Сообщение о новых носителях информации способы хранения информации в ближайшем будущем

Обновлено: 02.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Муниципальное бюджетное общеобразовательное учреждение

Кайянен Ирина Александровна, учитель информатики

I РАЗДЕЛ 1. История развития носителей информации ……………….. 5 с.

II РАЗДЕЛ 2. Современные носители информации Современные носители информации …………………………………………………………….. 9 с.

СПИСОК ЛИТЕРАТУРЫ …………………………………….………. 15 с.

Тема проекта: Современные носители информации, их эволюция, направление развития.

Каждый человек в современном мире постоянно сталкивается с разнообразной информацией. Она меняет форму, объём, но не исчезает. В век компьютерных технологий, файлы оставляют след на жестком диске и могут быть восстановлены. У информации есть два главных качества – содержание и хранение. И если содержание у каждой информации свое, то способов хранения знаний за всю историю человечества выработано не так уж и много, но и не мало.

Наша цивилизация немыслима в её сегодняшнем состоянии без носителей информации. Наша память ненадёжна, поэтому достаточно давно человечество придумало записывать мысли во всех видах.

Носитель информации - это любое устройство, предназначенное для записи и хранения информации.

Примерами носителей могут быть и бумага, или USB-Flash память, также, как и глиняная табличка или человеческая ДНК.
Информация тоже бывает разная - это и текст, и звук, и видео.

Информация в наш суетливый век, несмотря на огромное количество, ценится как никогда раньше. Поэтому качество носителя – это важнейший параметр для любого обладателя информации.

Сменные носители данных для людей, чья деятельность хотя бы как-то связана с компьютерами представляют особую ценность: они позволяют быстро записать или прочитать, а также сохранить на достаточно длительное время различные объёмы информации (для современных носителей эти объёмы весьма велики). Хотя вопросы о скорости чтения и записи, а также ёмкости носителя, вероятно, всегда будут оставаться открытыми. Это связано с тем, что с каждым годом компьютерные технологии претерпевают существенные изменения в лучшую сторону, и возможности носителей, которые несколько лет назад могли нас удивить, сейчас кажутся совершенно обыденными или даже недостаточными.

Носители информации используются не только рядовыми пользователями ПК, но и множеством коммерческих компаний для хранения и продажи ценного контента. Поэтому даже диски еще долго не потеряют своей актуальности.

Цель проекта : изучение эволюции информационных носителей, направлений их развития

· познакомиться с историей возникновения информационных носителей;

· выявить современные виды носителей информации;

· изучить основные направления развития информационных носителей, их функции и значимость в современном обществе;

· создать сравнительную таблицу носителей информации;

· провести опрос пользователей об использовании различных носителей информации.

Этапы работы над проектом:

· Выбор темы проекта

· Постановка цели и задач проекта

· Подбор материала и изучение источников информации

· Анализ информации и оформление результатов работы над проектом

· Подготовка и защита проекта

РАЗДЕЛ I . История развития носителей информации

Древние египтяне и шумеры были куда элегантнее в выборе материала для записи. Они использовали листы растений из семейства осоковых — папирус (Египет) и обожженные глиняные таблички (Шумер и Вавилон). Стоит отметить, что на эти предметы наносились уже не просто рисунки, а подобие алфавита. В Междуречье был изобретен совершенно уникальный способ записи информации – клинопись.

С развитием машиностроения и автоматизации производства стало необходимо программирование станков и машин – задание последовательного набора операций для рационализации производства. Для этого был создан двоичный язык (0/1 – выкл/вкл), а первым носителем информации на двоичном языке стала перфокарта. Лист из плотной бумаги разбивался на определенное количество ячеек, одни из них пробивались, другие оставались целыми. Стандартная перфокарта несла на себе информацию в 80 символов.

Позднее по тому же принципу работы стала использоваться перфолента – рулон бумажной или нитроцеллюлозной ленты с пробитыми отверстиями. Плюсом перфоленты была относительно высокая скорость чтения (до 1500 Б\сек), но низкая прочность ленты и невозможность ручного редактирования информации.

На смену бумажным носителям пришли магнитные. Сначала это была особым образом намагниченная проволока (такой носитель и сейчас используется в черных ящиках самолетов), затем ее сменила гибкая магнитная лента, которая наматывалась в бобины или компакт-кассеты. Принцип записи в чем-то схож с перфорированием. Магнитная лента разделяется по ширине на несколько независимых дорожек; проходя через магнитную записывающую головку, необходимый участок ленты намагничивается (аналогично пробитому участку перфоленты), впоследствии намагниченный участок будет считываться вычислительной техникой как 1, не намагниченный – как 0.

Вслед за магнитной лентой был изобретен гибкий магнитный диск – круг из плотного гибкого пластика с нанесенным на поверхность магнитным слоем. Первые гибкие диски были восьмидюймовыми, позднее им на смену пришли уже более нам привычные 5,25-дюймовые и 3,5-дюймовые. Последние продержались на рынке носителей информации вплоть до середины 2000-х годов.

Параллельно гибким магнитным носителям развивались носители на жестких магнитных дисках (НЖМД, жесткий диск, HDD). Первая рабочая модель HDD была создана в 1956 году компанией IBM (модель IBM 350). Объем IBM 350 был 3,5 Мб, что по тем временам было достаточно много. По размерам первый HDD был как большой холодильник и весил чуть меньше тонны.

За тридцать лет размеры жесткого диска удалось уменьшить до формата 5,25-дюйма (размер оптического привода), еще через десять лет жесткие диски стали привычного нам 3,5-дюймового формата.

Объем в 1 Гбайт был преодолен в середине 1990-х годов, а в 2005 году был достигнут максимальный объем для продольной записи – 500 Гб. В 2006 году был выпущен первый жесткий диск с перпендикулярным методом записи объемом в 500 Гб. В 2007 году пройден рубеж в 1 Тб (модель выпущена компанией Hitachi).

Различают два основных типа флеш-памяти: NOR и NAND.

NOR-память используется в качестве энергонезависимой памяти небольшого объема, требующей быстрого доступа без аппаратных сбоев (кэш микропроцессора, микросхемы POST и BIOS).

NAND-память используется в большинстве электронных устройств в качестве основного носителя информации (сотовые телефоны, телевизоры, медиаплееры, игровые приставки, фоторамки, навигаторы, сетевые маршрутизаторы, точки доступа и т.д.). Так же NAND-память используется в SSD-накопителях, альтернативе жестких магнитных дисков, и в качестве кэш-памяти в гибридных жестких дисках.

Все развитие оптических носителей можно разделить на четыре части:

Первое поколение: лазерные диски, компакт-диски, магнитооптические диски. Основная особенность – относительно дорогие диски небольшого объема, приводы обладают большим энергопотреблением (напрямую связано с технологией записи и чтения дисков).

Второе поколение : DVD, MiniDisc, Digital Multilayer Disk, DataPlay, Fluorescent Multilayer Disc, GD-ROM, Universal Media Disc. Что отличает второе поколение оптических дисков от первого? В первую очередь, высокая плотность записи информации (в 6-10 раз). Кроме DVD, в основном имеют специализированное применение (MD – для аудиозаписей, UMD – для приставок Sony PlayStation). Кроме DVD, всем остальным форматам требуется дорогое оборудование для записи и чтения информации (особенно, DMD и FMD, в которых используется многослойная и многомерная технологии хранения).

Третье поколение: Blu-ray Disc, HD DVD, Forward Versatile Disc, Ultra Density Optical, Professional Disc for DATA, Versatile Multilayer Disc. Данные оптические диски необходимы для хранения видео высокой четкости. Основная особенность - использование сине=фиолетового лазера для записи и чтения информации вместо красного (кроме VMD). Это позволяет еще больше увеличить плотность записи (в 6-10 раз по сравнению со вторым поколением).

Четвертое поколение (ближайшее будущее) : Holographic Versatile Disc. Основной революционной технологией в развитии оптических носителей информации считается технология голографической записи, позволяющая увеличить плотность записи на оптический диск примерно в 60-80 раз. Первые голографические диски были представлен еще в 2006 году, а сам технологический стандарт был окончательно утвержден в 2007 году. В 2010 году было объявлено, что преодолена планка объема носителя в 515 Гб, но данная модель голографического диска не была пущена в производство.

РАЗДЕЛ II . Современные носители информации

В ходе работы над проектом мною были рассмотрены три вида современных носителей информации: жесткие дики, оптические диски и флеш-память.

Жесткие магнитные диски (винчестеры)

Физическая структура винчестера представлена комплектом пластин, которые еще называют дисками. Их покрывает магнитный слой — плоттер. Вращающийся вал — шпиндель — служит соединительной деталью. Есть еще намагниченные головки. Каждая из них движется по одной из пластин, таким образом считывая и записывая информацию.

Обе поверхности пластин задействованы во время записи файлов. Шпиндель крутится на одной и той же скорости.

Данные пишутся по трекам — концентрическим дорожкам. Они поделены на сектора по 512 байт.

В настоящее время выделяют следующие характеристики HDD:

Ёмкость (англ. capacity ) — количество данных, которые могут храниться накопителем. С момента создания первых жестких дисков в результате непрерывного совершенствования технологии записи данных их максимально возможная емкость непрерывно увеличивается. Ёмкость современных жестких дисков достигает нескольких терабайт памяти.

Физический размер (форм-фактор). Почти все современные накопители для персональных компьютеров и серверов имеют ширину либо 3.5, либо 2.5 дюйма — под размер стандартных креплений для них соответственно в настольных компьютерах и ноутбуках. Также получили распространение форматы 1.8 дюйма, 1.3 дюйма, 1 дюйм и 0.85 дюйма.

Время произвольного доступа — время, за которое винчестер гарантированно выполнит операцию чтения или записи на любом участке магнитного диска. Диапазон этого параметра невелик — от 2,5 до 16 мс. Как правило, минимальным временем обладают серверные диски.

Скорость вращения шпинделя (англ. spindle speed ) — количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и средняя скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 5400, 7200 и 10 000 (персональные компьютеры), 10 000 и 15 000 об/мин (серверы и высокопроизводительные рабочие станции).

Большая часть современных жестких дисков поддерживают стандарт SATA, подразумевающий передачу информации на скорости до 6 гигабит в секунду.

Уровень шума, дБ

Когда-то жесткие диски были довольно шумными - при записи и чтении информации они издавали громкий треск. К счастью, к 2015 году шумы HDD почти ввели на нет, а для дальнейшего снижения уровня шума можно пользоваться специальными муфтами. Приемлемым уровнем шума для настольного ПК является 25-30 дБ. Диски для ноутбуков издают еще меньше шума.

Скорость передачи данных при последовательном доступе:

внутренняя зона диска: от 44,2 до 74,5 Мб/с;

внешняя зона диска: от 60,0 до 111,4 Мб/с.

Оптические диски

Компакт-диск имеют в диаметре 12 см и изначально вмещали до 650 Мбайт информации (или 74 минуты звукозаписи). Однако, начиная приблизительно с 2000 года, всё большее распространение получали диски объёмом 700 Мбайт, которые позволяют записать 80 минут аудио, впоследствии полностью вытеснившие диск объёмом 650 Мбайт. Встречаются и носители объёмом 800 мегабайт (90 минут) и больше, однако они могут не читаться на некоторых приводах компакт-дисков.

CD - ROM , созданный промышленным способом, состоит из трех слоев. Основа диска, созданная из прозрачного поликарбоната, занимает основной объем диска. При изготовлении основы методом штамповки или литья под давлением на нее наносится информационный узор, и в результате чего получается прозрачная пластиковая пластина, гладкая с одной стороны, а с другой - содержащая множество микроскопических впадин, глубина которых отсчитывается от поверхности (land ). Далее на основу наносится отражающий металлический слой (чаще всего алюминий), а затем - защитное покрытие из тонкой пленки поликарбоната или специального лака, на котором часто размещается полиграфия - различные рисунки и надписи

CD - R . Тип оптического диска для одноразовой записи. При записи данных физические отметки делаются на поверхности носителя маломощным лазером и так как эти отметки не могут быть стерты, запись осуществляется только однажды.
CD - RW - перезаписываемый CD ( rewritable CD ). Он позволяет пользователю делать запись по старым данным или удалять отдельные файлы.
Принцип работы заключается в том, что лазерный диод излучает маломощный пучок света длиной 730–780 нм, который, проходя через направляющую призму и разделитель луча, попадает на отражающее зеркало. Во время записи мощность лазерного луча значительно возрастает, а при стирании данных уменьшается. Подчиняясь командам микропроцессора, каретка с отражающим зеркалом перемещается к нужной дорожке. Лазерный луч отражается от диска, попадает на зеркало, затем на разделитель луча и далее на направляющую призму. Из призмы луч попадает в фотодатчик, фотодатчик посылает сигналы во встроенный в привод компакт-дисков микропроцессор, где данные обрабатываются и передаются по шлейфу на материнскую плату.

В отличие от компакт-дисков, Стандартной емкостью таких дисков считается 4,7 Гб. DVD -носители могут быть двухслойными или двухсторонними. Емкость двухслойного DVD составляет 8,5 Гбайт, двухстороннего - 9,4 Гбайт. Двухсторонние диски фактически представ­ляют собой два одинаковых носителя, склеенных друг с другом (для считывания второй стороны диск необходимо переворачивать).

Существует пять физических форматов (или книг) DVD:

DVD-ROM - среда хранения данных большой емкости, только для чтения;

DVD-R - однократная запись, многократное чтение; формат, родственный CD-R;

DVD-RAM - перезаписываемый (стираемый) вариант DVD, который первым появился на рынке и впоследствии нашел в качестве конкурентов форматы DVD-RW и DVD+RW. Имея тот же самый размер как стандартный CD (диаметр 120 мм, толщина 1,2 мм), диски DVD обеспечивают до 17 Гбайт памяти со скоростью передачи выше, чем для CD-ROM, временем доступа, подобным CD-ROM, и имеют четыре версии:

DVD-5 - односторонний однослойный диск вместимостью 4,7 Гбайт;

DVD-9 - односторонний двухслойный диск на 8,5 Гбайт;

DVD-10 - двусторонний однослойный диск 9,4 Гбайт;

DVD-18 - вместимость до 17 Гбайт на двустороннем двухслойном диске.

На первый взгляд диск DVD не отличается от CD: пластмассовый диск диаметром 120 мм и толщиной 1,2 мм, оба используют лазеры, чтобы читать данные, записанные во впадинах на спиральной дорожке. Однако семикратное увеличение DVD по вместимости данных сравнительно с CD было в значительной степени достигнуто путем напряжения всех допусков системы-предшественника. Во-первых, дорожки размещены более плотно, шаг дорожки DVD (расстояние между ними) уменьшен до 0,74 мкм, более чем в 2 раза по сравнению с 1,6 мкм для CD. Во-вторых, спецификация DVD позволяет считывать информацию более чем с одного слоя, изменяя фокусировку луча лазера чтения. В-третьих, DVD позволяет использовать двусторонние диски.

В каждой из групп носителей можно выделить три основных типа дисков:

1. диски только для чтения (CD- ROM, DVD- ROM);

2. диски с возможностью однократной записи (CD- R, DVD- R, DVD+ R, DVD- RDL, DVD+ RDL);

3. диски с возможностью многократной записи (CD- RW, DVD- RW, DVD+ RW, DVD- RAM).

Базовое значение скорости составляет 36 864 Кбит/с, что в 27 раз боль­ше, чем у DVD, и в 243 раза превосходит CD. Проигрыватели с двукратной скоро­стью передачи данных способны превзойти скорость 73 000 Кбит/с.

BD-R/BD-R DL . Сокращение, которое используется для обозначения записываемых Blu-ray-дисков. Носители BD-R имеют один рабочий слой, вмещающий 25 Гб данных.

BD-R DL снабжены двумя рабочими слоями, поэтому их емкость в 2 раза выше.

BD-RE/BD-RE DL. Перезаписываемые Blu-ray-диски рассчитаны на 1000 циклов записи. На них можно разместить столько же данных, как и на не перезаписываемые носители.

Флеш-память (Flash Memory) – твердотельная полупроводниковая энергонезависимая и перезаписываемая память.

Считывать информацию из флэш-памяти можно большое число раз в пределах срока работы накопителя (от 10 лет), но количество процессов записи ограничено (около 100 000 циклов перезаписи).

Флэш-память считается более надежным видом носителя информации, т.к. не содержит подвижных механических частей (как, например, в жестком диске).

Преимущества флэш-памяти: высокая скорость доступа к данным; низкое энергопотребление; устойчивость к вибрациям; удобство подключения к ПК; компактные размеры; дешевизна.

Недостатки флэш-памяти: ограниченное число циклов записи; чувствительность к электростатическому разряду.

USB-флеш-накопители могут использовать интерфейсы USB 2.0 или USB 3.0, а также microUSB и Lightning.

Объем памяти

Главная характеристика любой "флешки". За многие годы развития флеш-памяти максимальный ее объем в USB-накопителях достиг невероятных высот - в кармане теперь можно носить целый терабайт данных.
Наиболее популярными объёмами на данный момент считаются 16 и 32 Гб.

Скорость чтения и записи данных , МБ/с

В случае флэш-накопителями эта характеристика формируется из трех составляющих: скорости чтения, скорости записи и интерфейса подключения. Скорость чтения у всех флэшек всегда выше скорости записи.

Как правило, максимальные показатели скорости влияют на интерфейс подключения флэш-накопителя, который может быть двух видов – USB 2.0 и USB 3.0. В первом случае (2.0) мы имеем дело с максимальной пропускной способностью равной 480 Мбит/с. Таким образом, максимальная скорость чтения или записи флэшки с интерфейсом USB2.0 не может превышать 60 Мб/c.

Что же касается интерфейса USB 3.0, то здесь пропускная способность достигает до 5 Гбит/c, что делает возможным осуществлять передачу данных на скорости 640 Мб/с.

На основании исследования трех видов современных носителей информации мною была сравнительная таблица (Приложение 1).

В течение нескольких десятилетий прогресс в технологиях хранения информации измерялся, прежде всего, с точки зрения емкости накопителей и скорости чтения/записи данных. Со временем к этим параметрам оценки прибавились технологии и методологии, которые делают HDD- и SSD-накопители умнее, гибче и проще в управлении. Каждый год производители накопителей традиционно намекают на то, что рынок больших данных изменится, и 2020 год — не исключение. IT-лидеры усиленно ищут эффективные способы хранения огромных потоков данных и управления ими, а, следовательно, вновь обещают изменить прежний курс развития систем хранения. В данной статье мы собрали самые передовые технологии размещения информации, а также расскажем о концепциях футуристических накопителей, которым еще только предстоит обрести свою физическую реализацию.




Программно-определяемые сети хранения данных

Если говорить о процессах автоматизации, гибкости и увеличения емкости хранения информации вкупе с повышением эффективности работы персонала, все больше предприятий рассматривает возможность перехода на так называемые программно-определяемые сети хранения или SDS (Software-Defined Storage).


Ключевая фишка технологии SDS заключается в отделении аппаратной части от софтверной: то есть подразумевается виртуализация функций хранения данных. К тому же, в отличие от обычных систем хранения с сетевым подключением (NAS) или сетей хранения данных (SAN), SDS предназначен для работы в любой стандартной системе x86. Довольно часто цель разворачивания SDS состоит в том, чтобы улучшить операционные расходы (OpEx), требуя меньше административных усилий.

Емкость HDD-накопителей вырастет до 32 Тбайт

Традиционные магнитные накопители вовсе не умерли, а всего лишь переживают технологический ренессанс. Современные HDD уже могут предложить пользователям до 16 Тбайт для хранения данных. В течение следующих пяти лет — эта емкость вырастет вдвое. При этом накопители на жестких магнитных дисках по-прежнему останутся самым доступным хранилищем произвольного доступа и сохранят за собой первенство в цене за гигабайт дискового пространства еще на много лет.

Наращивание емкости будет происходить на основе уже известных технологий:

  • Гелиевые накопители (гелий снижает аэродинамическое сопротивление и турбулентность, позволяя установить в накопитель больше магнитных пластин; при этом тепловыделение и энергопотребление не увеличивается);
  • Термомагнитные накопители (или HAMR HDD, появление которых ожидается в 2021 году и построено на принципе микроволновой записи данных, когда участок диска нагревается лазером и перемагничивается);
  • HDD на базе черепичной записи (или SMR-накопители, где размещение дорожек с данными происходит друг над другом, в формате черепичной кладки; это и обеспечивает высокую плотность записи информации).

NVMe-накопители станут еще быстрее

Первые SSD-накопители подключались к системным платам через интерфейс SATA или SAS, но разработаны эти интерфейсы уже более 10 лет назад для магнитных HDD-дисков. Современный же протокол NVMe является гораздо более мощным протоколом связи, предназначенным для систем, обеспечивающих высокую скорость обработки данных. Как итог, на рубеже 2019-2020 года мы видим серьезное падение цен на NVMe SSD, которые становятся доступными для любого класса пользователей. В корпоративном сегменте NVMe-решения особенно ценятся теми предприятиями, которым необходимо осуществление анализа больших данных в реальном времени.

Такие компании, как Kingston и Samsung уже показали, на что могут рассчитывать корпоративные пользователи в 2020 году: мы все ждем появления NVMe SSD с поддержкой PCIe 4.0, которые позволяют добавить ЦОД еще больше скорости при работе с данными. Заявленная производительность новинок составляет 4,8 Гбайт/с, и это далеко не предел. Следующие поколения Kingston NVMe SSD PCIe gen 4.0 смогут обеспечить пропускную способность на уровне 7 Гбайт/с.


Вместе со спецификацией NVMe-oF (или NVMe over Fabrics) организации смогут создавать высокопроизводительные сети хранения данных с минимальными задержками, которые составят весомую конкуренцию ЦОД с прямым подключением DAS (или Direct-attached storage). При этом с использованием NVMe-oF операции ввода/вывода обрабатываются эффективнее, в то время как задержка сравнима с DAS-системами. Аналитики предсказывают, что развертывание систем, работающих по протоколу NVMe-oF стремительно ускорится в 2020 году.

QLC-память наконец-то “выстрелит”?

Флеш-память NAND Quad Level Cell (QLC), также будет демонстрировать растущую популярность на рынке. QLC была введена в 2019 году и поэтому имела минимальное распространение на рынке. Это изменится в 2020 году, особенно среди компаний, которые внедрили технологию LightOS Global Flash Translation Layer (GFTL) для преодоления присущих QLC проблем.

Согласно прогнозам аналитиков, рост продаж SSD-накопителей на базе QLC-ячеек увеличится на 10%, в то время как TLC-решения “захватят” 85% рынка. Как ни крути, а QLC SSD все еще сильно отстает в производительности по сравнению с TLC SSD и не станет основой для ЦОД в ближайшие лет пять.



В то же время, ожидается, что стоимость флеш-памяти NAND в 2020 году вырастет, поэтому поставщик контроллеров SSD Phison, например, делает ставку на то, что повышение цен, в конечном итоге, подтолкнет потребительский рынок твердотельных накопителей к использованию 4-битной флэш-памяти QLC NAND. Кстати, Intel планирует запустить в продажу 144-слойные QLC-решения (вместо 96-слойных продуктов). Что ж…, кажется, нас ждет дальнейшая маргинализация HDD.

SCM-память: скорость, близка к DRAM

Широкое распространение SCM-памяти (Storage Class Memory) предсказывалось несколько лет, и 2020 год может стать отправной точкой, в которой эти предсказания, наконец, сбудутся. В то время как модули памяти Intel Optane, Toshiba XL-Flash и Samsung Z-SSD уже вышли на корпоративный рынок, их появление не вызвало ошеломляющей реакции.

Устройство Intel сочетает в себе характеристики быстрой, но нестабильной DRAM с более медленным, но постоянным хранилищем NAND. Эта комбинация направлена на повышение способности пользователей работать с большими массивами данных, обеспечивая как скорость DRAM, так и емкость NAND. SCM-память не просто быстрее, чем альтернативы на базе NAND: она в десятки раз быстрее. Задержка составляет микросекунды, а не миллисекунды.


Эксперты рынка отмечают, что центры обработки данных, планирующие использовать SCM будут ограничены тем, что данная технология будет работать лишь на серверах с использованием процессоров Intel поколения Cascade Lake. Однако, по их мнению, это не станет камнем преткновения, чтобы остановить волну обновлений существующих ЦОД в целях обеспечить высокие скорости обработки информации.

От обозримой реальности к далекому будущему

Для большинства пользователей хранение данных не сопряжено с ощущением “емкостного Армагеддона”. Но только задумайтесь: 3,7 миллиарда человек, которые в настоящее время пользуются Интернетом, ежедневно генерируют около 2,5 квинтиллиона байтов данных. Для удовлетворения этой потребности необходимо все больше центров обработки данных.

Если верить статистике, к 2025 году мир готов к обработке 160 Зетабайт данных в год (это больше байтов, чем звезд в обозримой Вселенной). Вероятно, что дальше нам придется покрыть каждый квадратный метр планеты Земля ЦОД’ами, иначе корпорации просто не смогут подстроиться под столь высокий рост информации. Или же… придется отказываться от некоторых данных. Впрочем, есть несколько потенциально интересных технологий, которые могли бы решить нарастающую проблему информационного переполнения.

Структура ДНК, как основа для будущих хранилищ данных

Не только IT-корпорации ищут новые способы хранения и обработки информации, но и многие научные деятели. Глобальная задача — обеспечить сохранение информации в течение тысячелетий. Исследователи из Швейцарской высшей технической школы Цюриха (ETH Zurich, Швейцария) полагают, что решение нужно искать в органической системе хранения данных, которая существует в каждой живой клетке: в ДНК. И главное — “придумана” эта система задолго до появления компьютера.


Нити ДНК очень сложны, компактны и невероятно плотны, как носители информации: по мнению ученых, в грамм ДНК можно записать 455 Эксабайт данных, где 1 Эбайт эквивалентен миллиарду гигабайт. Первые эксперименты уже позволили осуществить запись 83 Кбайт информации в ДНК, после чего преподаватель кафедры химии и биологических наук, Роберт Грасс, высказал идею о том, что в новом десятилетии медицинской сфере нужно плотнее объединиться с IT-структурой для совместных разработок в области технологий записи и хранения данных.

По мнению ученых, органические накопители данных на базе цепей ДНК смогли бы хранить информацию до миллиона лет и безошибочно предоставлять ее по первому запросу. Не исключено, что через несколько десятилетий большинство накопителей будут бороться именно за эту возможность: умение надежно и емко хранить данные в течение длительного времени.


Швейцарцы не единственные, кто работает над созданием систем хранения на основе ДНК. Этот вопрос поднимался еще с 1953 года, когда Фрэнсис Крик открыл двойную спираль ДНК. Но в тот момент человечеству попросту не хватало знаний для подобных экспериментов. Традиционное мышление в области хранения данных на основе ДНК сфокусировано на синтезе новых молекул ДНК; сопоставление последовательности битов с последовательностью четырех пар оснований ДНК и создание достаточного количества молекул для представления всех чисел, которые необходимо сохранить. Так, летом 2019 года инженерам из компании CATALOG удалось записать 16 Гбайт англоязычной “Википедии” в ДНК, созданную из синтетических полимеров. Проблема заключается в том, что этот процесс медленный и дорогой, что является существенным узким местом, когда речь идет о хранении данных.

Не ДНК единым…: молекулярные накопители

Исследователи из Университета Брауна (Brown University, США) заявляют, что молекула ДНК — не единственный вариант молекулярного хранения данных сроком до миллиона лет. В качестве органического хранилища могут выступать и низкомолекулярные метаболиты. При записи информации в набор метаболитов, молекулы начинают взаимодействовать друг с другом и производить новые электрически нейтральные частицы, которые содержат записанные в них данные.


К слову, исследователи не остановились на этом и расширили набор органических молекул, что позволило увеличить плотность записываемых данных. Считывание же такой информации возможно посредством химического анализа. Единственный минус — реализация такого органического накопителя пока не представляется возможной на практике, вне лабораторных условий. Это всего лишь наработка на будущее.

5D-оптическая память: революция в хранении данных

Еще одно экспериментальное хранилище принадлежит разработчикам из Саутгемптонского университета (University of Southampton, Англия). В стремлении создать инновационную цифровую систему хранения информации, которая сможет существовать миллионы лет, научные деятели разработали процесс записи данных на крошечный кварцевый диск, который основан на фемтосекундной импульсной записи. Система хранения предназначена для архивирования и холодного хранения больших объемов данных и описывается, как пятимерное хранилище.


Почему пятимерное? Дело в том, что информация кодируется в нескольких слоях, включая обычные три измерения. К этим измерениям добавляются еще два — размер и ориентация по наноточкам. Емкость данных, которые можно записать на такой мини-накопитель, составляет до 100 Петабайт, а срок хранения — 13,8 млрд. лет при температуре до 190°C. Максимальная же температура нагрева, которую может выдержать диск составляет 982 °C. Короче…, он практически вечный!


Недавно работа сотрудников Саутгемптонского университета привлекла внимание компании Microsoft, чья программа облачного хранения данных Project Silica направлена на переосмысление нынешних технологий хранения данных. По прогнозам “мелкомягких” к 2023 году в облаках будет храниться более 100 Зетабайт информации, так что сложности возникнут даже у крупномасштабных систем хранения.

Для получения дополнительной информации о продуктах Kingston Technology обращайтесь на официальный сайт компании.

По состоянию на 2020 год, одна только компания Google обрабатывает свыше 3,5 млрд поисковых запросов, а YouTube транслирует почти 4,5 миллиона видеороликов. Ежедневно пользователи интернета и социальных сетей генерируют все больше контента и по самому оптимистичному прогнозу, через 5 лет мы достигнем отметки в 463 эксабайта новой информации в день. Только представьте, почти 5 миллиардов ГБ в сутки и это с учетом того, что более половины населения Земли не имеют доступа в интернет!

На деле проблемы с хранением данных наблюдаются уже сейчас — современные дата-центры занимают огромные площади, потребляют невиданное количество электроэнергии. Согласно подсчетам, на долю дата-центров приходится чуть больше 1% потребляемого электричества в мире, а человечество расходует свыше 20 000 млрд кВтч.

Нужен выход, какой? Правильно, следует плотнее упаковывать информацию, причем не в ущерб надежности, производительности и энергопотреблению. Несколько предложений от ученых уже есть и их разработки не фантастика, а наше ближайшее будущее.

Где хранить информацию — в облаке или дома на HDD

Учёные, новые разработки, совсем скоро… Вызывает скепсис, понимаем. Ведь если что-то новое и станут внедрять, то рядовому пользователю доступ к высоким технологиям откроется нескоро. Это действительно так — в первую очередь хайтек, если мы говорим о хранении данных, коснется тех самых дата-центров, облачного хранилища.

Данные в облаке — это модно, молодежно, но недостатков у такого подхода масса:

  • Никто не гарантирует, что данные в облаке не украдут. И как мы знаем, все что попало в интернет, там навсегда и остается.
  • Получить информацию из облачного хранилища невозможно без подключения к интернету.
  • Ежемесячная плата — хочешь хранить, люби и денежки платить.
  • Наконец, если облако потеряет ваши данные в случае серьезного сбоя, то что-то восстановить вряд ли удастся.

Это все к тому, что мы еще долго будем пользоваться всеми типами твердотельных накопителей дома. Еще десятки лет никакое облачное хранилище полностью не заменит домашний жесткий диск, а потому все те новые технологии, которые скоро начнут внедрять в дата-центрах, не останутся достоянием лишь IT-корпораций. Нам тоже достанется, а значит следует узнать, к чему готовиться.

Второе пришествие магнитных лент

Мы же говорили о хайтеке. Именно, магнитные ленты нового поколения будут изготавливать из эпсилон-оксида железа. Это позволит не только хранить на бобинах будущего существенно больше информации, но и повысить надежность хранения данных.

Ученые уверены в своей разработке на все 100%, поскольку успели сравнить ее с современными HDD- и SSD-накопителями. Результаты тестирования показали, что магнитные ленты нового поколения действительно отличаются большей плотностью записи, более высокой надежностью и потребляют меньше энергии.

Как это работает

Записывается информация на новый тип магнитных лент при помощи сфокусированных миллиметровых волн в пределах частот от 30 до 300 Гц. В качестве записывающего устройства используется специальная головка с генератором волн, в результате чего биты данных фиксируются на ленте. Ученые утверждают, что подобный способ записи позволит хранить информацию настолько долго, насколько это возможно, поскольку эпсилон-оксид железа весьма устойчив к внешним паразитным магнитным полям.

Когда ждать

Как обычно, никаких точных дат. По мнению специалистов, их разработка найдет широкое применение за пределами лаборатории в ближайшие 5 – 10 лет. Что интересно, примерно через 6 лет производители традиционных носителей обещают выпустить 50 – терабайтные HDD для дата-центров. Не потеряют ли актуальность к тому времени магнитные ленты нового поколения?

ДНК в качестве носителя высокой емкости

Теперь окунемся в совсем уж фантастику. По примерным подсчетам, интернет сегодня хранит до 700 миллиардов гигабайт информации. В один грамм ДНК можно закодировать порядка 0,5 млрд ГБ данных (в теории). Все знания человечества уместить в 1,4 кг макромолекул — понимаете, насколько это эпично?

Но молекула ДНК очень хрупкая, скажут одни и будут правы. Хотя при правильных условиях хранения ей ничего не грозит — вспомните только фрагменты геномов, сохранившихся в окаменелостях, коим десятки тысяч лет. Никакой из современных носителей ничем подобным похвастать не может. Оптимизма добавляет тот факт, что Microsoft совместно со специалистами Вашингтонского университета уже смогли создать прототип устройства хранения информации на базе ДНК. Тормозит процесс внедрения ДНК в качестве накопителя сложность записи и последующего чтения данных, но эти проблемы постепенно решаются созданием систем по типу DORIS или MIST. Сроки появления ДНК-накопителей вообще никак не обозначаются — ждем в обозримом будущем.

Кварцевое стекло

Постоянную структуру кварцевого стекла можно легко трансформировать лазером, то есть закодировать, а затем считать информацию с использованием нейросетей. Преимуществом такого метода хранения данных является компактность, отсутствие необходимости контроля температуры и регулярного обслуживания. Очевидно, что кварцевое стекло выступит в качестве реального носителя информации и будет использовано в коммерческих целях намного раньше, чем ДНК.

В мире наблюдается дефицит свободного места для хранения цифровых данных. Эта проблема существует нескольких лет, однако обычные люди вряд ли о ней когда-либо задумывались. Не так давно было время, когда свободное место для записи цифровых данных ограничивалось объемом жесткого диска вашего компьютера. При достижении предела мы либо шли за новым жестким диском, либо записывали все на оптические носители. Когда заканчивались и они, мы просто удаляли старые данные и записывали новые. Но есть те, кто никогда не удаляет данные.


Как будет выглядеть дата-центр ДНК?

Такая разбалованность привела к тому, что людям стало сложно даже вообразить, что однажды у нас может закончиться свободное место для хранения цифровых данных. Как раньше было сложно вообразить, что на Земле рано или поздно может закончится пресная вода, запасы которой восполняются благодаря ее круговороту в природе. Но вот вам реальность. В 2018 году запасы воды в Кейптауне (Южная Африка) стремительно приблизились к своему полному истощению. А мы, люди, не задумывающиеся об этом, стремительно приближаемся к нехватке свободного места для хранения цифровых данных.

Данные, данные, вокруг одни данные


Резкий рост объема накопленных данных.

Поскольку компании, занимающиеся облачным хранением данных постоянно заняты строительством новых дата-центров или расширением уже существующих, весьма сложно спрогнозировать, когда мы реально лишимся всего свободного места. Тем не менее по словам того же Парка, уже к 2025 году человечество в совокупности может сгенерировать более 160 зеттабайтов цифровой информации (зеттабайт, для тех, кто не знает, это триллион гигабайт). Как много из этого объемы мы сможем реально сохранить? Около 12,5 процента, говорит Парк.

Этот вопрос определенно требует решения.

Может этим ответом является ДНК?

Так считают Парк, Натаниэль Рокет, а также их коллеги из Массачусетского технологического института. Вместе они основали компанию Catalog, в стенах которой была разработана технология, способная по мнению ее создателей изменить наше представление о том, как в ближайшем будущем будут храниться все наши цифровые данные. По их мнению, точнее заявлению, в скором времени цифровые данные со всего мира можно будет уместить на площади не больше шкафа для одежды.


Компания Catalog предлагает в качестве подходящего решения кодировать данные в ДНК. Звучит все это как один из сюжетов американского писателя-фантаста Майкла Крайтона, но предлагаемое ими масштабируемое и доступное решение вполне реалистично и даже привлекло 9 миллионов долларов венчурного финансирования, а также поддержку ведущих профессоров из Стэнфордского и Гарвардского университетов.

Но это совсем не то, чем занимается компания Catalog. ДНК которое использует Catalog для кодирования данных представляет собой синтетический полимер. Она не биологического происхождения и не создана на парах азотистых оснований, в которые записывается информация. Серия из нулей и единиц, которая записывается в полимер так же не может быть кодом чего живого. Тем не менее на выходе получаемый продукт биологически практически не отличим от того, что мы привыкли встречать в живой клетке.

Подписывайтесь на наш канал в Яндекс Дзен. Там можно найти много всего интересного, чего нет даже на нашем сайте.

Идея о том, что ДНК можно рассматривать в качестве альтернативного средства для хранения цифровой информации зародилась еще несколько десятилетий назад. Фактически, когда Джеймс Уотсон и Фрэнсис Крик только пришли к модели структуры ДНК в 1953 году. Однако до сегодняшнего времени ряд существенных ограничений не позволял увидеть огромный потенциал использования ДНК в качестве средства хранения цифровой информации, не говоря уже о том, как все это воплотить в реальности.

В обычном представлении метод хранения информации посредством ДНК сосредоточен вокруг синтеза новых молекул ДНК; сопоставлении последовательностей битов информации с последовательностями четырех пар ДНК, а также производством достаточного количества молекул, которые будут представлять все числа, которые вы хотите сохранить. Проблема такого метода заключается в дороговизне и медлительности процесса. Кроме того, здесь имеется много ограничений, связанных собственно с хранением самих данных.


Такая вот схема.

Подход компании Catalog предлагает отключение процесса синтеза молекул от процесса их кодирования. Если говорить по существу, компания сначала производит огромное количество лишь определенных молекул (что существенно удешевляет производство), а затем кодирует в них информацию посредством использования разнообразия уже готовых молекул.

Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового.

В качестве аналогии Catalog сравнивает предыдущий подход с производством пользовательских жестких дисков с уже заранее записанной на нее информацией. Запись новой информации в таком случае подразумевает необходимость создания нового жесткого диска с нуля. Новый подход, предложенный Catalog, можно сравнить с массовым производством пустых жестких дисков и записи на них по мере необходимости новой закодированной информации.

Все дело в способе хранения

Сравнение с твердотельными накопителями, отмечают разработчики, все-таки не совсем точное. ДНК позволяет хранить в сравнимом объеме гораздо больше информации, однако технология не позволяет предоставлять к ней мгновенный доступ, как например, в случае с теми же USB-накопителями. Технология Catalog трансформирует информацию в твердый физический пеллет (гранулу) из синтетического полимера.


Главное решить, с чем работать.

По этой причине такая технология в первую очередь ориентирована на рынок архивирования, где не требуется быстрый доступ к информации. Обычно в этом случае подразумеваются данные, которые не используются или очень редко используются после записи, но при этом крайне важны для сохранения. Скажем, как ваша гарантия на холодильник, только в масштабе корпоративной значимости.

На какую пользу все это принесет обычным пользователям? В начале статьи мы говорили о том, что большинство из нас не задумывается о том, что происходит и где хранится наша информация. На твердотельных носителях? Да пусть хоть на магнитной пленке. Нам это не интересно до тех пор, пока у нас есть к ней доступ в любое время.

Из-за продолжительности процесса восстановления информации мы вряд ли когда-нибудь достигнем уровня, когда какой-нибудь Google Cloud или Яндекс.Диск будут хранить нашу информацию в гигантских чанах с ДНК. Если та же технология Catalog подтвердит свою эффективность, то, скорее всего, она найдет свою нишу в сферах, где применяется подход долгосрочного хранения информации. Что же касается краткосрочного метода хранения информации, где в настоящий момент применяются как жесткие диски, так и твердотельные накопители, то нам придется полагаться на другие методы.

Представляя перспективы


В этой пробирке содержатся миллионы копий данных, закодированных в ДНК

Тем не менее и здесь можно усмотреть практически научно-фантастические возможности.

В настоящее время Catalog занимается экспериментальными проектами, направленными на демонстрацию эффективности разработанной ими технологии.

По собственному признанию Парка, он решил подключиться заняться исследованием способов хранения данных с помощью ДНК просто потому, что ему показалось это очень крутым и инновационным технологическим подходом к решению существующей большой проблемы. Сейчас же по мнению специалиста, эта технология может стать одной из важнейших технологий нашего времени.

Читайте также: