Сообщение о копернике и птолемее

Обновлено: 06.07.2024

Астрономия – очень древняя наука, одна из древнейших естественных наук.

Многие тысячелетия человек смотрит в небо, стараясь разгадать загадки звездных миров. Но сначала астрономию (науку о движении и свойствах небесных тел) объединяли с астрологией (предсказание о воздействии небесных тел на земной мир и человека). Так было почти до эпохи Возрождения (по крайней мере, в Европе).

Чаще всего первые астрономы были одновременно философами и математиками, потому что загадки звездного неба пытались разгадать только думающие люди, размышляющие о мире и о человеке в нем, но размышления эти часто подкреплялись вычислениями.

Многие ученые античного периода писали на эту тему, не все их труды сохранились и не все их имена нам известны. Конечно, в ту пору понятия астрономов были примитивными и не всегда верными, у них не было еще мощных телескопов и методик для теоретических изысканий, но эти первые шаги в науку астрономию по-своему интересны и достойны внимания.

В данной статье представлены люди, которые по праву считаются родоначальниками астрономии, в том числе той ее части, которая соответствует современным представлением о роли Земли во Вселенной.

Фалес Милетский


По мнению исследователей, Фалес первым открыл наклон эклиптики к экватору и провёл на небесной сфере пять кругов:

  1. арктический круг;
  2. летний тропик;
  3. небесный экватор;
  4. зимний тропик;
  5. антарктический круг.

Он научился вычислять время солнцестояний и равноденствий, установил неравность промежутков между ними. Фалес первым указал, что Луна светит отражённым светом; что затмения Солнца происходят тогда, когда его закрывает Луна. Также он первым определил угловой размер Луны и Солнца.

Он нашёл, что размер Солнца составляет 1/720 часть от его кругового пути, а размер Луны — такую же часть от лунного пути.

Клеострат Тенедосский


Ученик Клеострата (история не сохранила его имени) впервые в Греции уточнил длину тропического года (тропический год, также известный как солнечный год) — это отрезок времени, за который Солнце завершает один цикл смены времён года, как это видно с Земли.

Евдокс Книдский


Последователь философа Платона Евдокс Книдский (408— 355 гг. до н. э.), являлся создателем целой астрономической школы, заложивший основы теоретической астрономии. Евдокс был творцом невероятно сложной модели движения планет, которая, однако, объясняла их поведение на небе — всех, за исключением Марса. Он также составил первый в Европе каталог звезд.

Греки считали небо состоящим из твердых прозрачных оболочек — сфер, расположенных на различной высоте от поверхности Земли и вращающихся вокруг нее. Светила закреплены неподвижно на небесных сферах. На самой удаленной от Земли сфере расположены звезды — поэтому они совершают полный оборот ровно за сутки.

Подбирая скорости вращения, взаимное расположение других сфер и углы наклона их осей, Евдокс сумел объяснить даже такую загадку, как петли, описываемые на небе Марсом, Юпитером и Сатурном на фоне звезд.

Аристарх Самосский


Крупнейший древнегреческий астроном и философ Аристарх Самосский (310—250 гг. до н. э.) родился на острове Самос в Эгейском море. Одним из первых он использовал геометрические вычисления для определения размеров Солнца и Луны и нахождения отношений между их размерами и орбитами, по которым эти светила движутся. Правда, он допустил немало ошибок, и в результате диаметр Солнца у него получился всего в шесть раз больше земного, а Луны — в три раза меньше.

Аристарх считал, что Солнце находится в центре нашей планетной системы, несмотря на то что современники просто смеялись над этой идеей и обвиняли ученого в оскорблении богов. Смену дня и ночи на Земле он объяснял абсолютно верно — вращением Земли вокруг своей оси, а Луну называл спутником Земли.

Эратосфен


Родился Эратосфен в Кирене в 275 году до н.э., а умер в Александрии в 193 году до н.э. Он был не только астрономом, но географом и философом. Оставил Эратосфен свой след и в математике. ему принадлежит право быть изобретателем прибора, с помощью которого можно было находить расположения селений и городов, расстояние до которых было заранее известно. Также известно, что Эратосфен заведовал Александрийской Библиотекой.

Одной из самых главных заслуг Эратосфен является то, что ему удалось определить длину окружности Земли. В ходе исследований астроном обнаружил, что в день летнего солнцестояния (21 июня) Солнце отражается в колодцах города Асуан, а в Александрии (которая была расположена севернее, но, практически, на том же меридиане) предметы отбрасывают небольшую тень. Эратосфен предположил, что это явление может быть обоснованно кривизной поверхности Земли. С помощью измерения расстояние между двумя городами астроному удалось определить радиус Земли.

Гиппарх Никейский


Гиппарха Никейского (161—126 гг. до н. э.) считают основателем научной астрономии. На протяжении многих лет он вел наблюдения за звездами и сравнивал их с результатами вавилонских астрономов. Гиппарх составил самый точный звездный каталог, включавший более тысячи звезд, и первым ввел в науку понятие звездных величин, разделив все звезды на шесть категорий — от самых ярких до едва видимых глазом. Этот метод и по сегодняшний день используется астрономами.

Ученый также усовершенствовал календарь, определив продолжительность года в 365,25 дня. Именно он ввел понятия апогея (точка орбиты Луны или искусственного спутника Земли, наиболее удаленная от центра Земли) и перигея (ближайшая к Земле точка орбиты Луны или искусственного спутника Земли), средние периоды обращения планет.

По таблицам Гиппарха можно было предсказывать солнечные и лунные затмения с неслыханной для того времени точностью — до 1-2 часов.

Клавдий Птолемей


Клавдий Птолемей (ок. 100 – ок. 170) — позднеэллинистический астроном, математик, механик, оптик и географ. Жил и работал в Александрии Египетской, где проводил астрономические наблюдения.

При создании данной системы он проявил себя как умелый механик, поскольку сумел представить неравномерные движения небесных светил в виде комбинации нескольких равномерных движений по окружностям.

Удивительно: система Птолемея не имела ничего общего с тем, что на самом деле существует в природе, однако с ее помощью можно было довольно точно предсказывать движение небесных тел, время наступления солнечных и лунных затмений и одновременного появления всех планет на земном небе.

Николай Коперник


Николай Коперник — польский астроном. Он родился 19 февраля 1473 года в городе Торунь и умер во Фромборке 24 мая 1543 года. Ему довелось учиться в университетах Кракова, Болоньи и Падуи, где Коперник изучал различные науки, в том числе астрономию. В 1512 году он стал каноником во Фромборке, посвятив себя исполнению его обязанностей, а также астрономическим наблюдениям и исследованиям Вселенной.

Наиболее известен как автор гелиоцентрической системы мира, положившей начало первой научной революции.


С гелиоцентрических позиций Коперние без труда объясняет возвратное движение планет. В своем труде он дает сведения по сферической тригонометрии и правила вычисления видимых положений звезд, планет и Солнца на небесном своде. Упоминается Луна, планеты и причины изменения широт планет.

Гелиоцентрическая система в варианте Коперника может быть сформулирована в семи утверждениях:

  • орбиты и небесные сферы не имеют общего центра;
  • центр Земли — не центр Вселенной, но только центр масс и орбиты Луны;
  • все планеты движутся по орбитам, центром которых является Солнце, и поэтому Солнце является центром мира;
  • расстояние между Землёй и Солнцем очень мало по сравнению с расстоянием между Землёй и неподвижными звёздами;
  • суточное движение Солнца — воображаемо, и вызвано эффектом вращения Земли, которая поворачивается один раз за 24 часа вокруг своей оси, которая всегда остаётся параллельной самой себе;
  • Земля (вместе с Луной, как и другие планеты), обращается вокруг Солнца, и поэтому те перемещения, которые, как кажется, делает Солнце (суточное движение, а также годичное движение, когда Солнце перемещается по Зодиаку) — не более чем эффект движения Земли;
  • это движение Земли и других планет объясняет их расположение и конкретные характеристики движения планет.

Тихо Браге


Тихо Браге (14.12.1546-24.10.1601) — датский астроном эпохи Возрождения. Первым в Европе начал проводить систематические и высокоточные астрономические наблюдения, на основании которых Кеплер вывел законы движения планет.

В ноябре 1577 года на небе появилась яркая комета. Тихо Браге тщательно проследил её траекторию вплоть до исчезновения видимости в январе 1578 года. Сопоставив свои данные с полученными коллегами в других обсерваториях, он сделал однозначный вывод: кометы — не атмосферное явление, как полагал Аристотель, а внеземной объект, втрое дальше, чем Луна.

Свои научные достижения Браге изложил в многотомном астрономическом трактате. Сначала вышел второй том, посвящённый системе мира Тихо Браге и комете 1577 года. Первый же том (о сверхновой 1572 года) вышел позднее, в 1592 году в неполном виде. В 1602 году, уже после смерти Браге, Иоганн Кеплер опубликовал окончательную редакцию этого тома. Браге собирался в последующих томах изложить теорию движения других комет, Солнца, Луны и планет, однако осуществить этот замысел уже не успел.

Иоганн Кеплер


Иоганн Кеплер (27.12.1571-15.11.1630) – немецкий математик, астроном, механик, оптик, первооткрыватель законов движения планет Солнечной системы. Кеплер создал новую модель телескопа, которая позволяла улучшить исследование Солнечной системы.

В конце XVI века в астрономии ещё происходила борьба между геоцентрической системой Птолемея и гелиоцентрической системой Коперника. Открытые Кеплером три закона движения планет полностью и с превосходной точностью объяснили видимую неравномерность движений планет.

Согласно законам Кеплера, все планеты движутся по эллиптическим орбитам. В одном из фокусов этих орбит находится Солнце. В зависимости от отдаленности от Солнца уменьшается или увеличивается скорость движения планеты по орбите. Чтобы сформировать свои законы, Кеплер изучал орбиту Марса в течении 10 лет.


Летом 1627 года Кеплер после 22 лет трудов опубликовал астрономические таблицы. Спрос на них был огромен, так как все прежние таблицы давно разошлись с наблюдениями. Немаловажно, что труд впервые включал удобные для расчётов таблицы логарифмов. Кеплеровы таблицы служили астрономам и морякам вплоть до начала XIX века.

Галилео Галилей


Галилео Галилей — известный итальянский математик, физик и астроном, оказавший значительное влияние на науку своего времени. Он родился 15 февраля 1564 году в Пизе и умер 8 января 1642 году во Флоренции. Им были открыты законы движения маятника, созданы гидравлические весы и изобретен газовый термометр.

В 1609 году Галилей самостоятельно построил свой первый телескоп с выпуклым объективом и вогнутым окуляром. Труба давала приблизительно трёхкратное увеличение. Вскоре ему удалось построить телескоп, дающий увеличение в 32 раза. Сам термин телескоп ввёл в науку именно Галилей. Первые телескопические наблюдения небесных тел Галилей провёл 7 января 1610 года. Эти наблюдения показали, что Луна, подобно Земле, имеет сложный рельеф, а ее пепельный свет Галилей объяснил как результат попадания на наш естественный спутник солнечного света, отражённого Землёй.

Галилей опроверг один из доводов противников гелиоцентризма: Земля не может вращаться вокруг Солнца, поскольку вокруг неё самой вращается Луна.

Галилей открыл пятна на Солнце, исследовал планеты Солнечной системы, рассчитал период вращения этой звезды и сделал вывод, что звезды расположены очень далеко от нашей планеты. Ему принадлежит утверждение, что Вселенная бесконечна. Ученому-астроному удалось доказать, что Млечный Путь не является облаком, а массой звезд.

Галилео был ревностным приверженцем теории Коперника, что стало причиной конфликта между Галилеем и церковью. Галилей был привлечен к суду и будучи в безвыходном положении, он был вынужден публично отказаться от своих убеждений. Случилось это в 1632 году. Будучи под домашним арестом, Галилей продолжал свою работу с учениками, хотя и был наполовину слеп.

Эдмунд Галлей


В 1693 году Галлей обнаружил вековое ускорение Луны, что могло свидетельствовать о её непрерывном приближении к Земле. В 1677 году Галлей предложил новый метод определения расстояния до Солнца, то есть астрономическую единицу. Для этого необходимо было наблюдать прохождение Венеры по диску Солнца из двух мест, удалённых по широте

Способ Галлея позволил к концу XIX века в 25 раз снизить ошибку при определении солнечного параллакса.

С именем Эдмунда Галлея связан и коренной перелом в представлениях о кометах. В Новое время до Ньютона все считали их чужеродными странниками, лишь пролетающими сквозь Солнечную систему по незамкнутым параболическим орбитам. Галлей рассчитал и опубликовал в 1705 году орбиты 24 комет и обратил внимание на сходство параметров орбит у нескольких из них, наблюдавшихся в XVI—XVII веках, с параметрами кометы 1682 года.


Фото кометы Галлея 1986 год с земли

В 1716 году он опубликовал подробные расчёты, указал, что это одна и та же комета, и следующее её появление должно произойти в конце 1758 года. И действительно, она была обнаружена. Возвращение кометы в предсказанный срок стало первым триумфальным подтверждением теории тяготения Ньютона и прославило имя самого Галлея. Эта комета в наши дни называется кометой Галлея.

За особые достижения Галлей был представлен к званию магистра астрономии в Оксфорде и был принят в члены Лондонского Королевского Общества.

Галлей был первым, кто привлёк внимание астрономов к совершенно загадочному тогда объекту — туманностям. В статье 1715 года он уже утверждал, что это многочисленные самосветящиеся космические объекты.

Михаил Ломоносов


Михаил Ломоносов (08.11.1711 – 04.04.1765) — первый русский учёный-естествоиспытатель мирового значения, энциклопедист, химик и физик. В астрономии прославился открытием атмосферы у планеты Венера. Это открытие он совершил 26 мая 1761 года, когда наблюдал прохождение Венеры по солнечному диску.

Опытный образец нового телескопа был изготовлен под руководством М. В. Ломоносова в апреле 1762 года, а 13 мая учёный демонстрировал его на заседании Академического собрания. Изобретение это оставалось неопубликованным до 1827 года, поэтому, когда аналогичное усовершенствование телескопа предложил У. Гершель, такую систему стали называть его именем.

Уильям Гершель


Важную роль в развитии астрономии сыграл великий английский учёный немецкого происхождения Уильям Гершель. Он построил уникальные для того времени рефлекторы с диаметром зеркал до 1,2 м и виртуозно ими пользовался.

Главным его занятием за все тридцать лет наблюдений было исследование звёздных миров.

Он зарегистрировал свыше 2500 новых туманностей. Изучал их структуру и взаимодействие. Некоторые туманности круглой формы, иногда со звездой внутри, он назвал планетарными и считал скоплениями диффузной материи, в которых формируется звезда и планетная система. На самом деле почти все открытые им туманности были галактиками, но по существу ученый был прав — процесс звездообразования происходит и в наши дни.

На некоторые открытия Гершеля не обратили внимания, а взаимодействующие галактики были переоткрыты уже в XX веке.

Гершель первым систематически применял в астрономии статистические методы и с их помощью сделал вывод, что Млечный Путь — изолированный звёздный остров, который содержит конечное число звёзд и имеет сплюснутую форму. Расстояния до туманностей он оценивал в миллионы световых лет.

Видео

Научное мировоззрение пришло на смену господствовавшему в средние века церковно-догматическому лишь после длительной борьбы. Эпоха возрождения в науке потребовала гораздо больше усилий и даже жертв, нежели возрождение в искусстве или литературе. Борьба старого и нового в естествознании нашла свое внешнее выражение прежде всего в борьбе между сторонниками системы мира Птолемея и системы мира Коперника. Интересно сравнить основные утверждения сторонников обоих учений с точки зрения современной теории движения.


Птолемей — известный александрийский астроном, живший во втором столетии нашей эры. Он дал геоцентрическую схему строения солнечной системы. В центре мира находится неподвижная Земля (рис. 4).


Рис. 4. Система Птолемея по средневековым представлениям

Вокруг нее движутся Луна, Меркурий, Венера, Солнце, Марс, Юпитер и Сатурн (других планет в то время не знали). А так как древние греки считали идеальной линией окружность, то астрономам того времени казалось естественным, что небесные тела могут двигаться только по круговым орбитам. Чтобы согласовать систему Птолемея с наблюдениями, пришлось предположить, что планеты движутся по вспомогательным окружностям, которые назвали эпициклами. Центры же эпициклов в свою очередь движутся вокруг Земли по круговым орбитам, так называемым деферентам. Чем точнее становились данные наблюдений, тем больше приходилось усложнять систему Птолемея. Для объяснения движения планет требовалось брать все больше и больше эпициклов — их число достигло наконец нескольких десятков (рис. 5). Однако, несмотря на сложность, геоцентрическая система оставалась общепризнанной до начала XVII в.


Рис. 5. Система эпициклов

Вдоль деферента движется центр первого эпицикла, вдоль первого эпицикла — центр второго эпицикла, вдоль второго эпицикла — центр третьего эпицикла и т. д., наконец, вдоль последнего эпицикла движется сама планета.


Вначале католическая церковь не придала особого значения учению Коперника. Однако, когда стало ясно, что новая система мира подрывает самые основы религии, началось беспощадное преследование его сторонников. В 1600 г. за проповедь материалистического учения и за распространение учения Коперника инквизиция сожгла на костре замечательного итальянского мыслителя Джордано Бруно. Научный спор между последователями двух систем мира превратился в борьбу между прогрессивными и реакционными силами. Победили в конце концов последователи Коперника. Джордано Бруно первым утверждал, что у мира нет центра, что неподвижные звезды не образуют какой-то сферы, как это считали раньше, а являются солнцами, движущимися в мировом пространстве. Поэтому отпадает всякая возможность описать движение небесных тел относительно центра мира.


Рис. 6. Система мира по Копернику. По мнению Коперника, все неподвижные звезды располагались на одной сфере

Как и в случае других тел, для описания движения солнечной системе прежде всего нужно задать систему отсчета. Если за тело отсчета выберем Землю, получим геоцентрическую систему Птолемея. Именно картину мира Птолемея видит находящийся на земле человек, который считает Землю неподвижной, а планеты и Солнце — обращающимися вокруг нее. Если же выбрать за тело отсчета Солнце, получим гелиоцентрическую систему мира Коперника. Картину мира Коперника увидел бы наблюдатель, находящийся на Солнце. Системы мира Птолемея и Коперника не представляют собою ничего другого как описание движения солнечной системы в разных системах отсчета: в первом случае за тело отсчета принимается Земля, во втором — Солнце. Следовательно, вопрос, кто прав, Птолемей или Коперник, в современной постановке сводится к вопросу: все ли возможные системы отсчета для описания солнечной системы равноправны или какой-то из них следует отдать предпочтение?

Если окажется, что все системы отсчета равноправны, то и Птолемей, и Коперник будут одинаково правы. Но тогда с равным основанием можно было бы выбрать целый ряд других систем, например такую, где за тело отсчета взят Марс. В последнем случае получим систему мира, в которой вокруг неподвижного Марса обращаются Солнце и планеты, в том числе и Земля.

Если же, однако, выяснится, что при выборе системы отсчета всегда нужно предпочесть Солнце, то единственно верное описание солнечной системы даст схема мира Коперника.

Птолемей – это ученый, который жил в Древней Греции во 2 веке нашей эры. Птолемей разработал теорию, по которой планета Земля является центром всей Вселенной. Она неподвижно висит в космосе, а вокруг нее вращаются солнце и другие планеты. Долгое время эта теория устройства мира была общепринятой. В ней никто не сомневался, ведь люди своими глазами видели, что солнце вращается вокруг земли.

В 15 веке эту теорию полностью опроверг польский ученый Николай Коперник, который доказал, что Земля – не центр Вселенной, а лишь одно из небесных тел, которое вращается вокруг Солнца.

Нам хотелось бы заявить в полный голос, что Птолемей и Коперник — две личности, не уступающие друг другу по значению в реальном историческом процессе развития естествознания. Их имена не должны противопоставляться, они должны стоять рядом как символы двух величайших достижений естественнонаучной мысли. Нам хотелось бы одновременно подчеркнуть, что не только Птолемей, но даже и Коперник отнюдь не были единоличными творцами общенаучных революций. Оба они стали авторами научных представлений, переживших многие столетия, оба активно способствовали выработке нового стиля мышления, однако общенаучные революции — относительно краткосрочные этапы перехода науки на новые рельсы, определяющие формирование иных исторических типов науки, — происходили не только благодаря деятельности гениальных ученых, но и в силу вызревания необходимых условий, наступающих в связи со всем ходом социально-экономического развития человечества.

Особенно непросто обстоит дело с анализом творчества Птолемея.

Дело, разумеется, не только в той счастливой случайности, что труд Птолемея не затерялся в раннем средневековье и полностью дошел до наших дней в византийских списках и арабских переводах. Сравнительный анализ различных источников дает известное представление и о многих других крупных сочинениях древности как до, так и после Птолемея. Суть заключается в самом характере этого уникального сочинения.

Сколь бы древними ни были пласты человеческой культуры, которые лопата археолога вырывает время от времени из пучины забвения, следы пытливости человеческого разума предстают перед нашим взором всегда и повсеместно. В палеолите и в неолите, на заре эры рабовладения и в античности, в гротах скованной ледниковым панцирем Европы и в африканском ущелье Олдовей, на территории Индии и Китая, в Междуречье и в Мезоамерике, на всем протяжении изначально освоенного человечеством экваториального пояса Земли в пределах между широтами ±45° наши далекие предки оттачивали на оселке практики научный метод познания окружающей природы: наблюдали, систематизировали объекты и явления, экспериментировали, добивались теоретических обобщений, которые волей-неволей проходили дальнейшую проверку жизнью.

Идеал естествознания

Характерно, что ни упомянутые нами Евклид, Страбон, Плиний, ни многие другие античные мыслители никак не повлияли на мировоззренческие установки раннего христианства. И в то же самое время христианская церковь принуждена была считаться со взглядами язычника Птолемея. Разумеется, после многовековых диспутов они были деформированы, адаптированы, тщательно подогнаны к приемлемой для религии форме. Однако факт остается фактом: религия использовала убедительно обоснованную естественнонаучную теорию Птолемея в собственных целях и в конечном счете не рискнула пойти, как требовали некоторые, на открытую конфронтацию с идеями этого язычника.

Таким образом, Клавдий Птолемей и в его лице античная астрономия преподнесли всему естествознанию предметный урок. Птолемей первым в исполинском масштабе продемонстрировал великое искусство полноценно описывать природные явления на языке математики — на кине-матико-геометрической модели.

А. Койре (3) задается вопросом: почему греческая наука не создала физикй И дает на него ясный ответ: она к этому не стремилась, поскольку была уверена в невозможности добиться успеха.

Таким образом, величие теории Птолемея как недостижимого эталона естественнонаучного знания подмяло под себя остальные области естествознания. Эта теория подавляла, сдерживала развитие тех научных дисциплин, которые на первых порах никак не могли тягаться с ней в изощренности математического аппарата. Недосягаемой вершиной высилась она среди остальных наук, адепты которых еще не успели освоить ни эксперимента со строгим количественным исчислением его результатов, ни математических методов представления сводных данных.

Крушение

Остановил Солнце, двинул Землю

Жизнь Коперника и гений Коперника целиком принадлежат этой великой эпохе. Его современниками были Леонардо да Винчи, Колумб, Магеллан, Васко да Гама, Микеланджело Буонаротти и Рафаэль.

События этого бурного времени наложили отпечаток на личность Коперника, научная деятельность которого сама стала едва ли не самой высокой из вершин эпохи Возрождения. Имя Коперника — объект особой гордости всего человечества, и нам приятно добавить — объект особой гордости славянской науки.

В отличие от биографии Птолемея жизнь и творческая деятельность Николая Коперника из Торуня известны ныне вдоль и поперек. Мы не будем освещать их здесь, ограничившись констатацией общего факта. Если в лице Птолемея астрономия как созидательница впервые в истории человечества выработала великую научную теорию, то в лице Коперника именно астрономии пришлось впервые в истории сокрушать великую научную теорию.

Впоследствии всем без исключения научным дисциплинам доводилось повергать в прах своих идолов. Химики похоронили флогистон. Теория относительности ограничила безбрежность концепции Ньютона. Открытие Гарвеем кровообращения поставило крест на предшествующих взглядах в биологии. Но ни одна смена основополагающих научных представлений не протекала столь же драматично, как крушение астрономической картины мира Птолемея, безраздельно господствовавшей более тысячелетия.

Как мы уже отмечали, астрономия намного раньше других естественнонаучных дисциплин, как минимум со времени Птолемея, четко определила и объект, и метод своих исследований. Она занималась, казалось бы, наиболее общей из всех возможных сущностей — космосом, Вселенной. Не случайно, что с глубокой древности и на протяжении всего долгого средневековья именно астрономическая деятельность в наибольшей степени отвечала идеалам научности, а астрономия справедливо слыла царицей естественных наук. Это обстоятельство отразилось в бесчисленном количестве фактов: от существования музы астрономии Урании до официального положения астрономии в квадривиуме средневекового университета. И крушение великой астрономической теории Птолемея радикально отозвалось на всем естествознании.

Коперник и общенаучная революция

Из исследований последних лет, посвященных коперниковской теме, нам хотелось бы специально отметить хорошо взаимно дополняющие друг друга работы американских историков астрономии О. Гингерича и Б. Райтсмена. На конкретном документальном материале они убедительно показали специфику восприятия труда Коперника его современниками, отсутствие революционного подъема мысли у читателей Коперника еще на протяжении полустолетия после смерти автора. Есть основания полагать, что в подлинном значении гелиоцентризма для естествознания поначалу отдавали себе отчет лишь сам Коперник да его юный друг Ретик. К остальному научному миру осознание этого пришло гораздо позднее (10).

Нам хотелось бы наконец подчеркнуть, что в новых исследованиях обращено серьезное внимание на роль Реформации в формировании социальных условий, сопутствовавших созданию гелиоцентрической системы мира. Все эти исследования как нельзя лучше подкрепляют взгляд на Коперника как на предтечу грядущей общенаучной революции, происшедшей на рубеже XVI и XVII вв.

Придерживаясь в дальнейшем этой же классификации, мы считаем целесообразным уточнить терминологию, выделяя:

а) революции в науке, т. е. общенаучные революции, захватывающие все без исключения ее области — естественные, общественные и технические;

б) революции в отдельных областях знаний (цикл физико-математических наук, химические науки, медико-биологические науки, общественные науки и т. д.);

в) локальные революции в отдельных научных направлениях, которые как таковые не влияют на состояние системы в целом.

Анализ трех уровней научных революций позволяет прийти к выводу, что революции в отдельных научных дисциплинах и локальные революции происходят в результате прогресса собственно науки и свидетельствуют об относительной самостоятельности и активности научного познания. Эти революции второго и третьего уровня не сопряжены с коренной ломкой общей социально-философской картины бытия, а отражаются только на специальных (частных) картинах исследуемой реальности. Что же касается научных революций высшего уровня — общенаучных революций, то, будучи многомерными явлениями с рядом обратных связей, они тем не менее стимулируются и определяются преимущественно социокультурными факторами, причем в ходе этих революций меняется сам исторический тип науки. В ходе этих революций меняется весь комплекс ценностей науки. Сопоставление рассмотренных обстоятельств приводит к выводу о приуроченности общенаучных революций к периодам социально-экономического переустройства общества.

Занимаясь проблемами научных революций, непростительно упускать из виду, что наука отнюдь не сводится к совокупности научных знаний. Наука — это в первую очередь специфический вид духовной деятельности, неразрывно связанной с социально-историческими условиями. Хотя наука имеет своей задачей постижение объективной истины, которая не зависит ни от конкретного человека, ни от всего человечества, носитель пауки — человек — не может существовать вне общества. Историческая ограниченность науки прямо связана с ограниченностью общественной практики человечества на данном этапе его социально-экономического развития. Рассматривая науку в социально-историческом аспекте, мы обязаны констатировать, что в общенаучных революциях большую роль играют их глубокие социальные корни. И лишь революции в отдельных научных дисциплинах, которые выделяются по изменению содержания научного знания, связаны, как правило, с деятельностью определенного выдающегося ученого.

Великий польский астроном Н. Коперник был пред вестником грядущей общенаучной революции, социальные условия для которой в середине XVI в. еще не созрели. Радикально преобразовав практическую астрономию, Коперник совершил революцию в этой фундаментальной науке. В дальнейшем его гелиоцентрическая картина мира стала краеугольным камнем общенаучной революции начала XVII в., символами ее по праву служит подвижническая деятельность Дж. Бруно, И. Кеплера, Г. Галилея.

Нам представляется единственно корректным выходом (точно так давно поступают историки применительно к революциям социальным) отказаться от попыток персонификации общенаучных революций. Этот отказ, кстати сказать, вполне соответствует марксистско-ленинской точке зрения на роль личности в истории. Таким образом, можно согласиться с позицией Б. Райтсмена, что общенаучная революция конца XVI — начала XVII столетия имела среди своих гениальных предвестников великого Коперника и нашла ярких выразителей в лице таких ученых, как Дж. Бруно, И. Кеплер, Г. Галилей.

Реформация и представляет собой тот важный социокультурный фон, на котором совершено великое интеллектуальное достижение Коперника. Аналогичные мысли его предшественников Аристарха Самосского и Николая Кузанского не были восприняты и подхвачены.

Развенчанный Птолемей

Гелиоцентризм трудно внедрялся в научную жизнь, однако в конечном счете одержал всеобъемлющую победу. С теорией Птолемея происходило обратное: она господствовала более тысячелетия и потерпела сокрушительное фиаско. Подобный прецедент имел место впервые, и в сознании научного общества еще безраздельно господствовала кумулятивная модель научного прогресса. Значительно позже — скажем, при смене взглядов Ньютона теорией относительности — никому не могло даже прийти в голову упрекать Ньютона в заблуждениях. Было очевидно, что на смену одним научным представлениям приходят другие, более глубокие. Но, не имея подобного опыта, некоторые критики сплошь да рядом упрекали Птолемея именно в научной некомпетентности, писали, что он грубо заблуждался и повел науку по ложному пути. Рецидивы резко отрицательного отношения к деятельности Птолемея не новы.

К сожалению, в русском издании, вышедшем в 1985 г. с использованием английского оригинала 1978 г., оказался обойденным молчанием тот факт, что под давлением взрыва всеобщего негодования западных коллег Р. Ньютон принужден был отказаться от некоторых своих положений (21). Но он продолжает настаивать на том, что большинство приводимых Птолемеем наблюдений является на самом деле результатом вычислительной подгонки, и это, по всей вероятности, действительно так. Факты, как говорят, упрямы. Но в чем же суть проблемы?

Птолемей, создатель первой крупной математизированной естественнонаучной теории, впервые столкнулся с колоссальной противоречивостью реальных наблюдений. Напомним для наглядности, что диск Луны имеет на небесной сфере поперечник в 0,5°, т. е. 30 угловых минут. Принято считать — и это впоследствии блестяще продемонстрировал Тихо Браге, — что точность угловых наблюдений невооруженным глазом составляет несколько угловых минут и большим ошибкам взяться неоткуда. Однако это глубокое заблуждение.

Птолемей использовал наблюдения, в которых регистрировались не только угловые положения, но и время, а это могло выполняться — особенно при определении характерных точек в движениях Солнца, Луны и планет — очень грубо. Скорость же собственного движения Луны по небесной сфере среди звезд составляет около 0,5° в час. Среди использованных Птолемеем шумерских и вавилонских наблюдений многовековой давности наверняка попадались такие, которые имели ошибки регистрации времени в несколько часов — вот явный источник ошибок в положениях, достигающих нескольких градусов дуги!

Кстати сказать, все астрономические ежегодники мира, как и во времена Птолемея, приводят эфемериды небесных тел не в гелиоцентрической, а в геоцентрической системе координат.

Честь и хвала первопроходцам — великому Птолемею и великому Копернику!

Примечания

1 Нейгебауэр О. Точные науки в древности. М.: Наука, 1968. С.147.

2 Алексеев И. С, Проблема существования в астрономии//Философские проблемы астрономии XX века. М.: Наука, 1976. С. 269.

3 Койре Александр Владимирович (1892-1964) — выдающийся историк науки. Родился в Таганроге, с 1908 г. учился в Геттингене, впоследствии работал преимущественно во Франции и США.

4 Койре А. Очерки истории философской мысли. М.: Прогресс, 1985. С. 109-110.

5 Гингерич О. Средневековая астрономия в странах ислама // В мире науки. 1986. № 4. С. 16-26.

6 Колдер Н. Комета надвигается! М.: Мир, 1984. С. 42.

7 Энгельс Ф. Диалектика природы // Маркс К., Энгельс Ф. Соч., 2-изд. Т. 20. С. 345-346.

8 Галилей Г. Избранные труды. М.: Наука, 1964. Т. 1. С. 99.

9 Espinasse M. Robert Hooke. London, 1956. P. 19.

10 Райтсмен Б. Проблема коперниканской революции и распространения коперниковских идей // Историко-астрономические исследования. М.: Наука, 1987. Вып. 19. С. 295-310.

11 Алексеев И. С. Указ. соч. С. 274.

13 Энгельс Ф. Диалектика природы // Маркс К., Энгельс Ф. Соч., 2-е изд. Т. 20, С. 347.

14 Кун Т. Структура научных революций. 2-е изд. М.: Прогресс, 1977. 300 с.

15 Ровный Н. И. Очерки по истории и методологии естествознания. М.: Наука, 1975. С. 197.

16 Эпоним - должностное лицо, с началом деятельности которого в данном греческом полисе начинался новый счет времени.

17 Симпсон Дж. Г. Новое небо, новая Земля, новый человек // Природа. 1979. № 5. С. 37.

18 Ойзерман Т. И. Антифеодальная религиозная революция и ее зачинатель // Соловьев Э. Непобежденный еретик. М.: Молодая гвардия. 1984. С. 3.

19 Паннекук Л. История астрономии. М.: Наука, 1966. С. 163.

20 Ньютон Р. Преступление Клавдия Птолемея. М.: Наука, 1985. С. 368.

21 Newton R. R. The Origin of Ptolemy's astronomical parameters. N. Y.: Center of Archeoastronomy, University Maryland, 1982. 228 p.

Читайте также: