. Паролем для приложения служит трёхзначное число в шестнадцатеричной системе счисления. Возможные варианты пароля:


Ответ на какой вопрос (см. ниже) содержит 1 бит информации?

1) Это число записано в двоичной системе счисления?

2) Это число записано в четверичной системе счисления?

3) Это число может быть записано в восьмеричной системе счисления?

4) Это число может быть записано в десятичной системе счисления?

5) Это число может быть записано в шестнадцатеричной системе счисления?

4. При угадывании целого числа в некотором диапазоне было получено 5 бит информации. Каковы наибольшее и наименьшее числа этого диапазона?

5. Какое максимальное количество вопросов достаточно задать вашему собеседнику, чтобы точно определить день и месяц его рождения?

6. В чём состоит суть алфавитного подхода к измерению информации? Что такое бит с точки зрения алфавитного подхода?

8. Какие единицы используются для измерения объёма информации, хранящейся на компьютере?

13. При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 6 символов и содержащий только символы из шестибуквенного набора А, В, С, D, Е, F. Для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей и все символы кодируются одинаковым и минимально возможным количеством бит. Кроме собственно пароля для каждого пользователя в системе хранятся дополнительные сведения, занимающие 15 байт. Определите объём памяти в байтах, необходимый для хранения сведений о 120 пользователях.

Перечень вопросов, рассматриваемых в теме: Информация как снятая неопределенность. Содержательный подход к измерению информации.

Информация как последовательность символов некоторого алфавита. Алфавитный подход к измерению информации. Единицы измерения информации. Понятие больших данных

Глоссарий по теме: Информатика, информация, свойства информации (объективность, достоверность, полнота, актуальность, понятность, релевантность), виды информации, информационные процессы, информационная культура, информационная грамотность.

Основная литература по теме урока:

Л. Л. Босова, А. Ю. Босова. Информатика. Базовый уровень: учебник для 10 класса — М.: БИНОМ. Лаборатория знаний, 2017

Дополнительная литература по теме урока:

И. Г. Семакин, Т. Ю. Шеина, Л. В. Шестакова. Информатика и ИКТ. Профильный уровень: учебник для 10 класса — М.: БИНОМ. Лаборатория знаний, 2012

Теоретический материал для самостоятельного изучения:

Давайте составим план, что бы мы хотели сделать с имеющейся у нас информацией.

Передавать — скорее всего, а может быть даже и продавать.

Обрабатывать и получать новую — вполне возможно!

Во всех трех случаях, которые называют основными информационными процессами, нам нужно информацию измерять.

В случае хранения, чтобы быть уверенными, что объем хранилища и объем нашей информации соответствуют друг другу, в передаче или продаже — чтобы объем продажи соответствовал цене, в случае обработки, чтобы рассчитать время, за которое этот объем может быть обработан.

Во всех трех случаях мы говорим о соответствиях объемов, но если нам известно как вычислить объем хранилища в м 3 , количество денег в рублях или иной валюте, время, то с вычислением объема информации нужно разбираться

Целью нашего урока будет определить способы измерения информации и сравнить их.

Для этого нужно будет определить:

— от чего зависит объем информации,

— какими единицами ее измерять.

Ожидаемые результаты

Выявлять различия в подходах к измерению информации.

Применять различные подходы для измерения количества информации.

Переходить от одних единиц измерения информации к другим.

Предположим, что объем информации зависит от ее содержания. Нам нужна информация, которая для нас нова и понятна, соответствует всем свойствам информации, то есть та, которая приносит нам новые знания, решает наши вопросы.

Этот подход к измерению предложил К. Шеннон.

Разумно так же предположить, что текст, который для вас не понятен, понятен кому-то другому, то есть информация в нем все-таки есть. А ее объем зависит не от содержания текста, а от символов, которыми он написан. Назовем алфавитом все множество символов, используемых в языке, а их количество — мощностью алфавита.

Каждый символ, выбранный из алфавита, несет количество информации (i), вычисленное по формуле,

где N мощность алфавита.

Общее количество информации (I) во всем тексте можно посчитать по простой математической модели:


где k — количество символов в тексте.

Такой подход к измерению информации называют алфавитным. Здесь объем информации зависит от используемого алфавита и количества символов в тексте.

Этот подход к измерению информации предложил советский ученый-математик А. Н. Колмогоров.

Бит — мельчайшая единица информации. Для кодировки каждого из 256 символов, сведенных в таблицу кодировки ASCII, требуется 8 бит. Эта величина получила отдельное название — байт. Помимо бита и байта существуют более крупные единицы. Традиционно они получили приставки Кило, Мега, Гига и т. д.


Переводить единицы измерения информации можно при помощи удобной схемы

Подведем итоги

Информацию можно измерять. Для этого существуют разные подходы, содержательный подход, алфавитный подход.

Суть содержательного подхода в том, что при определении объема информации учитывается содержание информации. Она должна быть новой и понятной получателю.

Суть алфавитного подхода в определении количества информации в зависимости от алфавита, которым она записана. А объем подсчитывается по формуле


где — объем информации,

— количество информации о каждом символе.

Для измерения количества информации в объеме данных используются единицы измерения информации.

Обработка данных важна для всех сфер жизни. Технологии обработки данных стремительно развиваются и становятся жизненно-важными.

Читайте также: